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The Influence of Initial Stress on Elastic Waves* 
MAURICE A. BIOT 

Columbia University, New York, New York 

(Received March 27, 1940) 

A rIgorous treatment is given of the problem of wave propagation in an elastic continuum 
when the influence of the initial stress is taken into account. After a short review of thc theory 
various cases of initial stress are considered. It is shown that a uniform hydrostatic pressure 
does not change the laws of propagation. A hydrostatic pressure gradient produces a buoyancy 
effect which causes coupling between rotational and dilatational waves. Bromwich's equations 
for the effect of gravity on Rayleigh waves are derived from the general theory and the physical 
transition from Rayleigh waves in a very rigid medium to pure gravity waves in a liquid is 
discussed. The case of the vertical uniform stress is also considered and it is shown that the 
effect of the initial stress on the waves in this case cannot be accounted for by elastic anisotropy 
alone. Reflections may be produced by a discontinuity in stress without discontinuity of elastic 
properties. 

INTRODUCTION 

SIMPLE experiment will show that initial 
stress must have an influence on elastic 

with 

wave propagation. Consider a uniform rod held 
between two hinges. The oscillations of this rod 
obey the well-known equation 

The axial compression P decreases the frequency. 
When P approaches Pc, which is the buckling 
load of the rod, the frequency falls to zero. 

If P is negative we have an axial tension in the 
rod. In that case the frequency is increased. 
Considering a very slender rod with vanishing 
stiffness (EI --*0) the frequency becomes 

(1) 

where w is the deflection, EI the stiffness, p the 
mass per unit length, w127r the frequency and x is 
the abscissa along the rod. The fundamental 
mode for the hinged rod of length 1 is 

7rX 

w=A sin-
1 

and the corresponding frequency 

(2) 

If there is an axial compression P in the rod the 
equation for the free oscillations becomes 

d 4w d 2w 
EI-+P--pw2w=0. 

dx 4 dx2 
(3) 

The shape of the fundamental mode is the same 
as before but the frequency is now 

W 7r (EI )~ 
-=- -(1-PIPe) 

27r 212 p 
(4) 

* Publication assisted by the Ernest Kempton Adams 
Fund for Physical Research of Columbia University. 
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(5) 

which is the frequency for a string under a 
tension -Po 

When we put the rod under tension it acquires 
partly the properties of a stretched string. From 
the viewpoint of wave propagation a tension in 
the rod increases the velocity of propagation and 
a compression decreases this velocity. 

It is clear that these phenomena must be a 
particular aspect of the more general case of 
elastic wave propagation in three dimensions in a 
body under initial stress. 

The effect of initial stress on oscillations and 
wave propagation has been investigated by a 
number of writers, but because of the lack of a 
general and rigorous theory the results are re
stricted to the case of an initial hydrostatic 
pressure and are often contradictory or incom
plete. L. Brillouin's! treatment leads to the con
clusion that at sufficiently high pressure the wave 

1 L. Brillouin, Ann. de physique 4, 528 (1925). 
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velocities would reduce to zero. This paradoxical 
result' is due to incorrect assumptions. In con
nection with problems in geophysics the effect of 
initial stress on the oscillations of a gravitating 
sphere has been considered. Correct equations 
have been derived by Love2 for the case of an 
incompressible material under hydrostatic pres
sure. He also points out that the compressibility 
must introduce an important effect of buoyancy 
but does not attempt to establish any theory for 
this case. By an extension of Love's method 
Macelwane and Sohon3 have established equa
tions for the oscillations of a compressible 
gra vi ta ting sphere. These equa tions may be shown 
to be particular cases of our general theory if we 
introduce explicitly the change of body force due 
to the oscillations of the earth itself. The effect 
of gravity on Rayleigh waves and the oscillations 
of an elastic globe was investigated by T. J. I'A 
Bromwich,4 applying the equations derived by 
Love for an incompressible material under hydro
static pressure. In a recent paper F. Birch5 has 
applied Murnaghan's6 theory of finite strain and 
shows that the hydrostatic pressure has no effect 
on the laws of propagation. This paper is re
stricted not only by the fact that the initial stress 
is assumed hydrostatic, but also by a condition 
not mentioned explicitly by the writer, namely 
that there is no initial pressure gradient. Further 
restriction is due to Murnaghan's assumption 
that the material in the unstressed state is 
homogeneous and isotropic, with a definite po
tential energy function of the finite strain so that 
the initial hydrostatic pressure condition is as
sumed to be obtained from an initial unstressed 
condition through a reversible process. There is 
no physical basis for this assumption because it is 
very likely that the state of hydrostatic pressure 
inside the earth is produced by a slow process of 

