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This paper investigates the influence of different three-dimensional multimode initial

conditions on the rate of growth of a mixing layer initiated via a Richtmyer-Meshkov

instability through a series of well controlled numerical experiments. Results are pre-

sented for large-eddy simulation of narrowband and broadband perturbations at grid

resolutions up to 3 × 109 points using two completely different numerical methods, and

comparisons are made with theory and experiment. It is shown that the mixing layer

growth is strongly dependent on initial conditions, the narrowband case giving a power

law exponent θ ≈ 0.26 at low Atwood and θ ≈ 0.3 at high Atwood numbers. The broad-

band case uses a perturbation power spectrum of the form P (k) ∝ k−2 with a proposed

theoretical growth rate of θ = 2/3. The numerical results confirm this, however they

highlight the necessity of a very fine grid to capture an appropriately broad range of

initial scales. In addition, an analysis of the kinetic energy decay rates, fluctuating ki-
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netic energy spectra, plane averaged volume fraction profiles and mixing parameters are

presented for each case.

1. Introduction

This paper is concerned with the effects of initial conditions on the development of

a turbulent mixing layer due to Richtmyer-Meshkov (RM) instability. This is related to

the Rayleigh-Taylor (RT) instability, in that it involves the motion of a heavy and light

fluid, driven in this case by an impulsive instead of continuous acceleration. The impulsive

acceleration typically arises due to a shock wave, which passes from one fluid into the

other. On the interface between the two fluids, there is usually a small perturbation,

which could be surface roughness, a slightly non-planar shock, a machined perturbation,

or an uneven fluid interface. The interaction between this perturbation and the incident

shock wave seeds the fluid instability, which initially grows in a laminar, ordered manner.

At late time, the ordered structures become turbulent, greatly enhancing the mixing of

the two fluids.

This form of impulsive mixing is important in the understanding of many astrophysical

phenomena, from supernovae to the dynamics of interstellar media. In the past few

decades it has been realised that the assumption of spherical symmetry in the simulations

of supernovae is inadequate due to the growth of RM instabilities. Almgren et al. (2006)

showed that the uneven shape of the supernova remnants is due in part to the combined

influence of RM and RT instabilities acting on perturbations within the star before the

supernova. Earth-bound phenomena include inertial confinement fusion (ICF), where a

spherical capsule containing thermonuclear material is compressed using a powerful laser

(Amendt et al. 2002). Once a critical level of compression has been reached, the fuel
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ignites and a burst of energy is released. In ICF, RM instability occurs at the interface

between the light and heavy materials, triggering turbulent mixing. In this case, turbulent

mixing has the dual effect of diluting and cooling the fuel, which reduces the efficiency of

the reaction, hence it important that this mechanism is well understood. By contrast, in

the field of supersonic combustion, RM mixing due to weak shocks improves the mixing

between fuel and oxidiser, giving more efficient combustion.

A key observation regarding all of these applications is that experimental measurements

(especially quantitative data) are very difficult, most notably in the cases of astrophysical

flows and inertial confinement fusion. Thus understanding of the underlying flow physics

relies to an unusual level on insights gained through modelling and numerical simulation.

A number of studies have focused on the influence of initial conditions on the multimode

RT instability (see for example Dimonte et al. (2004)), and on the RM instability with

an ‘egg carton’ two mode initial condition (see for example Cohen et al. (2002) or Hill

et al. (2006)).However, at present there are no published papers examining numerically

this issue for the three-dimensional multimode RM instability, hence this is the first time

that detailed data on the flow phenomenology, growth rates, mixture parameters and

turbulent kinetic energy spectra have been presented.

The current contribution investigates two specific initial conditions through numerical

simulation. The first is an initial perturbation characterised by a constant power spec-

trum over a narrow band of high wavenumbers. This is employed to examine the growth

of the RM instability at late times, or, equivalently, RM instability generated through

shock interaction with a pre-developed turbulent mixing layer. Shock interaction with a

narrowband combination of high frequency modes triggers growth of a turbulent mixing

layer purely via mode coupling of the high wave numbers, when all significant modes

within the system have saturated. Additionally, some experiments noted a dependence
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of the mixing layer growth exponent on density ratio (Dimonte & Schneider 2000). This

dependence has been investigated for two different density ratios; 3:1 and 20:1 to attempt

to clarify this matter.

The second initial condition consists of a broadband linear combination of modes

satisfying a power spectrum proportional to k−2, where k is the wave number. This form

of perturbation has practical importance as it is representative of the measured surface

finish of an inertial confinement fusion capsule (Barnes et al. 2002). Previous numerical

studies of the ablative Rayleigh Taylor instability by Dahlburg et al. (1995) have also

employed this form of perturbation spectrum. If the initial conditions are forgotten then

the asymptotic growth rate and associated statistics of the mixing layer should be the

same as the narrowband case. However, as pointed out by Youngs (2004), it is possible

that the combination of linear growth of the long wavelengths is faster than the growth

of a turbulent mixing layer, hence dictating the overall growth of the mixing zone.

The aims of the current work are to determine which of the theoretical models is cor-

rect for a given initial condition, to provide empirical data for the calibration of lower

order models (e.g. RANS methods) and to further the fundamental understanding of the

instability. The layout of this paper is as follows. In Section 2 a brief summary of exist-

ing theory and experimental results for general multimode perturbations are presented.

Section 3 describes the numerical methods employed, the effective resolution of the nu-

merical methods and the sensitivity of results to the domain size. Section 4 details the

results for the narrowband simulations at Atwood 0.5, Section 5 examines high Atwood

behaviour, followed by Section 6 which examines the flow physics of the broadband initial

condition at Atwood 0.5. Finally, Section 7 summarises the key conclusions of the study.
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2. Richtmyer-Meshkov Flow Physics

2.1. Single Mode Perturbations

Richtmyer-Meshkov instabilities (Richtmyer 1960; Meshkov 1969) can be understood as

the impulsive limit of the Rayleigh-Taylor instability, where the interface acceleration

occurs impulsively as a result of a shock wave or a very rapid acceleration. This is often

referred to as baroclinic deposition of vorticity on the interface. The analysis considers

flow at rest, with an initial sinusoidal perturbations between two fluids of density ρ1 and

ρ2. It is assumed that the acceleration g(t) is very large and occurs over a very short

period of time(see, for example, Richtmyer (1960); Drazin & Reid (2004)), giving

da

dt
= µk∆ua+

0 At+, (2.1)

where At+ = (ρ+
2 − ρ+

1 )/(ρ+
1 + ρ+

2 ) is the Atwood number, the + indicating a post-shock

quantity, and µ is a constant which is typically assumed to be 1 for weak shocks but can

vary at high shock Mach numbers. Equation (2.1) is typically most accurate when the

post-shock amplitude and densities are employed (Zhang & Sohn 1997). The post-shock

amplitude can be computed by taking the initial amplitude and multiplying by the mean

compression rate,

(ρ1 + ρ2)
−

(ρ1 + ρ2)+
. (2.2)

Equation (2.1) has been tested experimentally by Chapman & Jacobs (2006), Collins

& Jacobs (2002) and Holmes et al. (1999) demonstrating good accuracy for linear growth

up to ka ≈ 1. At late time the interface is composed of ‘bubbles’, where the lighter fluid

penetrates into the heavier fluid and ‘spikes’, where the heavier fluid penetrates into the
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lighter fluid. The sinusoidal shape eventually becomes mushroom shaped at late times

(large deformations).

Further understanding of the instability is gained by considering the flow to be in-

compressible, an approach that is applicable for the interaction of a fluid interface with

a weak shock (Richtmyer 1960). The flow is assumed to be inviscid, irrotational and

incompressible, hence can be defined by a velocity potential,

φvel(x, y) = S(x)φ0 exp(−k |x|) cos (ky) , S(x) =















1 if x > 0

−1 if x < 0

, (2.3)

for a two dimensional RM instability where the initial location of the mixing layer is at

x = 0, where x is in the direction of shock propagation, y ranges from 0 to L, and φ0 is

a parameter which controls the magnitude of the perturbation. For RM, the magnitude

of the initial perturbation is determined from linear theory, giving φ0 = At+∆u. A key

observation is that the deposition of vorticity at the interface implies the presence of an

irrotational flow field whose width is on the order of the wavelength of the perturbation.

2.2. Multimode Perturbations

2.2.1. Early Time

The models outlined in this section investigate the growth of a mixing layer where

the perturbations have not yet become linearly saturated. This means that the short

wavelengths can be non-linear (turbulent), but that these can be overtaken by longer

wavelengths growing at a slower but more persistent rate.

Dimonte et al. (1995) showed that if the mixing layer width is governed by the width

of the ‘just saturated’ bubble, then the total width (envelope described by the satu-

rated modes) should grow with θ = 1/2. This was derived by assuming that the ‘just

saturated’ mode has amplitude a ≈ CRM/k, i.e. ka ≈ CRM , where CRM should be
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of order one. Given linear growth of each mode to this amplitude, the governing equa-

tion is da/dt = (At)k∆ua0. Substituting k = CRM/a, W = 2a and W0 = 2a0 then

d(W 2)/dt = 4CRM (At)∆uW0. The solution of this equation is

W ≈
√

W 2
0 + 4CRMAtW0∆u(t − t0) (2.4)

Youngs (2004) proposed a modification to the growth rate by including the effects

of initial conditions. Assuming that the power spectrum of the initial perturbation is

represented by P (k) ∝ Ckm then the mean amplitude as a function of wavelength 1/k

in a band around k can be written as a(1/k) ∝
√

kP (k) = C1/2k(m+1)/2. For m 6 −1

the power spectrum will diverge at k = 0 hence it is assumed that a finite problem

of size L is being considered where the power spectrum is applicable for wavenumbers

greater than 2π/L. The velocity corresponding to the each wavenumber is then v(k) =

C1/2(At)∆uk(m+3)/2. A structure of size 1/k becomes non-linear in time t = 1/kv(k).

Linking the width of the mixing layer W with the wavelength λ = 1/k gives

W ≈ λ ≈
(

C1/2(At)∆ut
)2/(m+5)

, (2.5)

thus giving θ = 2/(m + 5). Youngs argues that growth from mode coupling alone is

approximately θ = 0.24, hence if the linearised growth rate is faster than this (m < 3.3)

then θ is dependent on initial conditions. An equivalent result has also been given by

Inogamov (1999).

Inogamov (2006) proposed another variant based upon the expansion of the mixing

layer due to linearly saturated modes, considering a power spectrum of the initial per-

turbations which becomes constant at low wavenumbers (long wavelengths). He then

examines the random mean square deviations in velocity fluctuations using ideas from

random walk, concluding that W ∝ t1/3. It should be noted that the amplitude of the
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Fourier harmonics of the perturbation must not change significantly in the region ±n

from the mode number n.

