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The stability of a thread of fluid deposited on a flat solid substrate is studied nu-

merically by means of the Finite Element Method in combination with an Arbitrary

Lagrangian-Eulerian technique. A good agreement is observed when our results are

compared with predictions of linear stability analysis obtained by other authors.

Moreover, we also analysed the influence of inertia for different contact angles and

found that inertia strongly affects the growth rate of the instability when contact

angles are large. By contrast, the wave number of the fastest growing mode does

not show important variations with inertia. The numerical technique allows us to

follow the evolution of the free surface instability until comparatively late stages,

where the filament begins to break into droplets. The rupture pattern observed for

several cases shows that the number of principal droplets agrees reasonably well

with an estimation based on the fastest growing modes. C© 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4868039]

I. INTRODUCTION

Free surface flow instabilities have been, and are, the subject of very active research. The pres-

ence of contact lines introduces an additional difficulty in the analysis of these phenomena. This

paper addresses in particular the instability of a slender strip of fluid that is deposited on a flat solid

surface. Liquid ribbons like these can be seen in everyday life, as on car windscreens or in break-

ing uniform fluid films. Their study is also important in applications like Direct-Write,1–4 printed

electronics,5 and material functionalisation,6 which are different kinds of micro- and nano-fluidics

applications.7 Knowledge of the stability properties of this system is of fundamental importance,

either because the breakup into droplets is an unwanted phenomenon or because a regular rupture

pattern is desired. It is also a scientifically interesting problem in its own right.

The pioneering work of Davis,8 based on a kinetic energy balance, reveals that fluid rivulets

with fixed contact lines are stable if θ < π /2 (θ being the contact angle), while if θ > π /2 only

perturbations of a wave number (k) larger than a critical value (kC) are stable. Moreover, when the

contact line is free to move and θ is a smooth function of the contact line speed, Davis8 showed that

there always exists a critical wave number above which perturbations are stable.

Subsequent works have found that the existence of axial flows9, 10 and the influence of gravity11, 12

both have a stabilising effect. The stability of liquid threads deposited in V-shaped substrates was
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studied by Langbein,13 Roy and Schwartz,14 and Yang and Homsy.15 The paper by Diez, González,

and Kondic12 provides a detailed account of linear stability analyses carried out in previous works.

They also derived a lubrication based equation for the evolution of the film thickness, which accounts

for the gravity forces and the liquid-solid interaction effects through the disjoining pressure. In this

sense, the model can be used to simulate both macroscopic and microscopic fluid rivulets. In addition

to a linear stability analysis of this new model, they also conducted numerical simulations of infinite

and finite fluid strips by solving a lubrication-based evolution equation. For infinite strips, these

authors found that the wavelength with maximum growth rate predicted by the linear stability

analysis coincides with the distance between droplets resulting from the nonlinear simulations.

Similar conclusions hold for finite strips, at least in the explored range of parameters.

Experimental studies of the problem were presented by Schiaffino and Sonin,16 Duineveld,17

González et al.,18 and Kondic et al.6 Schiaffino and Sonin16 worked with strips of molten wax

deposited in a cool substrate to freeze the contact line, finding a reasonable agreement with Davis’s

theory. Kondic et al.6 analysed the stability of nano-strips of nickel by using a pulsed laser to melt the

metal. They found that the time and length scales measured in the experiments agree reasonably well

with predictions of an isothermal hydrodynamic model. The experiments also show that, for thin

lines, finite size effects produced at the ends of the filament are weak and the instability progresses

almost uniformly along its length; by contrast, for thicker strips border effects have stronger influence

on the evolution. These observations are consistent with those of González et al.,18 who studied the

instability of 0.3–1 mm thick and 5 cm long strips under partially wetting conditions and observed

that the instability always starts at the ends of the filament and progress towards its central region.

This paper focuses on one aspect of the problem not explored until now: the influence of

inertia on the stability of the system, particularly for large contact angles. In spite of the small cross

section of the filaments that are relevant to, say, printed electronics applications, the use of fluids

of particularly low viscosity or/and large density raises the question of whether or not it is a valid

approximation to ignore this effect. We also compare our results with those from previous works.

