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Abstract 

 
An alkaline hypophosphite bath (0.1 M nickel sulphate, 0.2 M sodium hypophosphite, 0.2 M sodium acetate and 

0.1 M malic acid, adjusted to pH 5) was used to produce Ni-P coatings on uncoated and electroless nickel pre-

plated mild steel. The deposition was monitored by open-circuit potential-time monitoring vs. a saturated calomel 

reference electrode and potentiostatic current-time monitoring together with anodic and cathodic polarisation. 

Classical mixed potential theory was applied to the polarisation data to calculate the effect of controlled iodate 

ion additions (0-1000 ppm) as an accelerator to the electrolyte on the plating rate. The mixed potential and 

deposition current density increased gradually with potassium iodate concentration. The use of electrochemical 

data allowed the optimum iodate additive concentration to be established using simple instrumentation. 

 

Keywords: Current vs. time, potential vs. time; electroless nickel; immersion plating, polarisation data.  

 

 

Introduction  

 
Electroless nickel (EN) deposition is an open-circuit, mixed electrode process involving two electrochemical 

reactions taking place on the same surface, namely (a) the cathodic reduction of nickel ions (Ni2+, cathodic) and, 

(b) the oxidation of the reducing agent, sodium hypophosphite, to sodium orthophosphate (anodic). The ‘hydride 

process’ is the accepted mechanism for the deposition of EN.1,2 The overall redox process occurs on a suitable 

catalytic surface; for the reaction to continue, the EN deposit itself must be catalytic to the process. 

 

The electroless deposition process is well described by the mixed potential theory.1-4 In a hypophosphite EN bath, 

two electrode reactions occur at identical rates on the same (mixed) electrode surface, namely the reduction of 

Ni2+ to metallic Ni and oxidation of hypophosphite to orthophosphite ions: 

 

Ni2+ + 2e-  Ni        (1) 

H2PO2
- + H2O  H2PO3

- + 2H+ + 2e-     (2) 

 

The electrons required for the reduction of the metal ions are supplied by the reducing agent and the overall rate 

of reaction is governed by the exchange current density, jo. Initially, the potential (E) of the anodic sites is governed 

by the hypophosphite/orthophosphite redox reaction and the cathodic sites due to the Ni / Ni2+ redox reaction. As 

the deposition reaction continues, the potential of the cathodic sites decrease whilst the anodic potential (EA) 

increases to a point known as the deposition potential (Emix), with the current flowing in the reaction known as Idep 

(where the two Tafel lines intersect, Fig. 1). The influence of additives on the electroless deposition process can 

be studied by investigating I vs. E behaviour. 

 

This steady state electrode potential, Emix is removed from the equilibrium potential by the polarisation, : 

 

    = EC – Emix        (3) 

    = Emix – EA        (4) 
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Fig. 1. Evans diagram showing the effect of hypophosphite ion on Emix of the electrode at equilibrium. 

 

 

The use of the mixed potential theory can be applied to the study of EN deposition by separating the partial 

electrode reactions. Anodic polarisation, in the absence of Ni2+ and cathodic polarisation, in the absence of 

hypophosphite ions, can be used to study this system.   

 

Determination of the mixed potential and the plating rate 
The mixed potential can be determined by the use of polarisation curves for the partial electrode reaction.2 Such 

polarisation curves can be obtained by several methods:4 

(a) the application of the steady state galvanostatic or potentiostatic pulse method to each partial reaction 

separately, 

(b) applying potential scanning techniques to a static or rotating disc electrode (RDE), and 

(c) measurement of the plating rate from the mass gain as a function of the concentration of the reductant or 

oxidant. The plating rate is then plotted against Emix to obtain the Tafel characteristics. 

 

Paunovic used the mixed potential theory to study EN deposition using dimethylamine borane as the reducing 

agent.1 A Pt foil was used as the working electrode to obtain I vs. E curves for the two partial reactions. Emix and 

Idep were obtained from the intersection of these curves. 

 
Fang et al. used cathodic and anodic polarisations by linear sweep voltammetry on a freshly plated EN deposit on 

mild steel.5, 6 The accelerating effect of thioglycolic acid and thiourea on the anodic processes was shown. Altura 

investigated both the cathodic and the anodic processes with bath inhibitors such as lead, thiourea, potassium 

iodate (KIO3) and Na2MoO4 to show the effect on the mixed potential Emix and jmix, current density at the mixed 

electrode.7 

 

The effects of KI on a freshly plated mild steel electrode were shown by Keping et al.8 Linear sweep voltammetry 

indicated that the stabilisation effect inhibited the anodic reaction and this is due to adsorption of I- ions on the 

catalytic metal surface.   
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Cathodic and anodic polarisation using an EN coated nickel RDE was studied by Das and Chin.9 The mixed 

potential and current density were determined by the intersection of the anodic and cathodic polarisation curves 

for four stabilisers, lead ion, IO3
-, mercaptobenzothiazole and maleic acid. 