2.2.2. Late Time

Barenblatt et al. (1983) discussed the case of an isolated sheet of developing turbulence.

This is equivalent to assuming that all perturbations present in the initial condition have

gone past the initial linear stage of growth dictated by Richtmyer’s formula (Equation

(2.1)) and become a fully turbulent mixing layer. If the flow is not deformed by a mean

shear, then the evolution of turbulent kinetic energy qK = (u2 + v2 + w2)/2 is governed

by a balance of turbulent diffusion and dissipation into heat. Assuming a turbulent energy

eddy diffusion coefficient, Kq, then dimensional analysis gives Kq = L
√

q
K

, ǫ = bq
3/2
K /L,

where L is a reference length scale, which can be taken as L = Ch(t), h is a measure

of the width of the mixing zone and b is a positive coefficient. The asymptotic late time

solution for the growth of the slab gives h(t) ∝ t1−ν where ν > 1/3. That θ should

be asymptotically less than 2/3 can also be derived through kinetic energy conservation

- KE = 1/2ρu2h ∝ ρh3/t2 giving h ∝ t2/3. This argument was further developed by

Youngs (1994) who employed the following model equations,

d(LqK)

dt
= −bu3,

dW

dt
= u, where L = cW + dλmin, (2.6)

where the reference length L is taken as the minimum perturbation length scale λmin

and b, c and d are model constants. Taking initial conditions of W = 0 and u = ∆u then

W

λmin
=

d

c

[

(

1 +
c∆ut

θdλmin

)θ

− 1

]

, (2.7)

where θ = 2/(3 + bc) again recovering θ = 2/3 for the case of zero viscosity, but now

including some influence of the initial conditions. This equation applies to the growth
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of a mixing layer where the kinetic energy is confined to the region of turbulent mix-

ing, whereas Equation (2.5) applies where most of the kinetic energy is present in the

irrotational flow field outside the region of turbulent mixing (generated during shock

interaction as described in Section 2.1). Ramshaw (1998) also gained θ = 2/3 when

dissipation is zero via a Lagrangian description of the mixing layer width.

Gauthier & Bonnet (1990) extended the established k− ǫ methodology to model shock

tube experiments. By analysis of the diffusion term in the turbulent kinetic energy equa-

tion and assuming self-similar growth, leads to a growth of the mixing layer proportional

to t1/3. Huang & Leonard (1994) proposed a new self-similar decay of homogeneous tur-

bulence which was shown to give a growth rate of t1/4 at late times where the Reynolds

number is low (Prasad et al. 2000). Mikaelian (1989) used the impulsive limit of the RT

instability within a model for developing turbulent kinetic energy, predicting that the

mixing layer grows as 0.14∆u(At)t at late times.

Zhou (2001) has applied theory developed for turbulent flows with an external agent

to the RM instability. As RM turbulence is anisotropic in the z-direction (the direc-

tion of shock propagation), Zhou examined the two-dimensional spectra in the plane

perpendicular to shock propagation, proposing

E(k) = C [(At)∆uǫ(z)]
1/2

k−3/2. (2.8)

When the time scale for RM mixing is less than the time scale for homogeneous de-

caying turbulence then the spectra should take the form above, else the turbulence will

become fully developed and revert to a Kolmogorov form. The growth rate of the mixing

layer is predicted to be θ = 7/12 when the low wavenumber end of the spectrum follows

a power law proportional to k4 and θ = 5/8 for k2. More recently, by analogy to weakly

anisotropic turbulence, Clark & Zhou (2006) derived 2/7 < θ 6 2/5.
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Llor (2006) has examined the behaviour of a freely decaying slab of turbulence with

respect to the invariance of angular momentum at the large scales, using the knowledge

that given a low wavenumber range proportional to kc then there exists an invariant of

the form I = kλc+1. From this it can be shown that for self-similar decay the kinetic

energy qK ∝ t−n and λ ∝ t1−n/2, where n = (2c + 2)/(c + 3) (i.e. θ = 1 − n/2).

Assuming a Saffman impulse field as initial conditions for the turbulent slab, this gave

n = 4/3 hence θ = 1/3. Llor also proposes a maximum decay rate of turbulent kinetic

energy of n = 10/7, corresponding to θ = 2/7. Recently, Poujade & Peybernes (2009)

have presented an analysis based on foliated turbulent spectra and foliated averages,

predicting 1/4 6 θ 6 2/7.

It should be noted that these analyses are typically applicable to moderate Atwood

numbers where the growth exponent of the bubble and spike can be assumed to be close.

As At → 1 then there is little or no shear force applied to the spike side of the interaction.

This means that the initial linear growth is not slowed by interaction with the second

fluid and hence possibly does not form a vortex or turbulent mixing layer, growing instead

directly proportional to time. This high Atwood number limit is not considered in the

models presented within this section.

2.3. Experimental Data

Experimental results exhibit varying values of θ primarily due to what appears to be a

strong dependence on initial conditions and inherent difficulties in extracting quantitative

data. Dimonte & Schneider (1997) measure the growth rate at At ≈ 0.9, for a Mach > 10

shock. They determined the value of θ = 0.5 ± 0.1, higher than previous investigations,

suggesting an Atwood number dependence on the growth rate. The initial conditions for

the experiment consisted of a three dimensional broadband perturbation on a machined

surface, hence the high value of θ is consistent with the theory for early time behaviour.
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The dependence of the growth rate θ on the Atwood number was investigated in a

linear electric motor experiment (Dimonte & Schneider 2000). The relationship between

the bubble and spike growth rate was found to be

θS = θB

(

1 + At

1 − At

)0.21±0.05

= θB

(

ρ2

ρ1

)0.21±0.05

, for 0.15 6 At 6 0.96, (2.9)

where θB = 0.25± 0.05. In this case the experiments started with an initial RT unstable

problem caused by the acceleration of the rig. The RM problem thus began with a non-

linear region of turbulent mixing with most of the kinetic energy at a dominant length

scale, i.e. a narrowband case. The observation of two different values of θ for the spike

and bubble also implies non-self-similar behaviour. One of the objectives of the high

Atwood number case investigated in this paper is to investigate the potential causes of

this departure from self-similarity.

In an assessment of the potential flow models, three dimensional single mode experi-

ments at At = 0.15 conducted by Chapman & Jacobs (2006) show the best agreement

with the potential models of Goncharov (2002) who stated Hb/s = (2/(1 ± At))/kt.

Oron et al. (2001) use a combination of 3D simulation, a bubble competition model and

a buoyancy-drag model to formulate scaling laws for Rayleigh-Taylor and Richtmyer-

Meshkov instability. For Richtmyer-Meshkov instability in three dimensions the models

suggest θB ≈ 0.2 − 0.25 with both bubble and spike θ close to θB for At < 0.5 but

predicts larger θB,S as At approaches unity. This implies behaviour very similar to the

experimental results of Dimonte & Schneider (2000).

Experiments in air and sulphur hexafluoride (At ≈ 0.67) conducted by Prasad et al.

(2000) examined the influence of initial conditions on the late time growth of the turbulent

mixing layer. The initial conditions were taken as a series of large scale sinusoidal pertur-

bations, broken by a high wavenumber component introduced via a wire mesh. There is
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a dependence of initial conditions, the largest wavelengths producing the thickest mixing

layer, however it is a weak dependence as the growth exponent over all experiments is

0.26 6 θ 6 0.33.

3. Numerical Simulations

3.1. Governing Equations

The computations presented here employ the Euler equations, where viscosity is assumed

negligible (Re → ∞). This involves solving in each principal direction the following

governing equations,

∂U

∂t
+

∂E

∂x
= 0, (3.1)

where,

U = [ρ, ρu, ρv, ρw, ρE, ρψ1]
T

,

E =
[

ρu, ρu2 + p, ρuv, ρuw, (ρE + p)u, ρuψ1

]T
,

ρE =ρe + 0.5ρ
(

u2 + v2 + w2
)

,

and ρ, e, u, v, w, ψ1 are the density, specific internal energy per unit volume, Cartesian

velocity components and mass fraction of the heavy fluid. Throughout this paper it is

assumed that the fluid satisfies the ideal gas equation of state p = ρe (γ − 1), where

γ = 5/3 is the ratio of specific heats and is identical for both fluids. The mass fraction

equation is essentially a passive scalar which is advected to track the two gas components,

assumed to be miscible. Before mixing, the two fluids are in pressure and temperature

equilibrium i.e. the particle number densities, Ni, are the same. When mixing occurs it is
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assumed that pressure and temperature equilibrium occurs at small scales. For analysis

of the results it is useful to define fluid volume fractions

fi =
Ni

(N1 + N2)
=

ψi

Mi

ψ1

M1

+ ψ2

M2

(3.2)

where Mi is the molecular weight of fluid i and M1/M2 is identical to the initial density

ratio. Use of volume fractions has advantages for diagnostic purposes. For example, if the

post-shock mixing is incompressible (approximately true here) then f1 = (ρ−ρ2)/(ρ1−ρ2)

and the mean volume fraction profile is equivalent to a scaled density profile.

3.2. Numerical Methods

As neither of the numerical methods employ an explicit subgrid model, they fall in to

the class of Implicit Large-Eddy Simulation (ILES) (Grinstein et al. 2007; Drikakis 2003;

Drikakis et al. 2009). Conventional LES, where an explicit subgrid model is added to the

averaged Navier-Stokes equations, has been employed successfully in many prototype

flows, however it is known to provide excessive dissipation in flows where the growth

of an initially small perturbation to fully turbulent flow must be resolved (Lesieur &

Metais 1996; Pope 2000). In addition, the construction of subgrid models appropriate

for use in strongly compressible flows with high density gradients and shock waves is not

straightforward.

It has been observed that for certain cases it is possible to construct numerical methods

in which the subgrid dissipation is provided by the numerical method. This employs the

Kolmogorov assumption of separation of scales - as long as the evolution of the large

eddies of concern are independent of numerical viscosity then their evolution is captured

accurately and is independent of the form of the viscosity employed. The critical design

criteria for such schemes is that the dissipation of turbulent kinetic energy provided by
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the large scales is isolated to the high wavenumbers which are anyway not resolved by

the numerical method.

The behaviour at high wavenumbers should then remain localised, i.e. not cause a

global instability due to excessively low or high total dissipation, and not influence the

large eddies. This influence can manifest itself in two forms, either through the direct

action of numerical dissipation, or secondary influence caused by a lack of or excess of

eddies at high frequencies. An excess of eddy motion close to the cut-off will remove energy

at a faster than physical rate from neighbouring eddies in wavenumber space, a lack of

high wavenumber eddies will remove energy from these eddies at a slower rate. Ideally

this dissipation rate would be controlled using explicit filtering satisfying the required

dissipation rate (adapting the approach by (Bogey et al. 2009) for example), however this

inevitably increases the thickness of the contact surface and shock (in terms of number

of grid points) and suffers from the same difficulties as classical subgrid modelling.