Our model considers a fragment of a Newtonian liquid thread, whose shape repeats periodically on

both sides of the modelled segment. Physico-chemical properties are assumed constant, as well as

the dynamic contact angle (which equals the static one). The contact line singularity is relieved by

a Navier’s slip condition.19 The governing equations are solved numerically by the Finite Element

Method (FEM), combined with an Arbitrary Lagrangian-Eulerian (ALE) technique,20 that allows us

to follow the time evolution of the liquid thread after an initial perturbation until late stages of the

evolution, where the filament breaks into droplets.

II. PHYSICAL MODEL

A filament of a Newtonian fluid with constant properties (density ρ, viscosity µ, and surface

tension σ ) rests on a flat solid surface (see Fig. 1). The surrounding air is calm and regarded as

inviscid; its constant pressure is taken as the reference pressure of the system and arbitrarily set to

zero. In an undisturbed state, the rivulet cross section area (A) is constant, and the contact angle at

the triple line solid–liquid–gas is θ , assumed also constant. We define R as the curvature radius that

the rivulet should have in a static configuration in the absence of gravity effects:

A = R2

(

θ −
sin 2θ

2

)

. (1)

In order to study the stability of the thread of fluid, we impose an axial sinusoidal perturbation

to its radius, whose amplitude is B and wave number is k, but taking into consideration that the

volume of the original strip of fluid is preserved. We analyse the time evolution on a fragment of the

rivulet of length π /k, i.e., half a wavelength of the initial perturbation. The motion of the liquid is

governed by the equations of Navier-Stokes and continuity

ρ

(

∂v

∂t
+ v · ∇v

)

= −∇ p + ∇ · τ + ρg, (2)
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FIG. 1. Sketch of the domain, the coordinate system, and some geometric definitions.

∇ · v = 0, (3)

τ = 2µD being the viscous part of the stress tensor (T), D = 1/2
[

∇v + (∇v)T
]

the strain rate

tensor, and g = −gez the acceleration of gravity.

The liquid–air interface is a material surface, therefore the following kinematic condition applies:

(v − ẋFS) · n = 0, (4)

n being the external unit normal vector and ẋFS the velocity of the free surface. Surface tension

exerts a normal stress at the liquid–air interface

n · T = σκn, (5)

κ = −∇S · n being the curvature of the free surface, ∇S = IS · ∇ the surface gradient operator, and

IS = I − nn the surface identity tensor.

At both ends of the liquid thread (x = 0 and x = π /k) symmetry conditions are applied, both for

the velocity field and the shape of the free surface.

On the liquid–solid interface, the no-slip condition (v = 0) is applied, except on a narrow region

close to the moving contact line. On this narrow region, a Navier’s slip condition21 is employed to

relieve the stress singularity at the contact line19

n · T · t = −
µ

LS

t · v, (6)

where t is any unit vector tangent to the solid–liquid interface and LS is the slip-length, a phe-

nomenological parameter that can be interpreted as the distance down into the substrate at which the

extrapolated velocity profile becomes zero. Besides, since the solid substrate is impermeable, the

normal component of the velocity is zero, v · ez = 0.

At the moving contact line, the contact angle (θ ) needs to be prescribed:

µ · ez = − sin θ, (7)

µ being a unit vector normal to the contact line and tangent to the free surface.

We proceed now to make the stated problem dimensionless. Lengths are scaled with R, velocities

with σ /µ, time with Rµ/σ , and stresses with σ /R. The dimensionless versions of Eqs. (1), (2), (5),

and (6) are

Â =
A

R2
= θ −

sin 2θ

2
, (8)

La

(

∂ v̂

∂ t̂
+ v̂ · ∇̂v̂

)

= −∇̂ p̂ + ∇̂ · τ̂ − Bo ez, (9)

n · T̂ = κ̂n, (10)

and

n · T̂ · t = −
1

L
t · v̂, (11)
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where La = ρσR/µ2 is the Laplace number, Bo = ρgR2/σ is the Bond number, and L = LS/R is the

dimensionless slip-length. Equations (3) and (4) read the same, but replacing operators and variables

by their dimensionless counterparts. Notice that the dimensionless extent of the domain along the

x̂-axis is π/k̂.

In Sec. III we explain briefly the numerical technique employed to solve the governing equations

stated above.