 

Bindra et al. used the mixed potential theory to look at the mechanism of electroless copper deposition at an 

RDE.4,10 Polarisation curves have also been obtained by the potentiostatic or galvanostatic step method. 

 

Polarisation resistance method 

Gabrielli and Raulin suggested that the polarisation resistance was directly related to the rate of EN deposition.11 

The effects of temperature and dissolved oxygen on the deposition reaction at a mild steel RDE were studied. The 

results showed the inhibitive effect of dissolved oxygen. The polarisation resistance was measured by 

superimposing a square wave of frequency 0.4 Hz with a potentiostat on each side of Emix (plating potential) and 

observing the current on an oscilloscope. The decreasing value of polarisation resistance with increasing 

temperature was shown.   

 

Ohno and Haruyama showed that the plating rate can be estimated in electroless systems of Cu, Ni and Co.12 It 

was proposed that the deposition rate in electroless systems is inversely proportional to the linear polarisation 

resistance, which is similar to the Stern-Geary equation, 

 

1/Rp = Ipl / K         (5) 

 

where Rp is the polarisation resistance, Ipl is the electroplating current and K is the Stern-Geary constant. 

 

Suzuki et al. described the coulostatic method, where a charged pulse is applied to the electrode to be plated and 

the potential decay curve is monitored.13,14 It was shown that the potential decay curve follows the equation 

 

  t = o – t / 2.3CdRp        (6) 

 

where t =is the polarisation at time, t, o is the polarisation after the initial pulse and Cd is the double layer 

capacitance of the electrode, determined by 

 

   Cd = q / o        (7) 

 

A plot of t vs. time yields a straight line from which the polarisation resistance can be measured, while the plating 

rate can then be determined by Eq. (5). 

 

The more complex AC impedance method for determining the plating rate of EN deposition has been considered 

by Ohno.12   

 

In general, an averaged, constant rate of plating can be expressed as a mass gain, w in a time t, and related to the 

current, I by Faraday’s laws of electrolysis, assuming unity current efficiency: 

 

 
∆𝑤𝑡 =  𝑀𝑧𝐹 . 𝐼         (8) 

or, a thickness gain, x can be related to the deposition current density, jdep: 

 

 
∆𝑥𝑡 =  𝑀𝜌𝑧𝐹 . 𝑗𝑑𝑒𝑝         (9) 

  

M is the molar mass of Ni (58.7 g mol-1), the electron stoichiometry, z = 2, F is the Faraday constant (96 485 A s 

mol-1) and  is the density of Ni (8.91 g cm-3). 

 

The effect of bath additives on EN plating 

Additives are commonly used in EN baths to improve the deposit quality.  The most common additives include 

complexants, buffers, stabilisers and accelerators.  

 

Complexing agents 

Complexants prevent the precipitation of Ni salts and reduce the concentration of free Ni ions. Typical examples 

include potassium pyrophosphate, malic acid, lactic acid, glycolic acid, monocarboxylic acids, dicarboxylic acids, 

hydroxycarboxylic acids, ammonia and alkanolamines.15 In addition, complexing agents also affect the deposition 

reaction often altering the phosphorus content of the Ni deposit and the structure of the deposit.16 Jin et al. studied 
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the effects of three complexing agents (sodium citrate, malic acid and lactic acid) on the morphology and porosity 

of deposits.17 It was noted that the porosity and surface roughness of mild steel substrates decreases with the 

increasing stability of the Ni complex. 

 

Ni2+ in an aqueous solution are bound to six water molecules and have a co-ordination number of six. The 

complexing agent affects some of the chemical properties of the Ni2+ such as colour, ease of reduction and 

solubility. Mayanna studied the extent of complexation of Ni2+ by ethylenediamine and sodium potassium tartrate 

by cyclic voltammetry.18 

 

Chelation of Ni2+ increases its resistance to precipitation and so it is possible to keep the Ni2+ in solution at a 

higher pH than would otherwise be possible. In aqueous solutions, chemical reactions with nickel ions take place 

with the co-ordination sites that are weakly bound to the water molecules. Therefore, the kinetics of the EN plating 

reactions free Ni2+ concentration (or activity) and the rate of Ni deposition is proportional to the rate at which the 

Ni complex dissociates to form free Ni2+. The plating rate is inversely related to the stability constant; at a lower 

rate of complex dissociation, the rate of deposition is reduced. 

 

Stabilisers 

In practice, the EN bath can operate for a long period of time but is subject to spontaneous decomposition. 