This paper approaches the problem of turbulence modelling through a systematic grid

refinement study such that at the highest grid level it is reasonable to assume there

is sufficient separation between the dynamic and dissipative scales so that a physically

realistic turbulent flow field is achieved. Thus the large scales evolve independent of

numerical viscosity, as is confirmed through analysis of kinetic energy spectra within this

paper. The two numerical methods employed here are described in more detail in the

following subsections.

3.2.1. CNS3D

CNS3D (Drikakis & Tsangaris 1993; Drikakis 2003; Thornber et al. 2008) solves the

governing equations using a Finite Volume Godunov-type method (Godunov 1959; Drikakis

& Rider 2004). The inter-cell numerical flux is computed based on the solution to the

Riemann problem using the reconstructed variables at the left and right of the cell in-
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terface. In this paper the HLLC approximate Riemann solver is employed as detailed in

Toro (1997).

Higher order accuracy is achieved using MUSCL extrapolation (van Leer 1977), with

the fifth-order limiter proposed by Kim & Kim (2005) implemented in one-dimensional

form for fast computational time. The standard MUSCL extrapolation has been aug-

mented using the method of Thornber et al. (2008), which involves an additional stage

in the reconstruction process for the velocity vector. It ensures uniform dissipation of

kinetic energy in the limit of zero Mach number (M), extending the validity of the Go-

dunov method to at least M ≈ 10−4, via a progressive central differencing of the velocity

components. The formulation of the underlying governing equations is not changed, and

monotonicity of the density and scalar field is maintained.

It was shown in Thornber et al. (2008) that the leading order kinetic energy dissipation

rate is proportional to u3/∆x for the modified scheme, similar in form to that proposed

by Kolmogorov (1941) for decaying turbulence. It is this dissipation rate which acts as

a subgrid model in the ILES framework, giving significantly improved high wavenumber

performance compared to standard Godunov methods (Thornber et al. 2008; Thornber

& Drikakis 2008; Thornber et al. 2007).

Previously, numerical investigations have been performed for Richtmyer-Meshkov mix-

ing using ninth order weighted essentially non-oscillatory (WENO) methods (Mosedale

& Drikakis 2007; Drikakis et al. 2009). However, when used in combination with the

modified reconstruction method the scheme is not dissipative enough to employ as an

ILES method, leading to significant turn-up at the high wavenumber end of the energy

spectrum in simulations of homogeneous decaying turbulence. Therefore, in the present

study the fifth-order limiter was selected as a more computationally efficient and better-

understood scheme for this type of flow.
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Finally, a second-order accurate three stage Runge-Kutta time-stepping method is

employed (Spiteri & Ruuth 2002). This has an extended stability region to a theoretical

CFL = 2, reducing computational time compared to other explicit methods.

3.2.2. TURMOIL3D

TURMOIL3D uses the Lagrange-remap method of Youngs (1982) extended to three

dimensional flows (Youngs 1991). The details of the algorithm will be summarised here,

however a more complete description is given in Chapter 4c of Grinstein et al. (2007). For

turbulent mixing problems a mass fraction advection equation is used for gas mixtures

(Youngs 1991). The scheme is split into separate Lagrange and remap phases.

The Lagrange phase calculates the changes in velocity and internal energy due to

the pressure field. A staggered mesh is used with velocity components defined at cell

corners and with density, mass fraction and internal energy defined at cell centres. A

finite difference approximation is used which is second order accurate in space and time,

conserves total energy and is non-dissipative in the absence of shocks. Quadratic artificial

viscous pressure, q, is used to provide the dissipation due to shocks. There are oscillations

behind shocks. Hence the treatment of shocks is not as good in some respects as in second-

order Godunov methods. However, the method does have one very useful property: the

irreversible dissipation of kinetic energy, −q∇·u , is negligible for low Mach number, near

incompressible flow. This avoids the problem encountered in Godunov methods without

the low Mach number correction of Thornber et al. (2008). All three spatial directions

are calculated simultaneously in the Lagrange phase.

The remap phase calculates advective fluxes and may be regarded as a remap of the

configuration at the end of the Lagrangian motion, back to the original mesh. The x, y

and z advection are calculated in separate one-dimensional sweeps using a third order

monotonic method based on the work of van Leer. The order of the sweeps is reversed
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every time step. The method gives exact monotonic behaviour i.e. fluid variables at

the end of the remap phase lie with the range of neighbouring values at the end of

the Lagrange phase. The remap phase conserves mass, internal energy and momentum.

However, kinetic energy is dissipated. The loss of kinetic energy is quantified precisely

as a function of position by the simple algebraic technique of Debar (1974) and may be

added on to the internal energy to recover total energy conservation. This technique may

be thought of as giving the ‘sub-grid dissipation’. In the remap phase, dissipation occurs

where there are steep velocity gradients and is negligible in regions of smooth flow. It

is comparable to that obtained with an explicit sub-grid-scale model. Several Lagrange

steps may be performed per remap step and this significantly increases the efficiency of

low Mach number calculations.

CNS3D has been used to obtain most of the results. The alternative numerical tech-

nique (TURMOIL3D) used previously by Youngs (2004) has been employed to check key

results and thereby increase confidence in the conclusions.

3.3. Initialisation

The test case uses the initial conditions derived by Youngs (2004), which are shown

schematically in Figure 1. The flow field consists of a heavy and light gas separated by a

perturbed interface where the perturbation satisfies a given power spectrum and mean

amplitude. The incident shock wave has a Mach number of 1.84, equivalent to a four-fold

pressure increase. The initial conditions for CNS3D are

0.0 < x < 3.5 (ρ, u, p) = (6.38,−6.15, 4000) (3.3)

3.5 < x < 4.0 + S(y, z) (ρ, u, p) = (3.0,−29.16, 1000) (3.4)

4.0 + S(y, z) < x < LD (ρ, u, p) = (1.0,−29.16, 1000) (3.5)
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where S(y, z) is a two-dimensional array specifying the position of the interface in the

x direction. An initial velocity is given to the gas interface such that the centre of the

interface is stationary after passage of the shock wave. The post-shock Atwood number

At+ = 0.5.

The accurate initialisation of the surface perturbation S(y, z) requires careful consid-

eration, as it is essential that the modes which form the initial perturbation are linear at

initialisation, so that Richtmyer’s theory is applicable. This is relatively simple for the

narrowband case, where the short wavelengths present in the initial perturbation have

a top hat power spectrum between λmin = 16∆x and λmax = 32∆x, where ∆x is the

mesh spacing. Specifying that the standard deviation of the surface perturbation should

be 0.1λmin ensures linearity.

For the broadband case the requirement of linearity of the highest wavenumbers leads

to a more complex expression for the standard deviation, and for this reason the details

are reproduced in in Appendix A. The simulations using TURMOIL3D employed an

equivalent velocity perturbation as initial condition, which is described in Appendix B.

Visualisations of a slice and a three-dimensional perspective view of the initial condition

for the broadband and narrowband perturbations are shown in Figure 2.

Before proceeding further, it is important to justify the non-dimensionalisations used

when presenting results in this paper. For a constant shock Mach number, the parameters

influencing the growth of the mixing layer are At+, ∆u and λmin. Using the theory in

Section 2.2.1

W

λmin
∝

(

At+
∆u (t − t0)

λmin

)2/3

. (3.6)

To directly compare the simulations conducted on different grid resolutions, all length
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scales are normalised by the minimum wavelength λmin and velocities by (At+)∆u. Hence

dimensionless time

τ = t
At+∆u

λmin
, (3.7)

and kinetic energy and kinetic energy spectra are scaled by λmin((At+)∆u)2ρ, where

ρ = 1.

The following subsections detail simulations undertaken to ensure that the chosen

initial conditions for the broadband case are well resolved with the given numerical

methods on the chosen grid sizes. Ideally, the broadband simulation will contain as wide

a range of wavelengths as possible in the initial perturbation. However, it is clear that

above a certain frequency the numerical method itself will influence significantly the

solution obtained, and below a certain frequency there will be effects due to domain size

and poor statistics.

The influence of the ratio of the smallest and largest wavelengths can be illustrated

by considering linear theory developed in the previous section. The saturation times at

one grid level (t2) can be estimated from that at the previous level (t1). Assuming that

the mixing layer saturates when W = clmxλmax, at two different resolutions labelled

by subscripts 1 and 2 the ratio between the saturation times can be estimated using

Equation (3.6) as

t1 − t1,0

t2 − t2,0
= R

3/2
λmax

R
−1/2
λmin

, Rλmax
=

λmax,1

λmax,2
, Rλmin

=
λmin,1

λmin,2
. (3.8)

In a typical simulation the longest wavelength remains constant as the mesh is refined,

but the shortest wavelength is chosen as a function of the mesh spacing. This means

that for each doubling of the mesh size, the dimensionless saturation time of the longest

wavelength increases by a factor of
√

2. It is very important to maximise the ratio of the
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smallest to the largest wavelengths simulated to gain a longer period in which self-similar

growth can develop.

Initial simulations were run to determine λmin where modes are excited are restricted

between λmin = 32π/256 and λmax = 2π/3 on grid sizes of 360×256×256, 180×128×128

and 90 × 64 × 64, with the domain size fixed at 2.8π × 2π × 2π. This is essentially a

convergence study with the same initial condition on all grids, only more poorly resolved

on the coarsest grid. The time evolution of integral mixing width W , defined as

W =

∫ Lx

0

〈f1〉〈f2〉dx, (3.9)

is plotted in Figure 3(a) for each of the cross-sectional resolutions. At 64 cross-section the

shortest wavelength spans only 4 grid points, hence the behaviour at this resolution is

dependent on the numerical method. The method employed here (CNS3D) gives a slightly

faster growth than the converged solution. At 128 and 256 cross-section the growth rate

appears to have converged, at the final time they differ by less than 1.5%.

The instantaneous two dimensional kinetic energy spectra plotted in Figure 3 (b),

computed in the midplane of the mixing layer, in the y − z plane. Comparison between

the different grids and methods show that the method is not sufficiently dissipative at

low resolutions (i.e. high wavenumbers). At the highest resolutions there is excellent

agreement for the first 48 modes when comparing the 128 and 256 cross-section grids,

indicating that a good level of convergence has been achieved for the large scales which

is crucial for Large Eddy Simulation. From these simulations it can be concluded that

when λmin = 4∆x the initial perturbation is under-resolved, however, when λmin > 8∆x

the resulting growth is well resolved. For this reason all broadband simulations within

this paper use λmin = 8∆x.