III. NUMERICAL METHOD

The equations modelling the time evolution of the liquid thread, Eqs. (9) and (3), along with the

boundary conditions stated in Sec. II, were solved numerically by the Finite Element Method. Notice

that the domain where equations are solved is a priori unknown and changes with time. There are

several numerical techniques aimed at tackling free boundary problems like this, traditionally clas-

sified as “interface capturing” [e.g., Volume of Fluid,22, 23 Level-Set,24, 25 and Diffuse-Interface26, 27]

and “interface tracking” [e.g., Lagrangian28, 29 and Arbitrary Lagrangian-Eulerian30–33 techniques]

methods.

In this paper we employ an Arbitrary Lagrangian Eulerian formulation embedded in the FEM

software COMSOL Multiphysics.34 In ALE techniques (and in Lagrangian techniques as well) the

numerical mesh follows and adapts to the distorting domain (the liquid rivulet in our case), but

grid points do not necessarily follow material points. In particular, we use the so-termed “Winslow

smoothing method,”35 which specifies that the initial position, X̂(x̂, t̂), of mesh points currently

situated at x̂, is governed by the equation

∇̂
2X̂ = 0. (12)

The boundary conditions at the free surface for Eq. (12) are obtained from the application of

the Lagrange multipliers technique36 to Eq. (4). The remaining boundary conditions are zero normal

derivatives (∂X̂/∂n = n · ∇̂X̂ = 0) except where essential boundary conditions apply (at the solid

substrate Ẑ = ẑ = 0, at the symmetry planes X̂ = x̂ = 0 and X̂ = x̂ = π/k̂).

COMSOL solves Eqs. (9), (3), and (12) along with their boundary conditions by means of the

Galerkin/FEM. The domain is discretised in an unstructured mesh of tetrahedra. Velocities and space

coordinates are approximated by quadratic Lagrangian basis functions, while pressure is interpolated

by linear Lagrangian basis functions. A variable order, totally implicit, finite difference scheme is

employed for time discretisation. Newton iteration is used to solve the resulting set of nonlinear

algebraic equations. A more detailed description of the numerical technique and its validation can be

found in Ubal et al.,37 where the authors study the deposition of a line of fluid on a plane substrate,

rather than the stability of an already deposited filament, as is the case in this work.

A. The setting up of the numerical experiments

As mentioned in Secs. I and II, the aim of this work is to study the stability of a thread of fluid

deposited on a flat solid substrate by direct numerical simulation. Each numerical experiment starts

with the fluid at rest, with the shape of the fluid strip possessing an initial sinusoidal perturbation to

its radius, the perturbation wavelength being 2π/k̂ and its amplitude being B̂. In this work we have

employed a value of B̂ = 0.01. From this initial condition, the simulation evolves in time, and two

different behaviours develop, depending on the set of parameters employed: a stable time evolution,

or an unstable one. In the first case, the perturbation decays and finally a straight rivulet is observed.

In the second case, the perturbation grows and the free surface evolves towards a rupture pattern.

The main parameters of the problem are θ (or equivalently Â), La, Bo, and k̂. In addition, there

are other parameters that need to be specified, including the mesh size, the width of the region (on

the substrate, adjacent to the contact line) where the slip condition applies, and the value of the

slip-length (L). The simulations presented in this paper were carried out for L = 0.05, a width for

the slip region equal to 5% of the strip local width (which changes in time), and a mesh whose

elements, at t̂ = 0, vary from a minimum size of 0.05 (near the contact line) to a maximum size of

0.8 (near the apex of the filament, for those cases with a large θ ). We carried out several tests aimed
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to study the sensitivity of the results to these parameters. For θ = π /6, La = 4.11, Bo = 0.132, and

k̂ = 1.2 we observed that the linear growth rate (α, see definition in Eq. (13)) (a) varies less than

5% when L changes from 0.005 to 0.5, for a slip region of 5% of the local strip width; (b) varies

less than 10% when the slip region changes from 1% to 10% of the local strip width, for L = 0.05.

We also observed that the critical wave number determined (k̂C) is insensitive to either of these

parameters. Independence of the results on the mesh size was verified as well. Finally, we successfully

compared our numerical results against theoretical predictions from other authors, as will be seen

in Sec. IV A.

IV. RESULTS

A. Comparison with previous works

In order to assess the validity and capabilities of our model, we carried out a series of simulations

aimed to compare our results with those from other authors.

Figure 2 shows the critical (marginal) wave numbers (scaled with the square root of the cross

section area, k̂C Â1/2) as a function of the contact angle (θ ). The solid curve corresponds to the predic-

tions of Davis8 while the symbols to our numerical results: crosses indicate numerical experiments

whose time evolution were unstable, while circles correspond to simulations with a stable outcome.