However, this problem can be virtually eliminated by the addition of trace amounts of catalytic inhibitors 

(stabilisers). Examples of such stabilisers include sodium citrate, compounds of group VI elements (S, Se, Te), 

inorganic oxyanions (e.g., AsO2
-, IO3

-, MoO4
2-), heavy metal cations (e.g., Sn2+, Pb2+, Hg+, Sb3+), unsaturated 

organic compounds (e.g., maleic and itaconic acids) and sulphur containing compounds (e.g., 

mercaptobenzothiazole and thiourea).9 

 

It is well known that the addition of stabilisers decreases the plating rate and, beyond certain concentrations, 

inhibit the process completely. According to Das and Chin, some stabilisers, especially heavy metal and sulphur 

compounds, co-deposit along with the Ni and lower the corrosion resistance of the deposit.9 It was also noted that 

on ferrous substrates, the increase in stabiliser concentration increases porosity of the deposit. When maleic acid 

was used as the stabiliser, the phosphorus content of the deposit was decreased. 

 

The stabilising effects can be divided into two categories.5,8,19 One is a substitution type mechanism where some 

heavy metal ions such as Cd2+, lead, Hg2+, Sn2+ and Fe2+ can be deposited on the active metal surface through a 

displacement reaction that inhibits the occurrence of the random reduction of Ni.  The other is an adsorption type 

mechanism whereby anodic ion stabilisers (e.g., hydrogen sulphide, arsenide and iodide I-) can inhibit the Ni 

deposition via adsorption on the catalytic sites on the metal surface. 

 

Keping and Fang studied the effect of thiourea on mild steel.6 It was proposed that the presence of thiourea on the 

catalytic sites of the metallic substrate hinder the access of the hypophosphite ion. This inhibits the oxidation 

process and the production of atomic hydrogen which, in turn, affects the production of H2 and therefore the Ni 

deposition. They found a similar type of mechanism for I-.8 

 

Buffers are added to stabilise the pH. Variations in pH during plating may alter the rate of deposition and could 

change the phosphorus content of the deposit. Examples of buffers include citric acid and sodium salts of certain 

complexants (depending on the pH range). 

 

Wetting agents increase the wettability of surfaces to be coated and reduce streaking caused by the formation of 

H2. Examples include ionic and nonionic surfactants. 

 

Examples of accelerators include carboxylic acids, thioglycolic acid, borates, thiourea, fluorides, glycine and 

formate. The function of accelerators is to activate hypophosphite ions and accelerate the deposition reaction. This 

action is in opposition to stabilisers and complexants. Fang and Han studied the acceleration mechanism of 

thioglycolic acid and found that the additive was absorbed onto the surface and accelerated both the anodic and 

cathodic reaction.5 Cystine was shown to have an accelerating effect by reducing the activation energy of the 

anodic process.20 The effects on polarisation curves indicated that the oxidation of hypophosphite was accelerated 

during EN deposition. 

 

Aims 

The present research makes use of the mixed potential theory to investigate the effects of additives on EN plating. 

KIO3, a known EN stabiliser, is used to show its role in the plating bath by considering the individual anodic and 

cathodic polarisation curves. Extrapolation of the Tafel regions (Fig. 1) leads to the determination of the mixed 
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electrode potential, Emix and deposition current density, jdep. The plating rate can be calculated from Eq. (9) and 

compared to mass gain analysis using Eq. (8). Stabilisers have also been shown to decrease the corrosion resistance 

of EN deposits and this is investigated on deposits plated at controlled concentrations of KIO3 in the bath, by Tafel 

analysis and anodic polarisation. 

 

 

Experimental 

 
Substrates 

Pyrene steel (0.10-0.12 wt% C, < 0.040 wt% S, < 0.040 wt% P, < 0.050 wt% Mn, balance being Fe) samples were 

cut to size (10 × 2 × 0.1 cm3). The rotating disc electrode (RDE) was constructed from mild steel (0.10-0.15 wt% 

C, 0.3-0.5 wt% Mn, balance being Fe) rod (A40A12, 0.196 cm2) coated with PVDF, with a brass thread inserted 

to make electrical contact with the rotator. This electrode was coated with Fidelity 5010 electroless nickel (OMG 

Fidelity, South Plainfield, NJ, USA; 5 h, details below), when an EN RDE was required. 

 

Plating rate and the pre-treatment process 

Prior to the pre-treatment process, pyrene steel samples were cleaned with methanol and dried, to remove 

temporary protective films used in packaging. 10 × 2 × 0.1 cm3 panels were degreased in an alkaline soak cleaner 

(Fidelity 3152) at a concentration of 10 % w/v for 10 min at 50-60 °C. A double water rinse in deionised water 

for 1 min was carried out and after all pre-treatment stages. Immersion in a solution of 50 % HCl for 2 min at 22 

°C was used to remove surface oxides. The plating rate was determined after 30 min by mass gain analysis in EN 

baths containing: 0.1 M NiSO4, 0.2 M sodium hypophosphite, 0.2 M sodium acetate, 0.1 M malic acid and adjusted 

to pH 5 using 2.5 M NaOH. 