The next parameter to fix is the size of the longest wavelength in the broadband case.
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In previous work Youngs (2004) chose λmax = 2π/kmin = L/3, where L is the box width.

Simulations with λmax = L/2 have also been run here to maximise the range between

the longest and shortest wavelengths. According to Equation (3.8), the longer wavelength

would give linear growth for a period ≈ 1.8 times longer at each grid level by extending

the width of the perturbation range simulated. Table 1 details the grid sizes and λmax

employed in this study, where the domain size is 2.8π × 2π × 2π, except at the highest

resolution where a ‘pancake’ slice domain was employed of size 0.7π×2π×2π. Following

this series of simulations it was concluded that simulations with λmax = L/2 were more

efficient at a given grid level, and did not show any influence of domain size over the

time scales considered.

The effect of different sets of random numbers to define the initial perturbation has

been investigated via three simulations at 256 cross-sectional resolution using different

random number sets. There is a maximum variation in the results at late time of ±5% due

to the lack of modes at low wavenumbers, but the early time behaviour is nearly identical

for all simulations. Comparison with the 1024 cross-section simulation demonstrates that

the choice of random numbers does not affect the simulation significantly over the period

of time in which the mixing layer is not affected by the largest scales.

The final important parameter to verify is the influence of the choice of domain size.

To verify that the chosen domain size is adequate, additional simulations using twice the

width and length of the 64 and 128 cross-section domain has been run. These simulations

have employed the same λmax and λmin and grid spacing (i.e. same problem, double the

domain size). In the period where the growth is dominated by the evolution of the modes

from linear to early non-linear (marked by a good agreement with the high resolution

simulation) there is less than 1% difference when the domain size is doubled. At late
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times, where the power in the large scales becomes important, the simulations vary by

less than 5%.

The domain size can be reduced at higher grid resolutions to take into account the fact

that the simulations are run for a smaller physical time and grow at a slower rate. At the

latest time for the 1024 cross-section simulation the mixing layer extends to ±0.5 from

the mixing layer centre. Given that the total domain size extends ±1.4π from the centre

of the mixing layer there is substantial scope for reduction in computational effort. The

consequence of a reduction in domain length is that the influence of far field fluid motion

(i.e. slip surfaces generated as the curved shock leaving the interface becomes planar once

more) is removed. It has been found that reducing the total domain length to 0.7π in

simulations above 512 cross-section has no noticeable affect on the development of the

mixing layer up to the point where the longest wavelengths are saturated. The reduction

in computational time made a very high resolution 2048 cross-section simulation feasible

with the available resources.

4. Narrowband Initial Conditions at Atwood 0.5

4.1. Flow Phenomenology

Figure 4 shows a two-dimensional slice through the flow field at three different time

instants where pure heavy fluid is white and pure light fluid is black. The shock initially

travels from left to right hence the spikes move from left to right, the bubbles from

right to left. Figure 5 shows volume fraction isosurfaces illustrating the evolution of the

turbulent interface with time. Finally, Figure 6 plots a three dimensional view of the

vortices, visualised as isosurfaces of ‘Q’ criterion Jeong & Hussain (1995) where

Q = −1

2

∂ui

∂xj

∂uj

∂xi
. (4.1)
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It can be seen that for early time (τ = 3.7) the flow field consists of a series of mush-

room like structures generated by the deposition of vorticity at the gas interface. Each

mushroom structure consists of a coherent vortex ring at early times as can be clearly

seen in Figure 6. However, KH instabilities grow exponentially and break the coherent

vortex rings at late time. The linear impulse given to certain modes allows them to escape

the mixing zones before interaction with neighbouring vortices causes them to lose co-

herence, hence small parcels of heavy fluid are carried a relatively long distance into the

lighter fluid. At late time the mixing layer is fully turbulent and vorticity is concentrated

in small worm-like vortex structures typically seen in simulations of turbulent flow fields

(See, for example Vincent & Meneguzzi (1991) or Thornber & Drikakis (2007)). At the

latest time it can be seen that the single vortex rings which advect heavy material into

the light have broken down into a ’bundle’ of vortex tubes which continue to advect into

the light material, albeit at a reduced velocity.

4.2. Flow Physics

The integral width, defined in Equation (3.9), has been computed for grid resolutions

643 through to 5123 and is shown in Figure 7. There is excellent collapse of the integral

width under the chosen scaling for resolutions of above 643, the higher resolutions allowing

examination of later time behaviour. A line of best fit is plotted which was generated

assuming a functional relationship of the form W = A(t − t0)
θ using two methods. The

first used the non-linear regression package in Mathematica to optimise the values of A,

t0 and θ to reduce the mean square difference. The second method calculates the data

fit parameters using derivatives of the integral width, so that

θ =

(

1. − WẄ

Ẇ 2

)−1

, t0 = t − (θ − 1)

Ẅ
Ẇ , A = Ẇ

(t − t0)
1−θ

θ
, (4.2)
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where the time derivatives Ẇ and Ẅ were estimated to second order accuracy. This

is similar to a previous approach used to estimate α in Rayleigh-Taylor instability

(Ramaprabu 2003).

The non-linear regression method using all points gave A = 0.254, t0 = 6.63 and

θ = 0.235. Results fitted from τ = 20 for TURMOIL3D give the same value of θ ≈ 0.235.

Further analysis (presented later in this section) implies that self-similarity is not achieved

until after τ = 40. Using non-linear regression on all points after τ = 40 gave A = 0.209,

t0 = −40 and θ = 0.262, where θ only varies by ±0.002 if the non-linear regression is

chosen to begin anywhere between τ = 40 and 500. The TURMOIL3D results are slightly

lower, giving A = 0.27, t0 = −17 and θ = 0.255 for data fits after τ = 150. Using the

derivatives of the integral width, A = 0.213 ± 0.05, t0 = 29. ± 10, θ = 0.26 ± 0.02. The

uncertainty in the predictions using the derivatives is due solely to the evolution of the

mixing layer - this is not necessarily perfectly smooth hence the variations in time of the

results. The determination of t0 is particularly sensitive to this.

These estimations are plotted in Figure 7, showing excellent agreement over the range

simulated. The lowest value of θ predicted fits well at early times, but at late times

it is beginning to move below the simulation. A value of θ = 0.26 matches the results

closely, and is in good agreement with the experiments of Dimonte & Schneider (2000)

who measured θ = 0.25 ± 0.05 for an impulsively driven instability, and the earlier

simulations of Youngs (2004) who gained θ = 0.243 (data fit from early time). Compared

to analytical theory this result is consistent with the general consensus that θ = 2/3− ν

by Barenblatt et al. (1983), where the viscous correction ν ≈ 0.41 in this case, and in

agreement with several of the analyses presented in Section 2.2.2 (Clark & Zhou 2006;

Llor 2006; Poujade & Peybernes 2009; Prasad et al. 2000). However, it is considerably

lower than the lowest growth rate proposed by Zhou (2001).
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Figure 8 shows the plane averaged volume fraction profiles at several different times

during the development of the mixing layer, and a plot of 〈f1〉 (1 − 〈f1〉) to highlight the

variation at the extremes of the layer. The profiles are self similar after τ ≈ 238 in the

bulk of the mixing layer. However, at the extremes of the mixing layer self-similarity is

achieved up to 〈f1〉(1−〈f1〉) = 10−2, at which point there are visible differences between

the two final times shown in Figure 8 (although there is a factor of two difference in

time). At time τ = 360 (not shown for clarity) the plane averaged volume fraction profile

follows the τ = 475 results up to 〈f1〉(1−〈f1〉) = 10−3 - demonstrating that a self similar

behaviour of the spikes is being approached, only more slowly than the bulk of the mixing

layer. This is because there are two mechanisms for the growth of the mixing layer, the

first is the growth of the fully developed turbulent ‘slab’, the second is growth due to the

linear momentum of the spike (vortex ring).

At τ = 475, the spikes have not yet settled down to a self similar behaviour, giving

a discrepancy at x/W ≈ 5 when compared to the fully self-similar profiles. At late

times the behaviour of the spikes themselves also becomes self-similar as shown by the

collapse of the last five profiles in Figure 8. The behaviour of the spikes is noticeably

different between CNS3D and TURMOIL3D. The spikes in the former algorithm are less

coherent and break down more rapidly, through a combination of Kelvin Helmholtz and

Widnall instabilities. This is because there is less dissipation at high wavenumbers in

CNS3D compared to TURMOIL3D. As discussed later in this section, in CNS3D there

is insufficient dissipation at high wavenumbers. This leads to the discrepancy between

the two methods for x/W > 5 at late times, where TURMOIL3D predicts higher plane

averaged mixing fraction. Much higher resolution simulations are required to calculate

the extremities of the spikes reliably, however, very little heavy fluid is involved in this

part of the flow.
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The fluctuating kinetic energy spectra are shown in Figure 9 for the 512 cross-section

resolution at several time instants. At early times the spectrum is peaked around the

highest perturbation frequency kmax. By τ = 50, a k−5/3 inertial range appears (possibly

only a transient towards a steady state spectrum), however at later times a clear k−3/2

range can be seen from τ = 100 through to τ = 500. The peak of the kinetic energy

spectrum moves progressively from k/kmax = 1 at the start of the simulation through

to k/kmax = 0.2 (k ≈ 7) by the end, as expected from a decaying turbulent flow field.

Ideally there would be at least an order of magnitude of modes simulated below the peak

of the kinetic energy spectrum, however, at the final time step, the most kinetic energy

is in eddies 1/7th the domain size.

There is a clear difference in the behaviour of the velocities in the shock direction

as compared to the transverse velocities. The spectrum of the u velocity (in the ho-

mogeneous direction) shows a k−3/2 behaviour and the low wavenumber portion of the

spectrum drops off more sharply than the transverse spectrum. The narrow width of the

mixing layer compared to that of the box should imply that there is little energy in the

velocities at the low wavenumbers (scales on the order of the box width), however it is

interesting that there is significantly more energy in the transverse directions than in the

parallel directions at low wavenumbers below the driving scale. Similar anisotropy has

been reported in the recent DNS of a Rayleigh-Taylor instability by Cook et al. (2004).