In the paper by Davis8 gravity is neglected, and inertia is not relevant in the determination of k̂C.

Our model however includes these effects: we set La Â1/2 = 1.24 and BoÂ = 0.012, i.e., inertia

and gravity effects are both kept small. This combination of parameters corresponds to the fact that

our numerical experiments were carried out for strips with a fixed (dimensional) cross section area.

If we adopt the following values of density (ρ = 1000 kg m−3), surface tension (σ = 0.05 N m−1),

viscosity (µ = 0.1 Pa s), and gravity acceleration (g = 9.8 m s−2), the resulting cross section area

is A = 6.1 × 10−8 m2. Note however that in order to keep A constant, the (dimensional) curvature

radius of the unperturbed thread of liquid diminishes as the contact angle θ increases from 0 to π .

Figure 2 shows that our stable/unstable results are correctly situated above/below the predic-

tion of Davis.8 However, the “resolution” in k̂ Â1/2 employed (minimum difference between wave

numbers tested) in our simulations was poorer for larger θ .

We also evaluated the growth rate (α) of the disturbance applied to the strip shape, at early

stages of the time evolution. To this end, we performed a Discrete Fourier Transform of the shape

of the strip width, that can be written as follows:

ŵ(x̂, t̂) ≈ ŵ0(t̂) + ŵ1(t̂) exp (i k̂ x̂) + ŵ2(t̂) exp (i2k̂ x̂) + · · · , (13)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

θ/π

k
C
A

1
/
2

=
k̂

C
Â

1
/
2

Our results, stable cases

× Our results, unstable cases

Davis8

FIG. 2. Critical wave numbers (scaled with the square root of the cross section area) as a function of the contact angle. Our

results were computed for La Â1/2 = 1.24 and BoÂ = 0.012.
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0 0.5 1 1.5 2 2.5
−0.04

−0.03

−0.02

−0.01

0

0.01

k̂

α

Our results
Diez, González and Kondic12

0 0.5 1 1.5
−2

0

2

4

6

8
x 10

−3

k̂

α

Our results
Diez, González and Kondic12

FIG. 3. Dispersion relationship (linear growth rate versus wave number) for θ = 5π /18 ( Â = 0.380) and Bo = 0.0316. Our

results were computed for La = 2.01.

where the time varying amplitudes (ŵn(t̂), n = 1, 2, . . .) of the spatial modes are approximately

given at early times by

ŵ1(t̂) ≈ ŵ0
1(t̂) + c1 exp (αt̂),

ŵ2(t̂) ≈ ŵ0
2(t̂) + c2 exp (β t̂),

...

(14)

We then extracted α from the analysis of the time evolution of ŵ1(t̂) in Eq. (14). The terms ŵ0
n(t̂)

are rapidly decaying transients that are produced due to the initial condition employed, before the

exponential growth regime dominates the time evolution.

As an example, Fig. 3 shows the dispersion relationship (α as a function of k̂) for θ = 5π /18

( Â = 0.380), La = 2.01, and Bo = 0.0316 (note that we keep the same values of La Â1/2 = 1.24

and BoÂ = 0.012). The solid curve represents the results from Diez, González, and Kondic12 [see

the solid curve for p̃ = 5 (or Ã ≡ BoÂ = 0.012) in Fig. 9 of that paper]. The circles are our results.

As can be seen, the agreement is very good, except for the largest negative growth rate (stable case).

In particular, the maximum growth rate and the critical wave number (k̂C, the zero-crossing wave

number) are both reproduced well.

Finally, we also compared our results with those from Diez, González, and Kondic12 and

Sekimoto, Oguma, and Kawasaki11 for non-negligible gravity effects. We fixed the values of

θ = π /6 ( Â = 0.0906) and La = 4.11 (again, we maintain the value of La Â1/2 = 1.24), and varied

Bo. The comparison is displayed in Fig. 4. The solid curve is the prediction by Diez, González,

and Kondic,12 the dashed curve is the results from Sekimoto, Oguma, and Kawasaki,11 and the

symbols are our results, with the same convention as in Fig. 2. These results seem to indicate that

our numerical results are closer to those of Diez, González, and Kondic,12 while the predicted k̂C

values of Sekimoto, Oguma, and Kawasaki11 are slightly larger over almost the whole range of Bo

depicted.