 

Mixed potential analysis at static electrodes   

A Princeton EG & G potentiostat (model 273A) with a linear sweep rate of 1 mV s-1 was used for the mixed 

potential analysis. Pyrene steel (which had been covered using a polymer insulating tape with a 1 cm2 hole cut 

into it) was plated with EN for 30 min in the plating bath, as detailed above. The plating bath contained no 

additives to ensure repeatability of the surface. Pyrene steel panels that had not been plated, but had undergone 

the pre-treatment process, were also studied. The panels were rinsed with deionised water and placed in a three-

compartment electrochemical cell (Fig. 2). A saturated calomel reference electrode (SCE) and platinum mesh 

counter electrode (3 cm2) was used. The specimen was placed in the cell in the following electrolyte for the 

cathodic polarisation at 90 °C: 0.1 M NiSO4 and 0.1 M malic acid together with 0-600 ppm KIO3 adjusted to pH 

5 using 2.5 M NaOH.  

 

 
Fig. 2. The glass, divided, three-electrode electrochemical cell for RDE studies. 
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The anodic polarisation was carried out at 90 °C in an electrolyte containing 0.2 M sodium hypophosphite , 0.1 

M malic acid and 0-600 ppm KIO3 adjusted to pH 5 using 2.5 M NaOH. 

 

Mixed potential analysis at a rotating disc electrode 

A Pine RDE (Grove City, PA, USA) at a rotation speed of 500 rpm was used to simulate plating conditions. Two 

electrodes were used for the analysis, EN plated mild steel which had been plated for 5 h in Fidelity 5010 to give 

a thickness of ca. 25 m, and mild steel. Prior to mixed potential analysis the electrodes were wet-polished using 

Buehler Microcloth PSA and progressively finer alumina (Al2O3; 3 m down to 0.3 m). The electrodes were 

then well rinsed and polished on the polishing cloth in the absence of Al2O3 to ensure that no polishing media 

remained on the electrode surface. 

 

Anodic polarisation in the presence of KIO3 additions 
Tafel and anodic polarisation was carried out to investigate whether additions of the additive had any effect on 

the corrosion resistance of the deposit. A Princeton EG & G potentiostat (model 273A) with was used for the 

anodic polarisation with the samples being polarised from –250 to +1600 mV vs. SCE at a potential weep rate of 

1 mV s-1. The reference electrode was an SCE with a platinum mesh counter electrode of 4 cm2. Mild steel was 

plated with EN for 30 min with increasing concentrations of KIO3 in the plating bath. 

 

 

Results and discussion 
 

Mixed potential analysis on static electrodes 

 

Effect of KIO3 additions on a fresh EN deposit 

The addition of KIO3 on a freshly plated EN deposit had an effect on the anodic and cathodic polarisation curves 

(Figs. 3a and b). For the anodic polarisation curves, the main difference was the change in the open-circuit 

electrode potential with KIO3 concentration (Fig. 3c). E values rose from –739 mV to –484 mV vs. SCE as the 

stabiliser was increased from 0 to 100 ppm. Above this KIO3 concentration, there was only a slight increase in 

potential. Apart from the disappearance of the first ‘nose’ on the polarisation plots, there was no noticeable 

difference in the anodic currents over the range of stabiliser additions investigated. 

 

The mechanism of IO3
- stabilisation probably involves poisoning of hypophosphite reduction. This may be due to 

either the formation of an adsorbed species on the metal surface blocking the reaction or the inhibition of the 

anodic reaction attributed to chemical breakdown of the additive and hypophosphite. The reduction in current 

suggests that adsorption of IO3
- ions9 is more probable than the poisoning on the oxidation reaction in slowing 

down the plating rate. 

 

The cathodic polarisation curves showed a similar increase in open-circuit potential (Fig. 3b). E values here 

increased from –612 mV with no additive to –506 mV in the presence of 100 ppm of stabiliser. There was also a 

significant alteration to the shape of the cathodic polarisation plot. In the absence of KIO3, the cathodic plot was 

typical of a reduction of Ni2+ to the metal with the associated evolution of H2. When 100 ppm KIO3 was added, 

the starting potential became more noble and a limiting current was observed (Fig. 3b). When E reached that of 

the unstabilised solution (–650 mV vs. SCE), the scan followed an almost identical path. Further additions of KIO3 

produced similar scans until 600 ppm. The limiting current density remained until a potential of –750 mV vs. SCE 

was reached, where there was an increase in current. From mass gain measurements, this was the level of stabiliser 

at which no significant rate of EN deposition was observed. 