As the sub-grid model is implicit, the dissipation rate of turbulent kinetic energy is

not ‘designed’ towards a particular form of sub-inertial range, hence it is interesting such

a clear k−3/2 range appears. At high wavenumbers it is clear that there is not sufficient

numerical dissipation (k/kmax > 6.5) however it is unrealistic to expect any numerical

method to resolve accurately to that high a wavenumber - an LES simulation of these

fine scales would be prohibitively expensive.
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Initially, it is expected that the RM mixing zone has double the kinetic energy in the x

direction than the y and z direction, as can be seen by computing the velocity components

from the velocity potential in Equation (B 1). To investigate this, the fluctuating velocities

have been computed as the difference of the actual velocities minus the plane averaged

velocity, summed over the entire mixing layer, i.e.

ũ =

∑

yz ρudV
∑

yz ρdV
, TKX =

∑

xyz

1

2
ρ(u − ũ)2dV, TKY =

∑

xyz

1

2
ρv2dV. (4.3)

Figure 10 shows that in the simulations the initial anisotropies are higher as the shock

is non-planar and contributes to the fluctuating kinetic energy in the x direction. Zhou

(2001) argued that at late time a k−5/3 sub-inertial range should develop and the mixing

layer should become a slab of homogeneous decaying turbulence. However, there is evi-

dence that the velocity components do not equilibrate - instead the ratio of the x-direction

turbulent kinetic energy to the y-direction turbulent kinetic energy tends towards a con-

stant value. Indeed, self-similar decay of the mixing layer requires that the decay rate

of the three velocity components is the same. This is shown clearly in Figure 10 for the

512 cross-section, where the ratio of x- and y-direction turbulent kinetic energy remains

at 1.52 ± 0.02 for 200 6 τ 6 500. Given this level of anisotropy exists it is perhaps not

surprising that the k−3/2 persists until late times. This indicates that the theories based

on the assumption that at late time the mixing layer becomes a homogeneous isotropic

turbulent slab may not be applicable to RM mixing.

Given that the width of the mixing layer scales with tθ, then the empirical relation

ǫ ∝ u3/W can be used to check the dissipation rate of kinetic energy. From dimensional

analysis dqK/dt ∝ q
3/2
K /tθ, with a solution of the form qK ∝ t2θ−2. This is the decay rate

of mean kinetic energy across the mixing layer. The decay of total fluctuating kinetic

energy shown in Figure 10 (Equation (4.3)) is proportional to the width of the mixing
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layer multiplied by the mean kinetic energy, i.e. WqK ∝ tθt2θ−2 ∝ t3θ−2. This result can

also be gained by assuming that the mean velocity in the mixing layer is proportional to

the growth of the mixing layer itself, giving
√

qk ∝ dW/dt ∝ tθ−1. Using θ = 0.26 the

decay of total fluctuating kinetic energy should be proportional to t−1.22±0.06, within the

margins of accuracy for the simulation which gave a decay proportional to t−1.26±0.05.

This plot also clearly illustrates that self-similar decay is achieved after τ = 40, as

assumed in the earlier computations of θ.

The molecular mixing fraction Θ and the mixing parameter Ξ are defined as

Θ =

∫

〈f1f2〉dx
∫

〈f1〉〈f2〉dx
, Ξ =

∫

〈min(f1, f2)〉dx
∫

min(〈f1〉, 〈f2〉)dx
. (4.4)

where 〈f1,2〉 indicates the y − z plane averaged volume fraction of species 1, 2 where

species 1 is the heavy gas. Θ gives a guide to the total reaction rate for a slow reaction

and Ξ is an equivalent measure for a fast reaction rate where one reactant is fully depleted.

Figure 11 shows these quantities plotted for all grid resolutions. As grid size increases

both Θ and Ξ decrease, however the molecular mixing fraction Θ and mixing parameter

Ξ both approach a constant state. The asymptotic values of Θ = 0.84 ± 0.02 and Ξ =

0.84± 0.01 are similar to previous turbulent mixing simulations of the related Rayleigh-

Taylor instability by Youngs (2003) and Cook & Zhou (2002).

5. Narrowband Initial Conditions at Atwood 0.9

The initial conditions employed in the previous subsection were modified to examine

the influence of Atwood number. The initial conditions for the At+ = 0.9 case were

chosen to give the same initial linear impulse as for the lower Atwood case, i.e. for the

low Atwood case the initial velocity can be written as
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da

dt
= k∆ua0At+ = 14ka0 (5.1)

It is useful to maintain ka0 the same as the lower Atwood case to avoid issues with

non-linear initial amplitudes of the modes. As the behaviour of the RM instability is

considered to be relatively insensitive to shock Mach number it was decided to modify

∆u to compensate for the increase in At+. Given At+ = 0.9, the required ∆u = 15.555.

Choosing the heavy gas to have a dimensionless density of 20 and the light of density

1 gives a required shock Mach number of 1.91 in the heavy gas to maintain the same

initial growth rate. A consequence of the high density of the second material is that there

are compressibility effects at very early times due to the low sound speed in the dense

fluid, where the initial growth is supersonic (Mach≈ 1.2). An additional simulation was

run in CNS3D at the highest resolution where the initial pressure has been increased

by a factor of ten to ensure that the turbulent fluctuations remain below Mach 0.4. The

shock Mach number was decreased to 1.245 to maintain the same ∆u. The TURMOIL3D

simulation with velocity perturbation was initialised with the higher pressure. There is

some uncertainty in the quantitative comparison of the two initial conditions as there is

a scaling factor introduced related to the compression of the two fluids by the shock but

this should not have a large effect on the self-similar properties such as θ or the scaled

volume fraction profile.

The effect of the resolution of the initial perturbation was investigated by first fixing

the initial perturbation at λmin = 16∆x and running this on a 64 cross-section grid, then

increasing the resolution up to a 256 cross-section grid with the same initial wavelength

– i.e. λmin = 64∆x. Comparing the integral width predicted from the 256 cross-section

with that predicted from the 64 cross section shows that it does not vary significantly

especially considering the improved resolution of the initial modes in a highly non-linear



30 B. Thornber, D. Drikakis D.L. Youngs & R. J. R. Williams

system. From this it was concluded that the simulations at high Atwood were reasonably

converged with λmin = 16∆x.

As there is greater momentum on the spike side than in the previous simulations, the

domain size must be increased at lower grid resolutions to allow greater simulation time.

Thus the domain sizes chosen were longer than the lower Atwood case. The cross-section

was fixed at 2π and the individual cells were cubic in all cases. The resolutions employed

are detailed in Table 2. As the grid resolution increases, the initial growth rate is lower

hence the domain length can be reduced to allow more efficient computation.

Visualisations of the flow field are shown in Figures 12 to 14 for the 256 cross-section.

The initial times show a significantly narrower spike when compared to the lower Atwood

case as clearly illustrated in Figure 12, however the same mushroom shaped features and

ring vortices are observed. At later times the distribution of vortices highlighted by

iso-surfaces of Q in Figure 14 show a homogeneous layer with a wide range of scales

illustrated by the volume fraction isosurfaces in Figure 13.

Figure 15 shows the convergence of the integral width as grid resolution increases. Note

that the integral width W for the CNS3D simulation with higher background pressure

(lower Mach) has been rescaled to take into account the different post-shock interface

amplitude (approximately 16% larger than the higher Mach case). As with the lower

Atwood case, the integral width converges at approximately 128 cross-section. Using the

non-linear regression technique described in the previous section on the CNS3D data

applied to all data points gives A = 0.22, t0 = 2.4 and θ = 0.264. Applying regression to

all points after τ = 400 gives the same value of θ = 0.3, A = 0.17±0.01 and t0 = −60±20.

Calculating these parameters for the results generated with CNS3D using the first and

second derivatives of W as described in Equation (4.2) gives the same mean values as the

above, however it appears that the value of both t0 and A are progressively decreasing
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with time, while θ levels off at 0.3. These estimations are close to that computed for

the previous At+ = 0.48 case and do not exhibit the large exponents observed in the

experiments by Dimonte & Schneider (2000) at similar Atwood numbers (with immis-

cible fluids). As expected there are some minor differences between TURMOIL3D and

CNS3D for this case which can be attributed to the difference in the initialisation of the

problem (velocity perturbation vs. shock perturbation), as discussed in Appendix B. For

TURMOIL3D the value of θ is still evolving at the latest time, changing from θ = 0.273

for data fits including early times to θ = 0.254 for a data fit from τ = 300 onwards.

The plane averaged volume fractions are shown in Figure 16 for the 512 cross-section

resolution. At early times the bubble side (negative x/W) is very close to being self-

similar. To highlight this process, the quantity 〈f1〉(1 − 〈f1〉) has also been plotted in

Figure 16. It illustrates that at larger plane average volume fractions (〈f1〉(1 − 〈f1〉) >

10−3) the mixing layer is self similar on the bubble side from early times.

However, there is significant variation on the spike side indicating that self similar

behaviour of the spike only appears at very late time. This is made more clear when

comparing Figure 16 with Figure 8, where the lower Atwood case shows much better

convergence at the same dimensionless time. At early time the dimensionless width of

the spike side is larger, due to the momentum of relatively coherent vortex rings ejected

from the mixing layer in the initial interaction process. These are generated in regions

where interaction with nearby modes in wavenumber space is relatively low, permitting

the appearance of undistorted rings. At later times these become unstable, breaking down

and eventually becoming part of the mixing layer leading to a narrower dimensionless

plane averaged volume fraction distribution as can be seen at τ = 950.

Although the high Atwood simulation was designed to have the same initial linear

velocity impulse as the lower Atwood case, it has higher momentum hence the parcels
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of dense fluid advected by the vortex rings travels further. This effect is stronger in the

TURMOIL3D simulation leading to higher volume fraction at distances further from the

mixing layer. As the vortex rings structures typically span 20 computational cells they

do not evolve independently of the influence of numerical viscosity hence there is an

element of scheme dependence. The finite difference method in the semi-Lagrangian code

preserves these coherent small scale structures, whereas the Godunov method predicts

that these structures will become unstable and break down.

These vortex rings provide a source of intermittency, contributing their own charac-

teristic time scale to the overall evolution of the mixing layer width. The co-existence

of two different scaling laws within the same mixing layer are potentially the cause of

the high values of θ observed in the LEM experiments by Dimonte & Schneider (2000)

at high Atwood number. Simulations indicate that only a small amount of material is

carried with each vortex ring and that at late time they are reabsorbed into the mixing

layer, which then develops in a fully self-similar manner.