In Sec. IV B we study the influence of inertia for different contact angles.

B. Inertia effects for different contact angles

In this section we explore the effect of inertia on the time evolution of liquid threads forming

different contact angles with the substrate, after their cross section area is perturbed. Let us recall that

we have already computed critical wave numbers for different contact angles (including values equal

to and above π /2) in Sec. IV A: it is important to point out that inertia does not affect the values

of k̂C. The results presented below were obtained for BoÂ = 0.012. For fixed values of density

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

201.213.127.163 On: Thu, 20 Mar 2014 11:25:06



032106-7 Ubal et al. Phys. Fluids 26, 032106 (2014)

0 5 10 15 20 25
0.5

1

1.5

2

2.5

Bo

k̂
C

Our results, stable cases

× Our results, unstable cases

Diez, González and Kondic12

Sekimoto, Oguma and Kawasaki11

FIG. 4. Critical wave numbers as a function of the Bond number, for θ = π /6 ( Â = 0.0906). Our results were computed for

La = 4.11.

(ρ = 1000 kg m−3), surface tension (σ = 0.05 N m−1), and gravity acceleration (g = 9.8 m s−2), this

means that fluid lines have constant cross section area (A = 6.1 × 10−8 m2).

1. Results for early times of the evolution

We first restrict our analysis to the early times of the evolution of the process, paying particular

attention to the linear (exponential) growth rates (α). Figure 5 shows the dispersion relationship (α as a

function of k̂) for θ =π /6 ( Â = 0.0906), for La Â1/2 = 1.24 (µ= 0.1 Pa s, squares and dashed curve),

La Â1/2 = 1.24 × 102 (µ = 0.01 Pa s, triangles and dotted-dashed curve), and La Â1/2 = 1.24 × 104

(µ = 0.001 Pa s, circles and solid curve). The symbols represent the actual outcome from the

numerical simulations (and their subsequent post-processing), while the curves are polynomial fits

of 5th order of these data. We adopted polynomials of the form α = k̂2(b0 + b1k̂ + b2k̂2 + b3k̂3)

because, on the one hand, α → 0 as k̂ → 0 owing to volume conservation and, on the other hand,

the asymptotic behaviour of α for small k̂ obtained by Yang and Homsy15 and Brochard-Wyart and

Redon38 is of the form α ∼ Ck̂2, with C a constant.

Figure 5 clearly shows that the influence of inertia is moderate: growth rates seem to first

increase slightly and then decrease noticeably. α diminishes by roughly 20% from the smallest to

the largest La computed, while k̂M increases slightly.

0 0.5 1 1.5 2 2.5
−1

0

1

2

3
x 10

−3

k̂

α

LaÂ = 1.24

LaÂ = 1.24 × 102

LaÂ = 1.24 × 104

FIG. 5. The influence of inertia on the dispersion relationship (linear growth rate versus wave number) for θ = π /6

( Â = 0.0906) and BoÂ = 0.012. Symbols are the actual values of α computed numerically; curves represent 5th order

polynomial fits of these data.
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0 0.5 1 1.5
−0.04

−0.03

−0.02

−0.01

0

0.01
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α

LaÂ = 1.24

LaÂ = 1.24 × 102

LaÂ = 1.24 × 104

0 0.2 0.4 0.6 0.8 1

0

0.005

0.01

0.015

0.02

k̂

α

LaÂ = 1.24

LaÂ = 1.24 × 102

LaÂ = 1.24 × 104

FIG. 6. The influence of inertia on the dispersion relationship (linear growth rate versus wave number) for θ = π /2 ( Â = π/2)

and BoÂ = 0.012. Symbols are the actual values of α computed numerically; curves represent 5th order polynomial fits of

these data. The graph on the right shows the same data as the graph on the left, over a restricted range of k̂ and α.

We obtained similar results for θ = π /2 ( Â = π/2) and the same values of La Â1/2; these

are displayed in Fig. 6. Now the influence of inertia is more important. Compared to the case for

La Â1/2 = 1.24, the values of α reduce to 75% and 17% of the reference value, as La increases in

steps of a hundredfold. As before, the influence of inertia on k̂M is only weak.