 

This limiting current at higher levels of KIO3 could be due to the reduction of IO3
- ions in preference to Ni2+ ions, 

as reflected in the Pourbaix diagram for iodine-water,21 where at more negative potentials, IO3
- can be reduced to 

I- ions: 

 

IO3
- + 6H+ + 6e-  I- + 3H2O  E○ = +0.549 V vs. SCE (10) 

 

When the potential reached that of the unstabilised solution (–650 mV), the scan followed an almost identical 

path. Further additions of KIO3 produced similar polarisation curves until a concentration of 600 ppm was reached. 

The limiting current density remained steady until E = –750 mV, where there was an increase in current, this being 

at the level of stabiliser (600 ppm) at which no EN deposition was observed. 
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Fig. 3. (a) Anodic and (b) cathodic polarisation data obtained from a freshly plated EN (deposited for 30 min) 

pyrene steel surface (static electrode) in a NiSO4 electrolyte at 90 oC in sodium hypophosphite (sweep rate = 1 

mV s-1), and (c) open-circuit electrode potentials taken from anodic and cathodic polarisation plots. KIO3 

concentrations indicated. (d-f) Show similar plots to (a-c) except that the pyrene steel has not been EN coated. 

 

 

IO3
- is known to be reduced in solution by hypophosphite (Eq. 11), which can be further reduced to I2 in acidic 

conditions (Eqs. 12), leading to an overall reaction (Eq. 13):22  

IO3
- + 3H2PO2

-  I- + 3H2PO3
-     (11) 

IO3
- + 5I- + 6H+  3I2 + 3H2O     (12) 
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2IO3
- + 5H2PO2

- + 2H+  I- + 5H2PO3
- + H2O   (13) 

 

The extent to which these reactions play a role in the stabilisation (at pH 5) is uncertain. There have been anecdotal 

reports of IO3
- stabilisers for use in EN baths, after a period of time in use or in storage, producing I- ions (via I2). 

 

Effect of KIO3 additions on pyrene steel 

The effect of adding KIO3 on the anodic and cathodic polarisation curves on pyrene steel was then investigated 

(Figs. 3d and e). For the anodic curves, there was little difference in the open circuit potentials (ca. –730 mV vs. 

SCE) and shape of the traces with changes in [KIO3] (50 – 600 ppm; noise in some of traces attributed to H2 

evolution). This was compared to an EN coated surface, where there was an increase in the open-circuit potential 

to [KIO3] = 100 ppm, followed by a plateau. The potential remained constant at ca. –730 mV over the full range 

of stabiliser concentration. There was no noticeable difference in anodic currents over the range of stabiliser 

additions investigated, suggesting IO3
- ions were being adsorbed on the pyrene steel substrate. 

 

The cathodic polarisation curves showed a similar trend in open circuit potential up to 200 ppm KIO3 (Fig. 3f). 

Below this level, the corrosion potential remained constant (ca. –650 mV vs. SCE). Above 200 ppm, the potential 

increased from –653 mV vs. SCE to –638 mV and –513 mV with 400 and 600 ppm KIO3, respectively, with a 

significant to change in shape of the cathodic plot (Fig. 3e). In the absence of KIO3, the cathodic plot was typical 

for a reduction of Ni2+ to the metal. When KIO3 was added, the starting potential for the scan remained constant. 

 

Mixed potential analysis 
Combining the anodic and cathodic polarisation curves (Appendix 1) allowed values of Emix and jdep for each 

solution at the freshly deposited EN and pyrene steel substrates to be determined (Table 1). On the EN electrode, 

Emix increased from –663 mV to ca. –430 mV vs. SCE after 100 ppm KIO3 had been added. Higher KIO3 levels 

did not lead to any real significant difference in Emix (Table 1a). The value of jdep fell slightly from 4.38 mA cm-2 

without the additive to 4.15 mA cm-2 in the presence of 50 ppm KIO3. At 100 ppm, jdep dropped quickly to 0.24 

mA cm-2 and remained near this value with further stabiliser additions, suggesting a critical concentration had 

been reached.  

 

 

 

Table 1. Plating rates determined from the deposition current density (jdep) calculated from the mixed potential 

(Emix) theory and mass gain experiments (at various KIO3 concentrations) at (a) a freshly deposited EN substrate, 

and (b) a pyrene steel electrode (both static electrodes). 