Figure 17 shows the average of ten two dimensional fluctuating kinetic energy spectra

taken in the y − z plane about the peak of fluctuating kinetic energy in the mixing layer

for the v and w velocities, and the u velocity. Of interest here is that the spectrum in the

v and w direction shows both a k−5/3 and a k−3/2 range. The Kolmogorov inertial range

is present for 80 6 k 6 200 at the latest time, the k−3/2 range between 18 6 k 6 80. At

early times (τ = 237, the third line down in Figure 17) the k−3/2 range is slightly longer,

extending to k = 150, but is ‘eaten away’ by the sub-inertial range at later times. There is

a clear difference in the behaviour of the velocities in the shock direction as compared to

the transverse velocities. As with the lower Atwood case, the spectrum of the u velocity

in the homogeneous direction shows a k−3/2 behaviour and the low wavenumber portion

of the spectrum drops off more sharply than the transverse spectrum.
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The decay of fluctuating kinetic energy and the ratio of the parallel to transverse

components are plotted in Figure 18. The turbulent kinetic energy is decaying at a rate

proportional to t−1.15, with an expected margin of ±0.1 as the decay law is not as

consistent as in the lower Atwood number case. This translates to θ = 0.28± 0.03 which

is within the range predicted by the various integral width line fit methods. The ratio of

kinetic energies appears to be levelling off more slowly than the lower Atwood case. This

is expected as the rate of growth of Kelvin-Helmholtz unstable modes is proportional to

√
ρ1ρ2/(ρ1 + ρ2), which is lower when the two fluids have different density, leading to a

slower transfer of fluctuating kinetic energy.

The molecular mixing fraction Θ and the mixing parameter Ξ are plotted in Figure 19.

At this Atwood number the asymptotic values of the mixing parameters is reduced - Θ =

0.73± 0.02 and Ξ = 0.70± 0.02. This reduction in mixing efficiency is in agreement with

the observation that the growth rate of Kelvin-Helmholtz unstable modes is reduced as

compared to the lower Atwood case. Additionally, both Θ and Ξ take longer to asymptote

to a statistically steady state.

TURMOIL3D has a lower Θ indicating that there is less mixing - consistent with

the observation that the spikes do not break down as rapidly in the semi-Lagrangian

methodology. Previous experience with the two numerical methods applied to homoge-

neous decaying turbulence has shown that the semi-Lagrangian method is moderately

over-dissipative at high wavenumbers, whereas the modified Godunov method in CNS3D

is slightly under-dissipative. This indicates that small scale features in CNS3D are more

likely to break down, whereas in TURMOIL3D they remain coherent. For this reason it

is probable that the actual value of Θ lies within the limits laid down by the two codes,

i.e. 0.71 6 Θ 6 0.75. It is important to note that the value of Θ is a measurement which

is especially sensitive to small variations in the profile of < f1f2 >.
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6. Broadband Initial Conditions at Atwood 0.5

6.1. Flow Phenomenology

Figure 20 shows six density slices at different time instants in the evolution of the mixing

layer at the highest resolution employed (over 3×109 points). The first time instants show

the initial growth of the mixing layer which is dominated by the highest wavenumbers

which rapidly saturate. As time continues, progressively longer and longer wavelengths

grow linearly, saturate and become turbulent. Note that at the latest time simulated

there is no significant perturbation of the interface at wavelengths close to the longest

wavelength excited. This is important as it confirms that the simulation considers a

reasonable length of time where the shortest wavelengths have saturated, but the longest

wavelengths have not yet grown to non-linear amplitude.

Figure 21 shows a three dimensional rendering of isosurfaces of volume fraction respec-

tively for the 2048 cross-section. Figure 22 shows the ‘Q’ criterion highlighting the vortex

cores within the mixing layer in a 256 sub-section of the 512 simulation. Compared to the

narrowband simulations, there are a range of perturbation length scales growing simul-

taneously, as is shown clearly in Figure 20. As successively larger modes dominate the

growth, they can be seen emerging as bubbles in the three dimensional plots of volume

fraction isosurfaces.

Examining the vortices highlighted in Figure 22, it is interesting to note that at τ = 56

the flow field consists of many coherent vortex structures. At this point the simulation is

just about to transition from being a mixing layer dominated by the growth of successively

large modes, to a fully developed two dimensional turbulent mixing layer. Hence at the

final time instant (τ = 294) the distribution of vorticity in the mixing layer is beginning to

resemble the earlier narrowband simulations. A key difference is that the vorticity is not

as evenly distributed when compared to the narrowband case, which is to be expected



Turbulent Mixing due to Richtmyer-Meshkov Instability 35

as the structures in the narrowband case have been generated by high wavenumber

perturbations, naturally leading to a smoother, more regular distribution. Additionally,

to satisfy energy arguments discussed in Section 2.2.2 there must be regions of high and

low turbulent kinetic energy so that the overall growth rate of the mixing layer can be

higher than that theoretically predicted and numerically simulated for a homogeneous

layer.

6.2. Flow Physics

The variation of the integral width as a function of time and grid resolution is plotted

in Figure 23 for the three highest grid resolutions. In addition, Table 3 documents the

value of θ computed for each grid resolution. It is immediately clear that there is a

strong variation in the values of θ dependent on the ratio of the longest to the shortest

wavelengths - varying from θ = 0.42 at 128 cross-section to θ = 0.62 at 2048 cross section.

The values of θ are converging gradually towards θ ≈ 2/3 as predicted by Youngs (2004)

through consideration of the growth envelope of a series of successively emerging modes.

As this growth rate is larger than the growth rate of a slab of homogeneous turbulence

(the narrowband case) then the growth due to the linear momentum of successively

larger modes dominates. This strongly supports the representation of mode interference

proposed by Youngs.

That the value of θ has not converged completely at such high grid resolution demon-

strates the extreme sensitivity of the problem to the initial conditions. Given that the

largest wavelength is 128 times the size of the smallest wavelength in the 2048 cross-

section simulation, and yet self-similar growth is achieved only for a very short period

of time, this implies that experiments/simulations which do not have an appropriately

broad spectrum of initial perturbations may not achieve a long duration of self-similar

growth. Given a short spectral range of initial perturbations the growth rate will not
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approach the expected ’asymptotic’ value of θ, but will lie somewhere in between that

expected from a narrowband perturbation, and the theoretical value for a ‘full’ spec-

trum. This is equally applicable to the final design of a fusion capsule. That the time of

self-similar growth is so short is linked to the observation that linear growth of a single

mode following Richtmyer’s formula is accurate to approximately ka = 0.15 (compared

to non-linear theory of Zhang & Sohn (1997)). Hence, even at such small amplitudes, the

growth of the mode begins to slow and is overtaken by longer wavelength modes.

The principal aim of the choice of initial conditions was to maximise the period of

time where the mixing layer is self-similar in behaviour, i.e. where the mode which is

currently dominating the growth of the mixing layer lies between small scales which are

fully saturated, large scales which have not yet grown significantly. To verify that this

was the case the two dimensional turbulent kinetic energy spectra have been computed

in the y − z plane at the centre of the mixing layer (in the plane normal to the direction

of shock propagation). The results are shown in Figure 24 for the 2048 cross-section at

several time instants.

At τ = 14 the large scales have quite a large amount of energy compared to later

times where the spectra are flat at low wavenumbers. At the earliest time the shock

is significantly non-planar due to the interaction with the perturbed material interface,

generating an additional fluctuating velocity. At later times the spectra are constant for

1 × 10−2 6 k/kmax 6 0.4, equivalent to 3 6 k 6 102. That this should be the case can

be shown analytically. The initial velocity for each mode in Fourier space is given by

Richtmyer’s theory ȧ = k∆uaF At, where the amplitude of each mode in Fourier space

a2
F ≈ P (k). As the initial perturbation spectrum for the 2048 cross-section was of the

form P (k) ∝ 1/k2 between 2 6 k 6 256, then it would be expected that the fluctuating

kinetic energy spectra would be constant between these wavenumbers once the shock has
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passed through the mixing layer, i.e. ȧ = k∆uAt/k =constant. The range in Figure 24

is slightly smaller than this as the high wavenumber end breaks down rapidly, passing

its energy to even smaller vortices, and the statistics of the low wavenumber end are not

sufficient to generate a smooth constant line.

After the passage of the shock wave, the high wavenumber end of the spectrum fills with

energy from the excited modes, a process which is most noticeable between the first two

time instants plotted. The initially flat plateau is ‘eaten away’ at the high wavenumber

end by transfer of energy to the highest wavenumbers and subsequent dissipation. A

k−5/3 sub-inertial range has begun to develop in the last time instant, spreading from

the high wavenumber end of the plateau to k ≈ 512, becoming longer as the mixing layer

develops.

In the 512 cross-section resolution simulation which ran to late times a Kolmogorov

k−5/3 sub-inertial range can be seen at high wavenumbers. The analysis of Zhou (2001)

can be modified to take into account the effects of the initial perturbation spectrum. To

do this, the characteristic external time scale associated with RM mixing is written using

a characteristic velocity dependent on the initial conditions. Following Youngs (2004),

for an initial power spectrum of the form P (k) ∝ Ckm, the velocity of each mode can

be written as ȧ = At∆uk(m+2)/2. Defining the characteristic time τRM = 1/kȧ then the

kinetic energy spectra can be written as

E(k, z) = CRM ǫ1/2τ
−1/2
RM k−2 = CRM ǫ1/2∆uAtk(m−6)/4, (6.1)

hence for m = 0 this reduces to the k−3/2 proposed by Zhou (2001) however it now

includes the influence of initial conditions. For a k−2 perturbation power spectrum this

predicts an inertial range of the form E(k) ∝ k−2, assuming that τRM < τHDT, where

τHDT is the characteristic eddy turnover time in homogeneous decaying turbulence. If
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this is not satisfied then the spectra should revert to k−5/3. This is not seen at the latest

times for the 2048 cross-section, or past the saturation of the longest mode in the 512

cross-section, where a k−5/3 range is observed. A potential explanation is that when the

line of the predicted kinetic energy spectrum is lower than that which would be generated

by turbulent breakdown of the large scales, then a k−5/3 spectrum is observed. If this is

the case, then the inertial range spectrum of an RM instability would only be sensitive

to initial conditions for m > −2/3 - as it is in the narrowband case. An alternative

explanation would be simply that the grid resolution is not high enough to achieve a

‘universal’ inertial range at high wavenumbers (as we have a very wide range of ‘large

eddies’), or that one only appears at later times.

Figure 25 shows the plane averaged volume fraction profiles at different dimensionless

times for the highest grid resolution. The x-direction has been normalised by the integral

width to check for self-similarity in the profiles. The spike (heavy fluid penetrating into

light fluid) side of the mixing layer rapidly achieves self-similar behaviour (after τ = 2),

however the bubble side does not become self similar until after τ = 14 - in contrast

to the behaviour observed in the narrowband simulations. Once the bubble has settled

into self-similar behaviour, the plane averaged volume fraction does not change at all

for 22 6 τ 6 57 as shown in Figure 25 where the profiles for ten time instants equally

spaced between 22 and 57 lie on top of each other. Additionally, Figure 25 shows a

plot of 〈f1〉(1 − 〈f1〉) to highlight the convergence of the flow field at the extremes of

the mixing layer. Unlike the high Atwood number case, the extremes of the mixing

layer converge extremely rapidly to self-similar behaviour for τ > 27. This is a further

demonstration that at this grid resolution self-similar growth exists within the duration

of the simulation. Note that the TURMOIL3D results presented are after the saturation
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of the longest wavelengths hence it is expected that the flow physics will be in transition

between the broadband case and a slab of decaying turbulence.