Finally, we also computed the dispersion relationship for θ = 3π /4 ( Â = 2.86) and the same

values of La Â1/2. Results are depicted in Fig. 7. In this case the influence of inertia on the maximum

growth rate is very important: the value of α computed for the viscous case (La Â1/2 = 1.24) is about

twice and 14 times larger than the values obtained when La increases by 100 and 104, respectively.

Again, the value of k̂M undergoes a small increment as inertia becomes important.

For the results described above, it is important to remark that α is a non-dimensional growth

rate. Since the characteristic time is µR/σ , even though dimensionless growth rates reduce with La,

dimensional ones increase owing to the decrease in viscosity (and characteristic time µR/σ , which

divides α to produce the dimensional growth rate).

2. The evolution of the liquid thread for long times

In Secs. IV A–IV B 1 the focus was in the behaviour of the liquid thread at early times of the evo-

lution, when the perturbation of the cross section area either starts to grow (k̂ < k̂C) or decays towards

a uniform value (k̂ > k̂C). Since unstable wave numbers grow at varying rates—and a fastest growing
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FIG. 7. The influence of inertia on the dispersion relationship (linear growth rate versus wave number) for θ = 3π /4

( Â = 2.86) and BoÂ = 0.012. Symbols are the actual values of α computed numerically; curves represent 5th order

polynomial fits of these data.
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mode (let us define k̂M as the wave number of this mode) can be identified—it is worth analysing the

development of the instability at long times and observe the competition of different modes, when

either viscous or inertial effects are dominant. To this end, we study the time evolution of four of

the unstable cases already computed in Sec. IV B 1: (a) θ = π /6 ( Â = 0.0906), La Â1/2 = 1.24, and

k̂ = 0.15, (b) θ = π/6, La Â1/2 = 1.24 × 104, and k̂ = 0.15, (c) θ = 3π /4 ( Â = 2.86), La Â1/2

= 1.24, and k̂ = 0.1, and (d) θ = 3π/4, La Â1/2 = 1.24 × 104, and k̂ = 0.1. As can be noticed, we

chose perturbations with wavelengths several times longer than the fastest growing modes.

Besides, as stated at the beginning of Sec. IV B, in all the cases BoÂ = 0.012, which can be

interpreted as keeping constant the (dimensional) cross section (A = 6.1 × 10−8 m2) if, in addition,

we adopt the following fixed values of density (ρ = 1000 kg m−3), surface tension (σ = 0.05 N m−1),

and gravity acceleration (g = 9.8 m s−2).

Figures 8–11 show the results corresponding to cases (a)–(d) above. Each frame depicts the

shape of the liquid strip for a given instant of time. Shadings (colours) illustrate the value of the

pressure.

Case (a) (Fig. 8) shows the development of the instability, starting from the initial perturbation

(the domain comprises half a wavelength) to the final state that can be attained with our numerical

technique, where one of the necks (x̂ ∼ 10) has practically undergone a pinch-off process. Note that

the ALE-based scheme we employ does not support changes in the domain topology. Therefore,

if one of the (assuming multiple) necks reaches the pinch-off before others, the process occurring

after that point in time cannot be observed with the present technique. At t̂ = 2069, a number of

narrowings appear at x̂ ∼ 7, 11, and 17 (there is another at x̂ ∼ 20 originated by the initial condition)

where, moreover, the pressure is locally higher owing to the larger curvature of the free surface. As

time advances (t̂ = 2852) these regions continue thinning and some new appear at x̂ ∼ 3 and 14.

The final pattern attained with our scheme (t̂ = 3269) suggest that the instability process would end

up with about 11 large droplets and at least 3 smaller droplets in a whole wavelength (considering

the symmetry of our simulated system, where only a half wavelength is shown). A rough calculation

(k̂M/k̂) predicts the formation of about 10–11 droplets of the fastest growing mode, which compares

reasonably well with the computations.

FIG. 8. The time evolution of a liquid strip with an initial perturbation of wave number k̂ = 0.15. The remaining parameters

are θ = π /6 ( Â = 0.0906), BoÂ = 0.012, and La Â1/2 = 1.24. Shadings (colours) indicate values of pressure (scale on

the right of each frame). Instants of dimensionless time are printed for reference. The corresponding dimensional times

(considering R = 8.22 × 10−4 m, σ = 0.05 N m−1, and µ = 0.1 Pa s) are 1.69 s, 3.40 s, 4.69 s, and 5.37 s.
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FIG. 9. The time evolution of a liquid strip with an initial perturbation of wave number k̂ = 0.15. The remaining parameters

are θ = π /6 ( Â = 0.0906), BoÂ = 0.012, and La Â1/2 = 1.24 × 104. Shadings (colours) indicate values of pressure (scale

on the right of each frame). Instants of dimensionless time are printed for reference. The corresponding dimensional times

(considering R = 8.22 × 10−4 m, σ = 0.05 N m−1, and µ = 0.001 Pa s) are 0.0159 s, 0.0531 s, 0.0693 s, and 0.0770 s.