 

 

[KIO3] / ppm jdep / mA cm-2 Emix 

vs. SCE / mV 

Plating ratea, 

x/t  / m h-1 

Plating rateb,    

x/t  / m h-1 

(a)     

0 4.38 –663 6.10 14.2 

50 4.15 –654 5.79 14.2 

100 0.24 –462 0.34 14.0 

200 0.59 –428 0.82 13.0 

400 0.21 –433 0.29 9.2 

600 0.42 –439 0.58 1.4 

(b)     

0 1.72 –719 2.40 14.2 

50 1.96 –703 2.73 14.2 

100 2.36 –704 3.29 14.0 

150 2.38 –703 3.31 13.5 

200 2.46 –701 3.43 13.0 

400 1.84 –695 2.56 9.2 

600 2.32 –692 3.23 1.4 

a From polarisation data; b From mass gain data 
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At the pyrene steel electrode, Emix shifted more positive from –719 to ca. –700 mV vs. SCE as the KIO3 

concentration increased to 200 ppm (Table 1b). At higher concentrations, Emix further increased to –692 mV vs. 

SCE at 600 ppm, although jdep increased slightly as stabiliser was added and remained at ca. 2 mA cm-2 as the 

concentration was increased. No specific trends were seen and this was reflected in the calculated plated rate, 

which remained constant at around 3 m h-1. 

 

Keping et al. used cathodic and anodic polarisation curves on a freshly plated EN electrode on mild steel to study 

the effects of KI.8 The polarisation curves showed a decrease in anodic currents with increasing [KI] that lead to 

the conclusion that the hypophosphite reaction was being inhibited due to adsorption of I- ions on the catalytic 

metal surface. The adsorption of I- ions also affected Edep that was shown to shift to more noble potentials with 

increasing [KI].  

 

Altura investigated both the cathodic and anodic processes with bath inhibitors such as lead, thiourea, KIO3 and 

sodium molybdate to show the effect on Emix and jdep.7 Similar results were reported to those from the current 

investigation; jdep reported by Altura decreased from 4.2 to 1.9 mA cm-2 at [KI] = 400 ppm, whereas, in the current 

study, jdep decreased from 4.38 to 0.421 mA cm-2. It was proposed that at [KI] > 100 ppm, the cathodic reaction 

was more likely to be the reduction of IO3
- ions rather than that of Ni2+. This would account for the reduction in 

jdep and the positive shift in Emix.  

 

Mixed potential analysis at a rotating disc electrode 

 

Plating rates determined from the extrapolation of the polarisation curves (derived from jdep) were different to 

those determined from mass gain analysis (Table 1 and Appendix 2). This could be due to the currents for H2 

evolution and phosphorus deposition not being taken into account. However, if the deposition reaction for EN is 

under mixed control, the Tafel region would be small, but this can be extended using an RDE. This experimental 

procedure will increase rates of diffusion and thus minimise concentration polarisation effects at low values of 

overpotential. 

 

The Tafel equations can be used to determine the kinetics for a purely charge transfer controlled reaction, however, 

the kinetics of a reaction rely on other factors, such as the rate of mass transport (the supply of reactants to an 

electrode surface and coincides with the removal of products);23,24 diffusion, convection and migration contribute 

to these. 

 

On a freshly deposited EN electrode, the data from the polarisation scans would suggest that 100 ppm KIO3 would 

cause a significant reduction in plating rate (Table 1a). On a mild steel electrode, however, the deposition current 

also does not reflect the plating rate (Table 1b). Practical plating rate measurements via mass gain experiments 

indicate that the rate only starts to drop at [KIO3] > 400 ppm and almost ceases at 600 ppm (Table 1). This is most 

likely due to the limiting current densities observed in the cathodic plots for [KIO3] > 50 ppm, invalidating the 

extrapolation method for determining plating rates. 

 

To simulate plating conditions, the effect of adding KIO3 on the anodic and cathodic polarisation curves was 

carried out using an RDE. The effects due to agitation used in EN baths could then be investigated under 

reproducible flow conditions. The polarisation curves were carried out using two electrodes: a mild steel RDE 

coated with high phosphorus EN, and the same mild steel RDE without the EN coating.  

 

Effect of KIO3 additions on high porous EN coated mild steel RDE 

As the [KIO3] increased, a shift in the open-circuit potential, from –471 mV to –402 mV vs. SCE, was observed 

(Fig. 4a,b). The values of this property gradually shifted to more positive potentials (–360 mV vs. SCE) as [KIO3] 

increased to 600 ppm (Fig. 4a). As the potential increases, a limiting current density was reached that decreased 

with higher [KIO3
-]. This is consistent with oxidation of hypophosphite becoming more difficult with increased 

[KIO3
-], suggesting that IO3

- is becoming adsorbed on to the EN surface. If IO3
- is being oxidised then the limiting 

current will be increased. This is reflected in the open-circuit potential becoming more noble with increased [KIO3
-

], due to the surface modification of IO3
- ions (Fig. 4c). 