Figure 26 illustrates the mixing parameters Θ and Ξ for the broadband perturbation

at all of the grid resolutions. Unlike the narrowband case, there is much slower grid

convergence of the results - as observed with the convergence of the integral mix width,

however at the highest two grid levels there is little variation implying that the results are

almost converged at Θ ≈ 0.37 and Ξ ≈ 0.38. TURMOIL3D results are lower predicting

Θ ≈ 0.33. This is significantly lower than the narrowband case, indicating that there

is less mixing of the two fluids despite the more rapid growth of the mixing layer. It

is conjectured that the decreased mixing rate is caused as the fluids do not interact

turbulently at the driving scale (which is essentially a super-position of modes), but mix

at a scale which is below the driving scale, leading to lower molecular mixing efficiency.

This is linked to the observation that the mixing layer cannot be uniformly mixed and

have a growth rate approaching θ = 2/3 from conservation arguments.

7. Conclusions

This paper has investigated the influence of initial conditions on the rate of growth of a

Richtmyer-Meshkov induced turbulent mixing layer through a series of carefully designed

numerical experiments. Results were presented for a succession of increasingly fine grid

levels from 4 × 105 to 3 × 109 grid points, with two different numerical methods.

The key conclusion is that the growth of the resultant mixing layer is strongly de-

pendent on initial conditions, following the theory developed by Youngs (2004). This

highlights the importance of separating the two cases of a homogeneous turbulent mix-

ing layer, and a turbulent mixing layer which is driven by non-turbulent fluctuations

caused by broadband perturbations.
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The narrowband simulation at At = 0.5 showed excellent agreement with LEM ex-

periments, giving θ ≈ 0.26, also in good agreement with accepted theory for growth of

a turbulent slab by mode coupling. Increasing the Atwood number to 0.9 gave only a

minor increase in θ for both numerical methods, due to a slower rate of breakdown of

the initial RM induced growth by Kelvin Helmholtz shear instabilities. At the higher

Atwood number, individual vortex rings containing a small amount of heavy material

propagate further into the light material. This adds a second characteristic timescale to

the problem and it is conjectured that it is these vortices which increase the values of

θ on the spike side observed in experiments. However, simulations indicate that at late

time they will be absorbed by the mixing layer. Both cases exhibit a k−3/2 kinetic energy

spectrum in agreement with the analysis of Zhou (2001).

Simulations of the broadband initial conditions gave increased growth of the mixing

layer up to θ = 0.62 at the highest grid level. It is asymptoting towards the theoretical

value of θ = 2/3 and shows that the enhanced growth rates predicted by laser experi-

ments (Dimonte & Schneider 1997) can be due to the presence of a broadband range of

perturbations. However, a key observation is that this theoretical value is only achieved

when the simulation has a sufficient range of initial wavenumbers in the perturbation.

Theoretical and numerical analysis demonstrate that there is a surprisingly short period

of time between the saturation of the highest wavenumbers initialised and the saturation

of the lowest wavenumbers. This requires a very high numerical resolution - indeed the

current simulations demonstrate that the self similar regime is not properly reached un-

til grids with cross-sections of 2048 × 2048. It implies that it is not possible to conduct

accurate Large Eddy Simulations of this flow at lower grid resolutions without resorting

to artificial forcing terms which significantly enhance the growth of the mixing layer.

At the highest grid resolution for the broadband case the kinetic energy spectra follow
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the expected E(k) ≈ const. over the range of initial perturbations. As a consequence of

the inhomogeneity of the resultant mixing layer, the mixing parameters are significantly

lower than for the narrowband case.

Future work will focus on the understanding of the capability of numerical methods to

model the breakdown of a single vortex ring, as the rate of breakdown of these vortices

influences greatly the (albeit small) volume fraction at large distances from the centre of

the mixing layer. Of key interest is the accurate determination of the mixing fractions for

the high Atwood case, which potentially requires the use of a fully incompressible LES

code. Additionally, it would be interesting to examine a different power spectrum in the

broadband case, where P ∝ Ck−3 which should give a theoretic growth rate of θ = 1 -

this would further confirm the theory of Inogamov (2006) and Youngs (2004). Finally,

the results from the LES performed here are being used to extend and improve current

RANS methodologies for shock-induced turbulent mixing.
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Appendix A. Initialisation of Perturbed Interface

A.1. Analytical Fourier Transform

This section details the analytical Fourier transform employed to transform the given sur-

face power spectrum into a perturbation in physical space. The particular case considered

in this paper involves a power spectrum of the form

P (k) =















Ckm kmin < k < kmax

0 otherwise

, (A 1)

where k =
√

k2
y + k2

z is the wave vector of the perturbation. First, the power spectrum

is rewritten as a two-dimensional power spectrum in wave space

σ2 =

∫ ∞

0

P (k)dk =

∫ ∞

−∞

∫ ∞

−∞

1

2π

P (k)

k
dkydkz. (A 2)

The specified power spectrum gives an equivalent amplitude a(k) in wave space:

a(k) ∝
√

P (k)

k
. (A 3)

To initialise modes within a certain band, the inverse Fourier transform of this relation

can be taken, noting that the amplitude is a real function:

A(y, z) =

N
∑

m,n=−N

R {cm,n exp [ik0 (my + nz)]} , (A 4)

where kmax = 2Nπ/L, the cross-section is L × L and cm,n are the amplitudes the mode

with wavenumber m in the y direction and n in the z direction. To satisfy the given

power spectrum, Equation (A 4) can be simplified considerably by expanding using the

Euler formula, and considering only the real part:
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A(y, z) =
N

∑

m,n=0

am,n cos (k0my) cos (k0nz) + bm,n cos (k0my) sin (k0nz) +

cm,n sin (k0my) cos (k0nz) + dm,n sin (k0my) sin (k0nz) . (A 5)

To initialise a random field, am,n, bm,n.... must be chosen from a distribution randomly

so that the standard deviation is proportional to the Fourier coefficients in Equation

(A 3). The random variables are selected from a Gaussian distribution to give the desired

mean amplitude at a given wave number km,n, in this case

1

4
(ā2

m,n + b̄2
m,n + c̄2

m,n + d̄2
m,n) =

1

2π

P (km,n)

km,n
∆ky∆kz, (A 6)

where km,n =
√

k2
ym + k2

zn, the wavenumber in the y direction is kym = 2πm/L, the

wavenumber in the z-direction kzn = 2πn/L and L is the width of domain which in this

case is assumed to have a square cross-section.

A.2. Ensuring Linearity

A key issue in the initialisation is to ensure that the initial condition itself is linear

- in that the amplitude of the mode of a wavenumber k is significantly less than the

wavelength. Noting that the power spectrum of the initial condition satisfies Equation

(A 2) then the physical amplitude of a given wavenumber ak = 2σk, where σk is the root

mean square amplitude in a band around wavenumber k, can be approximated as

a2
k ≈ 4

∫ k

k/2

P (k′)dk′ ≈ 4kP (k). (A 7)

If it is assumed that the modes are linear if kak = 1/2, hence, from Equation (A 7), P (k)

must have the form Plin(k) = a2
k/4k = 1/16k3. This defines a curve Plin in wavenumber

space above which the amplitude of the modes is approximately non-linear, below which

the amplitude is linear. As the initialisations chosen for this paper have an initial spec-
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trum P (k) = C and P (k) = Ck−2, then the coefficient C must be chosen carefully to

ensure that P (k) does not cross the curve defined by Plin at high wavenumbers.

For the narrowband initial conditions this is not such a great concern, as it is relatively

easy to specify the standard deviation of the perturbation. As the range of modes is short,

this ensures that the root mean square amplitude of the mode at the given wavenumber

is approximately σ.

For the broadband case it was decided that the best approach was to fix the level of non

linearity of the highest wavenumber mode initialised on a given grid. This means that the

sequence of simulations on successively finer grids will have the same high wavenumber

content, however each successive refinement will allow a greater range - i.e. extending the

power spectrum to lower effective wavenumbers. In this way it is ensured that the initial

perturbation remains linear throughout the grid refinement study.

This approach is now detailed for the broadband case where m = −2. The amplitude

of a given mode can be computed from Equation (A 7) as ak = 2
√

C/k. Assuming the

maximum wavenumber is just linear (kmaxak = 1/2), then Ckmax = 1/16. Using this,

the standard deviation σ can be rewritten, noting that kmax = 2π/λmin, as

σ =
1

8π

√
R − 1λmin ≈ 0.04

√
R − 1λmin. (A 8)

This constrains the maximum standard deviation based on the minimum wavelength

initialised. For the simulations within this paper the standard deviation was chosen as

σ = 0.031
√

R − 1λmin, (A 9)

which is equivalent to an amplitude of 0.2λmin where R = 42.7. This refers to a simulation

of 1024 cells λmin = 8∆x and λmax = L/3. This specifies directly the relationship between

the range of initialised wavenumbers and the standard deviation.
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To maintain a consistent representation of the highest wavenumbers it is important

to fix not the root mean square amplitude of the perturbation, but the power in each

individual Fourier mode at the high wavenumbers. This means that there will be some

slight statistical variation of the standard deviation, however that will not be apparent

until late times. As the object of this initial condition is to examine the early time

development of the mixing layer, it is more important to fix the amplitude of the high

wavenumbers.

A.3. Linear Amplitudes

Equation (A 6) for the Fourier coefficients can now be rewritten using Equation (A8),

σm,n =
4πσ

L

(

kmax

2π(R − 1)k3
m,n

)1/2

, (A 10)

where σm,n is the standard deviation of mode with wavenumber m in the y direction

and n in the z direction. It now remains to choose a standard deviation for which the

amplitude of the highest frequency mode excited remains linear. The required σ to satisfy

this constraint is defined in Equation (A 9), giving

σm,n = 0.031
4π

L

(

λmin

k3
m,n

)1/2

, (A 11)

Given the above result each simulation is conducted with a fixed domain width and

keeping the minimum wavelength a constant multiple of the cell size. Thus the standard

deviation determined via Eqn. (A 11) varies inversely proportional to the square of the

grid resolution.