2 A. E. H. Love, The Mathematical Theory of Elasticity 
(Cambridge Univ. Press, 4th edition, 1927), pp. 176-178. 

3 J. B. Macelwane and F. W. Sohon, Introduction to 
Theoretical Seismology, Part I Geodynamics (John Wiley & 
Sons, New York, 1936). 

'T. J. I'A Bromwich, "On the influence of gravity on 
elastic waves and in particular on the vibrations of an 
elastic globe," Proc. London Math. Soc. 30, 98-120 (1898). 

• F. Birch, "The effect of pressure upon the elastic 
parameters of isotropic solid according to Murnaghan's 
theory of finite strain," J. App. Phys., 9 279 (1938). 

6 F. D. Murnaghan, "Finite deformations of an elastic 
solid," Am. J. Math. April, 1937. 
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creep in which viscosity and physical-chemical 
irreversible processes are predominant. 

The present author has derived7- 9 a general 
theory of elasticity for bodies under initial stress 
which can be immediately applied to the problem 
of wave propagation. 

No assumption is made on how the initial 
state of stress is produced. These initial stress 
com ponen ts sa tisfy onl y the condi tions of in ternal 
equilibrium. We give a brief review of the theory 
in the case of two-dimensional strain. The deri
vation is quite elementary and does not involve 
the use of tensor calculus. The equations are 
applied to various cases of initial stress. We find 
that a homogeneous hydrostatic pressure does 
not affect the laws of wave propagation. \\Then 
there is an initial pressure gradient we show that 
there is coupling between rotational and com
pression waves. This coupling is due to a buoy
ancy effect whose presence was suspected by 
Love2 and which we derive here in a quanti
tatively correct form. This effect is of course 
small for usual earthquake waves, but becomes 
preponderant if we consider tidal waves or the 
modes of oscillation of the earth. In the next 
paragraph we consider the special case of surface 
waves or Rayleigh waves, assuming an incom
pressible material with hydrostatic pressure due 
to gravity. 

Our theory in this case leads exactly to 
Bromwich's equations, but a special feature of 
the surface waves is pointed out which is not 
mentioned in Bromwich's paper. Finally, we con
sider an initial state of stress which is homo
geneous but not hydrostatic, i.e., we assume 
unequal initial principal stresses. This approxi
mates the state of stress near the surface of the 
earth. It is found in this case that the behavior of 
the transversal wave alone is affected by the 
stress. The behavior of these waves cannot be 
accounted for by elastic anisotropy or a change in 
elastic coefficients and the existence of stress 
introduces an essentially new aspect in the nature 

7 M. A. Biot, "Theory of elasticity with large displace
ments and rotations," Proc. Fifth Internat. Congress of 
Applied Mechanics, 1938. 

B M. A.· Biot, "Non linear theory of elasticity and the 
linearized case for a body under initial stress," Phil. Mag. 
[7J 27, 468 (1939). 

9 M. A. Biot, "Theorie de I'Elasticite du second ordre 
avec application a la theorie du f1ambage," Ann. de la 
Societe Scientifique de BruxelIes, Serie I 59, 104 (1939). 
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of the wave propagation. The velocity of propa
gation depends on the stress and it is possible to 
obtain reflections in a medium which has uniform 
elastic properties but contains discontinuities of 
initial stress. These facts must have their im
portance for the interpretation of data in methods 
of seismic prospecting. 