When viscosity is decreased (case (b), Fig. 9) and the contact angle is kept small, the instabil-

ity process observed is practically the same, except for the time scale. In terms of dimensionless

time, the first pinch-off (x̂ ∼ 10) is produced somewhat (1.4 times) later than in case (a). How-

ever (and recalling that times are made non-dimensional with Rµ/σ ) if one considers that the only

change in going from case (a) to (b) is a hundredfold decrease in viscosity, a simple calcula-

tion shows that actually attaining pinch-off in case (b) takes ∼1.4% of the time that it takes in

case (a).

Let us now consider increasing the contact angle, compared to case (a), but maintaining the same

(dimensional) cross section area (case (c), Fig. 10). To accomplish this, the (dimensional) radius of

the straight liquid filament (R) is made ∼5.6 times smaller. After the initial condition (t̂ = 149.3),

the liquid thread evolves producing two narrowings at x̂ ∼ 7 and 19, besides the original one at

x̂ ∼ 30. These regions continue thinning (t̂ = 170.3 and 185.4) but at some point (t̂ = 204.0) these

long necks give rise to the formation of small bulges limited in turn by smaller constrictions. When

the first pinch-off (x̂ ∼ 14) is practically attained (t̂ = 206.6), the final pattern observed suggest

the formation of 5 large droplets along with other 5 smaller droplets,39 in a complete wavelength.

The same rough estimate as before predicts the formation of about 5 droplets of the fastest growing

mode. In dimensionless terms, the time elapsed until the first pinch-off is 6.3% of the time demanded

in case (a). When the decrease in R is accounted, one obtains that reaching the pinch-off actually

takes considerably less (dimensional) time: 1.1% of that in case (a). Either in dimensionless (t̂) or

in dimensional (t) terms, it is remarkable the acceleration of the break-up process observed when θ

is increased.

Finally, let us take case (c) as a base for comparison, and reduce the viscosity 100 times (case

(d), Fig. 11). As can be observed, in this case inertia has important effects on the pattern of break

up displayed by the liquid filament. During the early stages (up to t̂ = 2294) of the instability,

one can observe the formation of necks at about the same locations as in case (c). It is however

in late stages when differences appear. When inertia is important compared to viscous forces, the

constrictions that—as a result of the instability process—become more pronounced than others

evolve faster and, as a consequence, those locations attain the pinch off before the other necks.
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FIG. 10. The time evolution of a liquid strip with an initial perturbation of wave number k̂ = 0.1. The remaining parameters

are θ = 3π /4 ( Â = 2.86), BoÂ = 0.012, and La Â1/2 = 1.24. Shadings (colours) indicate values of pressure (scale on

the right of each frame). Instants of dimensionless time are printed for reference. The corresponding dimensional times

(considering R = 1.46 × 10−4 m, σ = 0.05 N m−1, and µ = 0.1 Pa s) are 0.0156 s, 0.0437 s, 0.0499 s, 0.0543 s, 0.0597 s, and

0.0605 s.

This contrasts the behaviour observed in case (c) (Fig. 10), where the break up of the filament

seems to be attained more or less at the same time in all the narrowings. For this reason, it is

difficult to establish the final pattern of break up in case (d). One can speculate that the evolution

would end up with about 5 large droplets and possibly 3 smaller droplets within a distance of one

wavelength, but simulations for longer times are required to ascertain to this point. According to

the calculations shown in Sec. IV B 1, one could estimate the formation of about 6 droplets, based

on the wave number of the fastest growing mode. We can also observe that the (dimensionless)

time elapsed to attain the first break up is ∼13 times that corresponding to the viscous case (c).