Now Equation (A 11) must be modified to compensate for the doubling of contribu-

tions from the zeroth wave number (as the summation is computed for one of the four

quadrants). Each coefficient is calculated as follows, using am,n as an example:
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am,n = RS(m)S(n)σm,n, (A 12)

where S(p) = 1/
√

2 if p = 0, 1 if p > 0 and R is a random number picked from a

Gaussian distribution. In most simulations the amplitude of the perturbation is at sub-

grid scale. To achieve a reasonable representation of the initialised perturbation, cells

located on the interface are initialised as a mixture where the volume fraction of one gas

within a cell is computed using a second order interpolation of the perturbation position

at the cell faces.

Appendix B. Equivalent Velocity Perturbation

Considering a single mode from the perturbation detailed in Equation (A 5), the ve-

locity potential is given by

φvel(x, y, z) = S(x)φ0 exp(−k |x|) × [a cos (kyy) cos (kzz) + b cos (kyy) sin (kzz) +

c sin (kyy) cos (kzz) + d sin (kyy) sin (kzz)] . (B 1)

S(x) =















1 if h > 0

−1 if h < 0

(B 2)

where the initial location of the mixing layer is at x = 0, where x is in the direction

of shock propagation, y and z range from 0 to L, and φ0 is a parameter which controls

the magnitude of the perturbation. For RM, the magnitude of the initial perturbation is

determined from linear theory, giving φ0 = At+∆u. To ensure an initially divergence-free

velocity field a vector potential A is defined such that u = ∇× A giving
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u = −∂φvel

∂x
=

∂Az

∂y
− ∂Ay

∂z
, v = −∂φvel

∂y
= −∂Az

∂x
, w = −∂φvel

∂z
=

∂Ay

∂x
. (B 3)

where the x-component of the vector potential can be neglected as the vector potential is

always normal to the x axis. The components of the vector potential are therefore given

by

Ay = −∂Φ

∂z
, Az =

∂Φ

∂y
, where Φ =

∫

φdx = −φ0

k
a0 exp [i(kyy + kzz)] exp(−k |x|)

(B 4)

hence

Ay(x, y, z) = φ0 exp(−k |x − x1|)
kz

k
[b cos (kyy) cos (kzz) − acos (kyy) sin (kzz) +

d sin (kyy) cos (kzz) − c sin (kyy) sin (kzz)] . (B 5)

Az(x, y, z) = φ0 exp(−k |x − x1|)
ky

k
[−c cos (kyy) cos (kzz) − dcos (kyy) sin (kzz) +

a sin (kyy) cos (kzz) + b sin (kyy) sin (kzz)] . (B 6)

where the velocity perturbations decay exponentially away from the interface in agree-

ment with incompressible theory (an approximation to the compressible theory where

the decay is slower (Fraley 1986)). To compensate for the finite length of the domain,

an additional correction factor is added to ensure that the velocities become zero at the

boundaries of the domain. The above components of the vector potential are multiplied

by

1 − exp(−2k(h1 + x))

1 − exp(−2kh1)
if x < 0,

1 − exp(−2k(h2 − x))

1 − exp(−2kh2)
if x > 0 (B 7)
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where h1 and h2 are the lengths of the flow domain on the heavy fluid side (x < 0) and

light fluid side (x > 0) respectively. To initialise the flow field the vector potentials are

calculated at the cell centres, then differentiated numerically to gain the velocities at

the cell vertices, ensuring that the initial condition is divergence free for the numerical

approximation used in TURMOIL3D.

The coefficients a− d are defined as described in Equation (A 12), however the ampli-

tudes of the modes are reduced to account for the compression of the interface by the

passage of the shock wave, using the mean compression rate defined in Equation (2.2).

This introduces a level of uncertainty into the comparison between simulations initialised

with velocity or surface perturbations, the quantitative correspondence between the two

depends on this scaling factor.
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(a) Broadband

(b) Narrowband

Figure 2.
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Figure 4.
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Figure 5.
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Figure 6.
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Figure 12.
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Figure 13.
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Figure 14.
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Figure 20.
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Figure 21.
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Figure 22.
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Captions

Figure 1:Schematic of the multi-mode Richtmyer-Meshkov initialisation.

Figure 2:Illustration of the initial (a) broadband and (b) narrowband perturbation at

256 cross-section resolution, where the perturbation amplitude has been increased three-

fold to aid visualisation.

Figure 3:Grid convergence of CNS3D, where the grid levels are labelled by their respec-

tive cross-sectional resolution.

Figure 4:Two-dimensional visualisations of the evolution of the volume fraction for

the At+ = 0.5 narrowband perturbations at τ = 3.7, 111 and 260 using CNS3D at

360 × 256 × 256 resolution.

Figure 5:Isosurfaces of volume fraction 0.99 and 0.01 for the At+ = 0.5 narrowband

perturbations at τ = 3.7, 111 and 260 using CNS3D at 360 × 256 × 256 resolution.

Figure 6:Visualisation of vortex cores using Q = 500 at early time, Q = 5 for the two

later times for the At+ = 0.5 narrowband perturbations at τ = 3.7, 111 and 260 using

CNS3D at 360 × 256 × 256 resolution.

Figure 7:Variation of integral width with respect to grid resolution for the At+ = 0.5

narrowband initialisation (left) and with lines of best fit (right). ‘DER’ indicates fit cal-

culated using derivatives of W , ‘NLR’ stands for non-linear regression.
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Figure 8:Profiles of plane averaged volume fraction 〈f1〉 of species one (left) and 〈f1〉(1−

〈f1〉) (right) plotted against normalised distance for the 512 cross-section At+ = 0.5 nar-

rowband simulation at different dimensionless times.

Figure 9:Fluctuating radial kinetic energy spectra for the 512 cross-section At+ = 0.5

narrowband simulation at τ = 22 and then from τ = 50 − 500 in intervals of 50 for the

v+w components (left) and the u component (right).

Figure 10:Ratio of fluctuating kinetic energies (left) and plot of x-, y- and z-direction

total kinetic energy (right) for the 512 cross-section At+ = 0.5 narrowband simulation.

Figure 11:Molecular mixing parameters Θ (left) and Ξ (right) for the At+ = 0.5 nar-

rowband perturbation at different grid resolutions.

Figure 12:Two-dimensional visualisations of the evolution of the volume fraction for

the At+ = 0.9 narrowband perturbations at τ = 7.4, 100 and 227 using CNS3D at

512 × 256 × 256 resolution.

Figure 13:Isosurfaces of volume fraction 0.999 and 0.001 for the At+ = 0.9 narrowband

perturbations at τ = 7.4, 100 and 227 using CNS3D at 512 × 256 × 256 resolution.

Figure 14:Visualisation of vortex cores using Q = 500 at early time, Q = 5 for the two

later times for the At+ = 0.9 narrowband perturbations at τ = 7.4, 100 and 227 using

CNS3D at 512 × 256 × 256 resolution .



82 B. Thornber, D. Drikakis D.L. Youngs & R. J. R. Williams

Figure 15:Variation of integral width with respect to grid resolution for the At+ = 0.9

narrowband initialisation (left) and with analytical data fits (right).

Figure 16:Profiles of plane averaged volume fraction 〈f1〉 of species one plotted against

normalised distance (left) and 〈f1〉(1 − 〈f1〉) plotted against normalised distance (right)

for the 512 cross-section simulation at different dimensionless times for the At+ = 0.9

narrowband case.

Figure 17:Fluctuating radial kinetic energy spectra for the 512 cross-section At+ = 0.9

narrowband simulation at At+ = 0.9 from τ = 79− 950 in increments of δτ = 79 for the

v+w components (left) and the u component (right).

Figure 18:Ratio of fluctuating kinetic energies (left) and plot of x-, y- and z-direction

total kinetic energy (right) for the 512 cross-section narrowband simulation at At+ = 0.9.

Figure 19:Molecular mixing parameters Θ (left) and Ξ (right) for the At+ = 0.9 nar-

rowband perturbation at different grid resolutions.

Figure 20:Two-dimensional slices showing the evolution of density for the At+ = 0.5

broadband perturbations at τ = 8, 16, 24, 32, 40, and 48 using CNS3D at 720 × 2048 ×

2048 resolution.

Figure 21:Isosurfaces of volume fraction 0.99 and 0.01 for the At+ = 0.5 broadband

perturbation at τ = 48 using CNS3D at 720 × 2048 × 2048 resolution.
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Figure 22:Visualisations of vortex cores using the Q criterion in a 256 × 256 section

of the CNS3D simulation at 720 × 512 × 512 simulation showing the evolution of the

volume fraction for the At+ = 0.5 broadband perturbation at τ = 12, 56 and 294. The fi-

nal image shows the volume fraction iso-surfaces at the final time in the reduced section .

Figure 23:Variation of integral width with respect to grid resolution and λmax for the

At+ = 0.5 broadband perturbation .

Figure 24:Fluctuating kinetic energy spectra for the 2048 cross-section At+ = 0.5 broad-

band simulation at different dimensionless times.

Figure 25:Profiles of plane averaged volume fraction 〈f1〉 of species one plotted against

normalised distance (left) and 〈f1〉(1 − 〈f1〉) plotted against normalised distance (right)

for the 2048 cross-section CNS3D simulation and the 1024 TURMOIL3D at different di-

mensionless times. Note that the solid line is actually a plot of ten separate time instants

equally spaced between dimensionless times of 22 and 57.

Figure 26:Molecular mixing parameters Θ (left) and Ξ (right) for the At+ = 0.5 broad-

band perturbation at different grid resolutions.
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Tables

Captions

Table 1:Grid sizes employed to determine the choice of λmax. * indicates reduced domain

length.

Table 2:Grid sizes employed for the At+ = 0.9 case.

Table 3:Values of θ computed from derivatives of W as a function of grid resolution. *

indicates reduced domain length, T indicates simulation run with TURMOIL3D.
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Table 1.

λmax Nx Ny = Nz λmax/λmin

L/3 90 64 8/3 ≈ 2.7

L/3 180 128 16/3 ≈ 5.3

L/3 360 256 32/3 ≈ 10.7

L/3 720 512 64/3 ≈ 21.3

L/3 1440 1024 128/3 ≈ 42.7

L/2 90 64 4

L/2 180 128 8

L/2 360 256 16

L/2 720 512 32

L/2* 360 1024 64

L/2* 720 2048 128
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Table 2.

Domain Length Nx Ny = Nz

8π 256 64

4π 256 128

4π 512 256

2.8π 720 512
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Table 3.

λmax Nx Ny = Nz θ

L/2 90 64 −

L/2 180 128 0.42

L/2 360 256 0.48

L/2 720 512 0.54

L/2T 700 1024 0.58

L/2* 360 1024 0.59

L/2* 720 2048 0.62