GENERAL THEORY 

Consider a state of initial stress such that a 
principal direction is always parallel with the z 
axis, while the small additional strains are as
sumed to constitute a state of plane strain in the 
xy plane. 

The initial stress is defined by the components 
Sl1, S22 and S12 referred to rectangular axes x, y. 
They satisfy the equilibrium conditions 

aSl1 aS12 

--+-+p(x, y)X(x, y)=O, 
ax ay 

aS12 aS22 

(6) 

-+-+p(x, y)Y(x, y)=O, 
ax ay 

where p is the specific mass and X, Y the compo
nents of the body force per unit mass. An elastic 

element of coordinates x, y acquires the coordi
nates ~=x+u, '1=y+v after deformation and 
rotates through an angle 

w = !(av/ ax - auf ay). (7) 

The stress components after deformation referred 
to directions which rotate with the material are 

(8) 

The components su, S22 and S12 of the stress 
increment depend only on the strain. This stress 
may be referred to the original x, y directions 
and the components then become in first 
approximation 

Uxy =S12+ (Sl1- S22)W. 

These are the stresses at the point ~, '1 along the 
x and y directions. 

These components satisfy the dynamical equi
librium relations 

auxx/a~+aUXy/a'1+J.!(~, '1)X(~, '1) =J.!(~, '1)a 2u/at2
, 

aUXy/a~+aUyy/a'1+J.!(~, '1) Y(~, '1) =J.!(~, '1)a 2v/at2, 
(10) 

where J.!(~, '1) is the specific mass after deformation. 
Now we can express these equations in terms of the independent variable x, y by using transforma

tions of the type 
au"", auxx ax auxx ay 
--=---+---, etc. 
a~ ax a~ ay a~ 

The partial derivatives of x, y with respect to ~, '1 are in first approximation 

ax =_~_{ 1 + av), 
ax 1 au 

, 
at; D ay a '1 Day 

ay 1 av 
ay =~( 1+ au), , 

a~ Dax a '1 D ax 
where D is the Jacobian 

au au 
1+-

d(~, '1) 
D=--= 

ax ay 

d(x, y) av av 
1+-

ax a) 

(11) 

(12) 

(13) 
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Using these relations and the property 

p(x, y) = Df.1.(t 1)), 

expressing the conservation of mass Eqs. (10) become 

(14) 

in which exx=au/ax, eyy=avjay, eXy=!(av/ax+au/ay) are the strain components. We now substitute 
the values (9) for ITxx, ITyy, ITxy and drop terms of higher order than the first; the above equations 
become 

aS 11 aS 12 ax ax aw aw -+-+ pu-+ pv-+ pw Y - 2S12-+ (S11- Sd-
ax ay ax ay ax ay 

aS 12 aS22 a YaY aw aw 
-+-+ pu-+ pv-+ pwX + (Sl1- S22)-+ 2S12-
ax ay ax ay ax ay 

(15) 

In order to obtain these equations account must be taken of the initial equilibrium conditions (6) 
and the identities 

aexx/ ay = (a / ax) (eXY-w), 

aeyv/ax= (a/ay) (exv+w). 
(16) 

We remember that the stress increments Sl1, S22, S12, depend only on the strain. They may be taken 
as linear functions of the strain components 

S11 = B 11e"" + B 12eyy + B 13exy, 

S22 = B 21exx+ B22eyv+B23exy, (17) 

Assuming the existence of a potential energy function of the strain it is possible to prove8 that the 
elastic coefficients must satisfy the relations 

B13-S12=B31+!S12, 

B 23 -S12 =B32 +!S12. 