 

The cathodic polarisation curves showed that when KIO3 was added to the electrolyte there was a gradual shift in 

open-circuit potential from –433 mV to –380 mV vs. SCE as [KIO3] increased to 600 ppm (Fig. 4b). As the 

potential increased, limiting current densities were reached that increased with increasing [KIO3], indicating that 

IO3
- was not adsorbed onto the cathodic sites. Since the limiting current was increasing with increasing [KIO3], 

this suggests that is it being reduced in preference to Ni2+ ions. 
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Fig. 4. (a) Anodic and (b) cathodic polarisation data obtained from an EN coated mild steel RDE surface in a 

NiSO4 electrolyte at 90 oC in sodium hypophosphite (sweep rate = 1 mV s-1), and (c) open-circuit electrode 

potentials taken from anodic and cathodic polarisation plots. KIO3 concentrations indicated. (d-f) Show similar 

plots to (a-c) except that the mild steel RDE has not been EN coated. 

 

 

Effect of KIO3 additions on a mild steel RDE 
The effect of adding KIO3 on the anodic (Fig. 4d) and cathodic (Fig. 4e) polarisation curves for a mild steel RDE 

was then investigated. For the anodic polarisation, there was a steady shift in the open-circuit potential (from –
731 mV to –690 mV vs. SCE) with increasing [KIO3]. There was no specific trend in the anodic currents with 

additive level over the range of stabiliser additions investigated, comparable to the results obtained at the static 

mild steel electrode. 
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Table 2. Plating rates determined from the deposition current density (jdep) calculated from the mixed potential 

(Emix) theory and mass gain experiments (at various KIO3 concentrations) at (a) an EN plated mild steel RDE, and 

(b) and uncoated mild steel RDE. 

 

[KIO3] / ppm jdep / mA cm-2 Emix 

vs. SCE / mV 

Plating ratea, 

x/t  / m h-1 

Plating rateb,    

x/t  / m h-1 

(a)     

0 0.2623 –447.7 0.37 14.2 

50 0.2594 –413.7 0.36 14.2 

100 0.2975 –412.4 0.42 14.0 

150 0.3118 –410.1 0.44 13.5 

200 0.2941 –391.2 0.41 13.0 

400 0.3749 –388.1 0.52 9.2 

600 0.4154 –376.6 0.58 1.4 

(b)     

0 0.6392 –684.7 - 14.2 

50 0.6578 –683.9 0.92 14.2 

100 0.7056 –679.8 0.98 14.0 

150 0.6559 –680.4 0.92 13.5 

200 0.7901 –684.1 1.10 13.0 

400 1.033 –675.1 1.44 9.2 

600 5.205 –616.8 7.26 1.4 

a From polarisation data; b From mass gain data 

 

 

The cathodic polarisation curves showed a similar trend in potential up to [KIO3] = 200 ppm (Fig. 4f). Up to this 

level of additive, the open-circuit potential remained constant at ca. –640 mV vs. SCE. After 200 ppm, the 

corrosion potential increased from –640 mV to –588 mV vs. SCE for 400 ppm, and to –430 mV vs. SCE at 600 

ppm. There was a significant alteration in shape of the cathodic polarisation plot as the level of additive increased 

above 200 ppm stabiliser. At 400 ppm, there was a slight shift in corrosion potential and a reduction in the limiting 

current. At 600 ppm, there was a large shift in corrosion potential and a similar decrease in limiting current. From 

mass gain measurements, the reduction in limiting current coincided with the reduction in plating rate which also 

occurred at 400 ppm KIO3. 

 

Mixed potential analysis 

Combining the anodic and cathodic polarisation curves, as was done with the data obtained from the static 

electrodes, the values of Emix and jdep for each solution at an EN and mild steel RDE could be determined (Table 

2). 

 

At the EN coated RDE, Emix shifted gradually from –447 mV to –376 mV vs. SCE after 600 ppm of stabiliser had 

been added (Table 2). The value of idep also increased steadily from 0.26 mA cm-2 to 0.42 mA cm-2. At the mild 

steel RDE, Emix remained constant up to 200 ppm at –680 mV vs. SCE. Emix then increased to –675 mV vs. SCE 

at 400 ppm and to –616 mV vs. SCE at 600 ppm. The deposition current also followed a similar trend to Emix, 

remaining constant at 0.7 mA cm-2 up to 200 ppm. At 400 ppm, idep increased to 1 mA cm-2 and at 600 ppm, to 

5.2 mA cm-2. 

 

 

Conclusions 

 
The overall deposition reaction of EN is considered to be the combination of two chemical reactions, the reduction 

of Ni2+ and the oxidation of the reducing agent, sodium hypophosphite.  This is represented by reactions (1) and 

(2). The mixed potential theory can be applied to the study of EN deposition by separating the partial reactants. 
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Anodic polarisations, in the absence of Ni2+ and cathodic polarisations, in the absence of hypophosphite ion can 

be overlapped to give the mixed potential, Emix and the deposition current density, jdep. 