Recalling the comparison of pinch-off times of cases (a) and (b), we can infer that the effect of the

inertial term in Eq. (9) is more important for large contact angles (θ ) and hence large dimensionless

cross sectional areas ( Â). However, as before, considering that the only change in going from case

(c) to (d) is a hundredfold decrease in viscosity, it turns out that, in fact, the dimensional time for

filament rupture in case (d) is ∼13% of that of case (c). Indeed the dimensional times indicated

in Figure 11 are very short, implying (for practical experimental purposes) a near instantaneous

break up of a filament as it is being laid down (as opposed to an instability on an already deposited

filament).
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FIG. 11. The time evolution of a liquid strip with an initial perturbation of wave number k̂ = 0.1. The remaining parameters

are θ = 3π /4 ( Â = 2.86), BoÂ = 0.012, and La Â1/2 = 1.24 × 104. Shadings (colours) indicate values of pressure (scale

on the right of each frame). Instants of dimensionless time are printed for reference. The corresponding dimensional times

(considering R = 1.46 × 10−4 m, σ = 0.05 N m−1, and µ = 0.001 Pa s) are 4.14 × 10−3 s, 6.02 × 10−3 s, 6.72 × 10−3 s,

7.21 × 10−3 s, 7.61 × 10−3 s, and 7.72 × 10−3 s.

V. DISCUSSION AND CONCLUSIONS

In this paper we analyse the capillary instability process undergone by a segment of fluid rivulet

deposited on a flat solid substrate, with symmetry conditions at both ends of the strip. This allows us

to study the time evolution of individual spatial modes and obtain the dispersion relationship of the

system. We also analysed the late development of the instability, for liquid filaments several times

longer than the computed fastest growing wavelength, until practically a first breakup of the thread

is attained.

In real fluid strips, the finite size or any eventual geometric constraints will limit the selection of

modes. Intuition indicates that the line of fluid will tend to break up according to the fastest growing

spatial mode (among those permitted). Our computations suggest that this reasoning gives in general

a very good estimate of the number of the main (in terms of size) resulting droplets, independent

of the contact angle or viscosity of the fluid. However, the precise rupture pattern (having droplets

both large and small interspersed at varying distances) does seem to depend on these parameters.

One also expects that growth rates give an indication of the time scale of the break up process.

According to our results, this is indeed the case when one compares the rupture times of Sec. IV B 2

with the growth rates computed in Sec. IV B 1. For contact angles up to π /2, lubrication-based
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theories like those of Yang and Homsy15 and Diez, González, and Kondic12 give an excellent pre-

diction of the critical wave number. Besides, for moderate contact angles (see Fig. 5, corresponding

to θ = π /6) they also provide a very good estimate of growth rates. Our numerical results including

inertia indicate that in this case α, the dimensionless growth rate, could be overestimated by roughly

20% when inertia is ignored. However, for larger contact angles (see Fig. 6 for θ = π /2 and Fig. 7

for θ = 3π /4), growth rates could be overestimated by one order of magnitude when inertia should

be important and yet is neglected. This affects considerably the time of rupture of the rivulet (see

Figs. 8–11) and could have important implications for practical applications. Note however that if, as

in our case, the increase of the relative importance of inertia is achieved by diminishing the viscosity

of the liquid, the dimensional growth rates of less viscous fluids are still larger than those of more

viscous liquids, though not so large as a theory that ignores inertia would have predicted.

On the other hand, inertia seems to have only a weak influence on the wave number of the

fastest-growing mode, according to the results of Figs. 5–7. In general terms, k̂M increases slightly

as La augments.

Our results also suggest that for large contact angles (non-wetting case) the number of satellite

droplets that tend to form is larger than for small contact angles (wetting case), at least for viscous

liquid filaments. This result is in qualitative agreement with the experiments of González et al.,18

who observed a large number of satellite droplets in the rupture of viscous strips under partially

wetting conditions. Due to limitations in our numerical scheme (simulations stop when the first

pinch-off is attained), we cannot ascertain to the validity of this statement for less viscous liquid

rivulets.

This is a first study of the influence of inertia on the stability of deposited fluid filaments. Future

work will complement this investigation and address other topics such as the influence of gravity

when contact angles are large, the influence of more complex behaviours of the contact line, and

finite size effects.

ACKNOWLEDGMENTS

We acknowledge financial support from CONICET, ANPCyT, and UNL. Part of this work was

also carried out while Paul Grassia was a Royal Academy of Engineering/Leverhulme Trust Senior

Research Fellow and funding from the fellowship is gratefully acknowledged.
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