(18) 

It is only in case of initial hydrostatic pressure (Sl1=S22, S12=O) that the elastic coefficients will be 
symmetric (Bij=B ji). 
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The boundary conditions along an element dx, dy of the boundary contour are found to be7 

(Sll-S12W)dy- (S12-S22W)dx=dFxt 
(19) 

(S12+S11W)dy - (S22+S12W)dx=dFy, 

where dFx , dFyare the projections of the force acting on the boundary element dx, dy. 
For a three-dimensional theory the following equations may be derived as above. We find 

With the following notations: x' = the Cartesian 
coordinates, u' = the displacements, X· = the com
ponents of the initial body force, AX' the 
increment of body force due to the motion, wi' 
= Hau~/ax'-au' /ax~), e.~= Hau~/ax'+au' ;ax~), 
e = L 'e:. The derivation of these equations for 
the statical case is given in references 8 and 9. 
We have introduced here explicitly the increment 
of body force AX' due to the motion itself 
this term must be taken into account if we wish 
to state correctly the equations of motion of a 
gra vi ta ting body. 

We consider now various cases of initial stress 
conditions and examine the corresponding be
havior of elastic waves for each case. For 
simplicity we restrict ourselves to two-dimen
sional strain. 

Uniform hydrostatic pressure 

In this case 

Moreover a uniform pressure implies X = Y = 0. 
In this case Eqs.(15) become 

as ll jaX+aS 12/ay= pa2ujat2, 

(20) 

isotropic. This condition must be approximately 
realized in the earth. 

Taking the y axis positive downward we have 

X=o, Y=g, 

where g is the acceleration of gravity. Also 
Sl1=S22 and S12=O. From (6) we derive 

asll / ax = aS22/ ay = 0, 

aS22/ay = asll/ay = - pg. 

We assume the specific mass to be uniform 
(p=constant). With these conditions Eqs. (15) 
become 

aS ll aS 12 av a2u 
-+-+pg-=p-, 
ax ay ax at2 

aS12 aS22 au a2v -+-- pg- = p-----. 
ax ay ax at2 

(22) 

These equations are different from the classical 
ones for an initially unstressed medium. The 
additional terms are due to the existence of a 
pressure gradient. In order to investigate the 
behavior of the waves for this case, let us 
assume the stress-strain relations to be Hooke's 

(21) law for an isotropic medium 

These equations are the same as the classical ones 
for a body in an unstressed state. The influence 
of the pressure appears only in the elastic 
coefficients of the material. 

Hydrostatic pressure with uniform pressure 
gradient 

Such a case will occur in a material under the 
action of gravity when the influence of creep has 
been acting a sufficiently long time so that the 
stress condition at every point has become 

526 

Sll = Xe+2Gexx, 

s22=Xe+2Geyy , 

By substitution in Eqs. (22) we find 

(23) 

(24) 
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We derive the following equations for the 
dilatation e and the rotation w by the usual 
method 

(2G+A)V'e 2+2pgaw/ax= pa2e/at2, 

GV'2w - 2 pgae / ax = pa2w / at2• 

These equations show the existence of coupling 
between longitudinal and transversal waves. This 
coupling is due to the existence of an initial 
pressure gradient. The physical meaning of this 
coupling is as follows. Consider a dilatational 
plane wave propagating in the horizontal direc
tion. At a point where the material is compressed 
it is denser and therefore has a negative buoy
ancy, while in the region of positive dilatation 
the buoyancy is positive. The dilatational wave is 
therefore associated with a periodic distribution 
of vertical buoyancy force which generates a 
transversal wave. Conversely a transversal wave 
propagating in the horizontal direction produces 
a dilatational wave. In this case a portion of the 
material which is horizontal in the initial state 
undergoes a rotation and the initial pressure 
gradient acquires a horizontal component of 
alternating sign which causes a dilatational wave. 
The effect increases with the wave-length and we 
may verify that for the case of the earth it can 
only acquire an importance in the study of tidal 
waves with a wave-length of the order of 1000 km 
or larger. 