 

Anodic and cathodic polarisation behaviour was examined at static electrodes and to simulate plating conditions, 

at an RDE. The mixed potential analysis was carried out at a freshly deposited static electrode with KIO3, a known 

bath stabiliser, over a concentration range of 0 to 600 ppm. Mass gain measurements showed a reduction in plating 

rate at 400 ppm with almost no plating taking place at 600 ppm KIO3 levels. 

 

The mixed potential analysis showed a large shift in potential at 100 ppm KIO3 with a large reduction in the 

deposition current density from 4.5 mA cm-2 to less than 1 mA cm-2 at a freshly deposited EN electrode. At an 

uncoated mild steel electrode, an initial shift in mixed potential was followed by a gradual increase with the 

deposition current showing no specific trend. From the deposition current, the plating rate was calculated which 

showed no correlation to actual plating rates, obtained from mass gain analysis. 

 

To simulate plating conditions, the effect of adding KIO3 on the anodic and cathodic polarisation curves of the 

partial reactants was carried out at using an RDE.  The effects due to agitation used in EN baths could then be 

shown under reproducible flow conditions. The polarisation curves were carried out using two electrodes, a mild 

steel RDE coated with high phosphorus EN and a mild steel RDE.  

 

At a mild steel RDE coated with high phosphorus EN both the mixed potential and deposition current increased 

gradually with KIO3 concentration. The calculated plating rate gave very low results at under 1 m h-1 for all 

concentrations. At a mild steel RDE there was a large shift in Emix and jdep at 400 ppm, which coincides with a 

reduction in plating rate although the trends were opposite to actual plating rates. 

 

Commercial electroless baths usually have between 0 – 50 ppm of stabiliser added to prevent the random 

deposition of Ni onto the sides of the bath and onto dust particles.  Examination of the polarisation sweeps 

indicates that additions of IO3
- ion do have an effect on Emix and the shape of the potential-current plots. The 

change in Emix indicates the nature of the surface had altered even at relatively low additive concentrations. 

 

The IO3
- ion has been shown to affect both the cathodic (reduction of Ni) and anodic (oxidation of hypophosphite) 

processes although the former is most likely to be the most important in deciding the nature of the stabilising 

process. The use of mixed potentials to study the effect of additives on EN plating has been shown to be useful 

when used in conjunction other experiments such as plating rate analysis by mass gain. The results, however, are 

inconsistant with the plating rate analysis, with the mixed potential changing abruptly at 100 ppm, whereas the 

plating rate fell dramatically at additions above 400 ppm of stabiliser. This indicates that the nature of the surface 

film is changing at a low concentration of additive whereas the plating rate is not markedly affected. 

 

IO3
- additions up to 400 ppm had no influence on the subsequent corrosion resistance or the nature of the protective 

film on the deposit. 
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Appendix 1: Determination of the mixed potential of the electrode and deposition current density from 

polarisation data 

 

The use of anodic and cathodic polarisation curves to determine the mixed potential and current from 

extrapolation of the linear Tafel regions. 
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Appendix 2: Calculation of mean electroplating rates from Faraday’s laws 

 

Faraday’s laws may be summarised as follows: 

 

1. The mass of material (m) formed at an electrode is proportional to the current (I) flowing over time (t): 

 

 𝑚 ∝ 𝐼𝑡 

 

2. The mass of product formed is proportional to the number of electrons (n): 

 𝑚 ∝  �̅�𝑛  

 

Combining these two equations: 

 𝑚 = 𝐾𝑀𝐼𝑡𝑛  

 

where K is a constant 

 

The constant of proportionality is the reciprocal Faraday constant, F 

 

 𝑚 =  1𝐹  . 𝑀𝐼𝑡𝑛  

 

The expression can be conveniently written as: 

 𝑚 =  𝑀𝑗𝑑𝑒𝑝𝑡𝑛𝐹  

 

where  m = mass gain / g  

  M = molar mass / g mol-1 

  jdep = deposition current density / A cm-2 

             t = time / s 

  n = number of electrons in the electrode reaction (electron stoichiometry) 

  F = Faraday constant / C mol-1 

 

The mean deposit thickness (x) is related to the mass (m) and density ( / g cm-3): 

 𝑥 =  𝑚𝜌  

 

                 

Specimen Calculation 

The deposition current density in an electrolyte containing 0.1 M NiSO4 and 0.2 M NaH2PO3 is 4.38 mA cm-2. 

 𝑤𝑡𝐴 =  58.71 × 4.38 ×  10−3  × 60 × 602 × 96485  

 𝑤𝑡𝐴 = 4.80 ×  10−3 g cm−2 h−1 

 𝑥 =  4.80 ×  10−37.85  cm 

 𝑥 = 6.10 ×  10−4 cm 

 𝑥 = 6.10 μm 