Influence of gravity on Rayleigh waves 

It was shown by Rayleigh that elastic waves 
may propagate along the surface of elastic bodies 
the amplitude of the wave decreasing expo
nentially with depth. It is clear that such waves 
at the surface of the earth must be influenced by 
gravity. The effect must increase with the wave
length, and also when the rigidity of the medium 
becomes smaller. In fact, we can imagine ma
terials less and less rigid, such as jelly, in which 
gravity would have a predominant effect, and 
consider finally the limiting case of a liquid in 
which the rigidity is zero and the waves such as 
ocean waves are due entirely to gravity. As the 
velocity of the latter depends on the wave-length, 
we may expect that one of the effects of gravity 
on Rayleigh waves is to make their velocity of 
propagation depend on the wave-length. The 

VOLUME 11, AUGUST, 1940 

theory of this effect was first attempted by 
Bromwich. 3 It is interesting to verify that his 
equations may be derived from our general theory 
provided we introduce the assumption that the 
initial state of stress is hydrostatic. 

We introduce the same simplifying assumption 
as Bromwich, namely that the material is 
incompressible. This eliminates the dilatational 
wave. We then add the assumption that the 
initial state of stress is a hydrostatic pressure 
with a pressure gradient due to gravity, and 
apply therefore the above Eqs. (24). We may 
write Hooke's law for an incompressible material 
as follows: 

Sll= -p+2Gexx, 

S22= -p+2Geyy , (25) 

where p is the increment of hydrostatic pressure. 
Substituting these values in Eqs. (24) and taking 
into account the condition of incompressibility 
au/ax+av/ay=o we find 

a a2u 
GV'2U -_(p- pgv) = p-, 

ax at2 

a a2v 
(26) 

GV'2v--(p- pgv) = p--. 
ay at2 

Assuming the x axis to coincide with the free 
surface, the boundary conditions (19) for y = 0 
are S22=SI2=0 or 

(27) 

Pu tting PI = P - pgv, the wa ve eq ua tion becomes 

GV2u - api/ ax = pa2u / at2, 

GV' 2v - apt! ay = pa 2v / at2, 

and the boundary condition 

-PI+2Geyy =pgv, 

2Gezy =O. 

(28) 

(29) 

The quantity PI may be interpreted physically as 
the pressure increment due to the waves at a 
fixed point (x, y), while P is the pressure at a 
point originally of coordinates x, y but displaced 
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with the material at the coordinates x+u, y+v. 
The case G = 0 corresponds to a liquid medium 
and Eqs. (28) become the hydrodynamical equa
tions of an incompressible fluid for small oscil
lations. Eqs. (28) and (29) are identical with 
those considered by Bromwich. He also derived 
Eq. (31) below for the velocity. 

We can verify that we may write the following 
solution for Eqs. (28) 

u= (Ale- 1v+Cre-rll) sin (lx-at), 

v= (Ale- 1Y+Cle-rll ) cos (lx-at), (30) 

with 
PI= -Aa2pe- 1Y cos (lx-at) 

r=1(1- t2)!, t2 = a 2p/Gl2. 

This solution also verifies the condition au/ax 
+av/ay=Oof incompressibility. From the bound
ary conditions (29) we derive 

(2G12 - a 2p+ pgl)A + (2Glr+ pgl)C= 0, 

212A + (I2+r 2) C= o. 

Elimination of A and C yields 

(31) 

The quantity t in this equation is the ratio of the 
velocity of the Rayleigh wave v= all to the 
velocity of a shear wave Vt= (G/p)! 

t=v/Vt. 

Eq. (31) therefore yields the velocity of the 
Rayleigh wave as a function of the dimensionless 
parameter pg/Gl. This parameter represents the 
influence of gravity and it can be seen that the 
velocity increases with the wave-length hll, but 
as shown already by Bromwich the correction for 
waves at the surface of the earth is small even for 
very large wave-length. 

For a very small wave-length (1= co) the 
equation yields the root t2=O.912 which is the 
value found by Rayleigh. For an increasing wave
length the value of the root increases until 
pg/Gl= 1 for which t= 1. 

Cpnsider, for instance, the case of the earth. We 
assume g=981 em/sec., p=3 g/cm3, G= (1.5)1011 

dynes/cm2 then pg/Gl= 1 for a wave-length 

27r/l=3200 km. 

528 

This shows that even for a wave-length equal to 
half the earth's radius the increase of velocity is 
of the order of 5 percent. 

The limiting case pg/GI= 1 occurs when the 
velocity (g/l)! of the gravity waves is equal to the 
velocity (G/ p)l of the shear waves. 

It is of interest to investigate what happens 
when the material becomes less and less rigid and 
the rigidity G tends to zero. For values pg/Gl> 1 
the solution above breaks down and it is impossi
ble to satisfy the boundary condition with a real 
solution. We therefore introduce a solution of the 
following type: 

with 

u= (Ale- 1y - CJ.I. sin J.l.Y) sin (lx-at), 

v=(Ale-lll+ClcosJ.l.Y) cos (lx-at), (32) 

PI = -Aa2pe-11l COS (lx- at) 

Introducing these expressions in the boundary 
conditions (29) we find 

-2AI2- Ca2pIG=O, 

A(a2p-2GI2- pgl) - Cpgl=O. 

Elimination of A and C yields 

which can be considered as an equation for 1. 
There are two solutions. One, 

Ig/a2= 1, 

depends on gravity. The velocity of the corre
sponding waves is all= (gil)' and is equal to that 
of the gravity wave. This solution is valid only if 
gp/Gl> 1. 

It is a combination of a pure gravity wave with 
a transversal plane wave coming from the depth 
of the material and being reflected at the surface 
at an angle tan-I(IIJ.l.) with the vertical. The 
relative amplitude of this wave is 

I t decreases with the rigidity. This indicates that 
a pure gravity wave for wave-lengths or rigidities 
such that pg/Gh > 1 cannot persist, but must lose 
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energy by radiation of a transversal wave inside 
the material. This loss of energy vanishes when 
G=O, i.e., the material becomes a liquid, and we 
are left with the gravity wave alone. 

The other solution of Eq. (33) is 

2GN a 2p = 1. 

It is independent of gravity. The reason for this 
is that A+C=O and the displacement v=O at 
y=O, i.e., the free surface stays a plane. The 
velocity of this wave is 

a/l=(2G/p)!, 

i.e., 40 percent higher than that of a pure 
transversal wave. Since A = - C, such a wave 
when excited must dissipate very quickly by 
radiation inside. The phenomena pointed out 
here will influence those modes of oscillation of 
the earth which have a wave-length above 
1000 km. 

Medium under initial vertical compression 

We first consider a state of uniform initial 
stress and take the principal directions of this 
initial stress along the x and y axes. Then S12=O 
and the components S11, S22 are constant values 
of the principal initial stresses. Eqs. (15) become 

dS11 aS 12 dw a2u 
-+-+ (511 - 5 22)-= p-, 
dX dy dy at2 

(34) 

These equations are also different from the 
classical ones for an unstressed initial state. It is 
seen that the additional terms depend only on 
the difference between the principal stresses 
S11-522 and on the rotation. Hence only the 
rotational waves are affected by this stress 
condition. 

We assume that the vertical and horizontal 
directions are directions of elastic symmetry, and 
consider the general stress-strain relations (17). 
Because S12=O and the assumption of symmetry 
we have 

B13=B31 =BZ3=B32 = o. 
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Hence the stress-strain relations become 

(35) 

S 12 = B aaexy. 

From (18) we still have B12-B21=S22-S11' 
Therefore there are four distinct elastic constants 
in these relations. Introducing these relations in 
Eqs. (34) we derive 

de a2u 
GV2u+(B 12+G)-+(B'-2G)-

dX ax2 

ae a2v 
GV2v+ (B 21+G)-+ (B" -2G)-

dy dy2 

aw dZv 
+(S11-S22)-= p-, (36) 

ax at2 
with 

Consider now a transversal plane wave propa
gation in the horizontal direction 

u=O, v=cos (lx-at). 

By substitution in Eqs. (36) we find the velocity 

A similar wave propagating in the vertical 
direction would have the velocity 

For instance if there is a vertical compression P 
in the material 

the velocity in the horizontal direction is greater 
than in the vertical. This effect is essentially due 
to the existence of the initial stress, because if 
this initial stress is zero or if it is a hydrostatic 
pressure then the two velocities are the same in 
spite of the elastic anisotropy of the material. 
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Note that this phenomenon is the same if we 
put 

The initial condition is then a horizontal tension 
-p and the velocity of shear waves propagating 
in the horizontal direction is 

If we put 0= 0 in this formula we do not find the 
velocity in a membrane or a string under tension. 
This is because the wave in a membrane is not a 
shear wave but a bending wave. For the view
point of the theory of elasticity a bending wave is 
the combination of two waves of the Rayleigh 

type at both free boundaries. 10 If we calculate the 
velocity of these bending waves and then put 
0=0 we find 

which is the velocity of a wave in a membrane 
under tension P. 

This analysis shows that propagation and 
reflections of elastic waves in a material under 
initial stress must follow laws which cannot be 
explained by elastic anisotropy or a change in 
elastic constants. In fact, because the velocity of 
propagation depends on the total initial shear, a 
discontinuity in shear may produce a reflection 
even if there IS no discontinuity in elastic 
constants. 

10 S. P. Timoshenko, "On the transverse vibrations of 
bars of uniform cross section." Phil. Mag. 43, 125 (1922). 
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From the viewpoint of torsional oscillations an internal 
combustion engine with a long crankshaft is generally 
considered to be equivalent to a uniform shaft carrying 
equidistant identical disks. It is here shown tha{advantage 
can be taken of the regularity of such a system to simplify 
the calculation of torsional oscillations. This is done by 
applying a mathematical method known as the calculus of 
finite d~fferences. The procedure leads to a frequency 
equation (2.7) of remarkable symmetry in which appear as 
parameter the number n of cylinders in line and two simple 
functions KI and K2 of the frequency which characterize 
the dynamical properties of the machines coupled at both 
ends of the crankshaft. These characteristic functions are 

1. MECHANICAL IMPEDANCE AND DYNAMIC 

MODULUS 

I N the theory of electric networks the concept 
of impedance has proved to be a highly useful 

tool for both the analytical treatment and the 
comprehension of electrical phenomena. Its use 
has been extended to the field of mechanics by 
the introduction of so-called equivalent networks 
or, as in acoustics, by defining the mechanical 
impedance as the ratio of force to velocity. The 

* Publication assisted by the Ernest Kempton Adams 
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of the nature of mechanical impedances, but due to their 
physical interpretation as a spring modulus. (or spring 
constant) generalized to dynamic phenomena, the appel. 
lation dynamic modulus is being preferably used in the 
present paper. The concept of dynamic modulus is briefly 
introduced in the first section, while the second deals with 
the establishment of the frequency equation and an artifice 
for its rapid graphical solution avoiding the necessity of 
plotting an oscillatory function. Numerical applications to 
Diesel engines are treated in the last section. An example is 
also given of an extreme case where the fundamental 
frequency has a very low value and a special method is 
used for the calculation of this frequency. 

latter definition is very useful in compound 
electromechanical systems and in those for 
which the amount of dissipated or radiated 
energy is one of the important features. However, 
in systems without or with negligible dissipation 
constituted, for instance, by a combination of 
masses and springs, it seems preferable to intro
duce as mechanical impedance the ratio of force 
to displacement. When there is no dissipation 
this ratio is a real quantity which can be either 
positive or negative. It generalizes the concept 
of spring constant to the case of harmonic mo-
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