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Abstract. Here we investigate the limits and the boundary layers of the three-dimensional
displacement in thin elastic plates as the thickness tends to zero, in each of the eight main types of
lateral boundary conditions on their edges: hard and soft clamped, hard and soft simple support,
friction conditions, sliding edge and free plates. Relying on construction algorithms [8, 9], we establish
an asymptotics of the displacement combining inner and outer expansions. We describe the two first
terms in the outer expansion: these are Kirchhoff-Love displacements satisfying prescribed boundary
conditions that we exhibit. We also study the first boundary layer term: when the transverse
component is clamped, it has generically non-zero transverse and normal components, whereas when
the transverse component is free, the first boundary layer term is of bending type and has only its
in-plane tangential component non-zero.
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Introduction. The problem of thin elastic plate bending in linearized elastostat-
ics has been addressed for more than 150 years (the first correct model was presented
in a paper by Kirchhoff [18] published in 1850). But, due to the singular pertur-
bation nature of the problem as the thickness of the plate tends to zero, it is not
straightforward to perform a rigorous mathematical analysis of characteristic fields
and tensors, solutions of the three-dimensional equations. However the knowledge of
accurate asymptotics allows first an evaluation of the validity of mechanical models
and second the construction of simplified and performing numerical models.

In the case when the plate is clamped along its lateral boundary, the situation is
now well-known, at least theoretically: The comparison between 3D and 2D models
was first performed by the construction of infinite formal asymptotic expansions, see
Friedrichs & Dressler [15], Gol’denveizer [16], Gregory & Wan [17]. Shortly
before, Morgenstern [21] was indeed the first to prove that the Kirchhoff model
[18] is the correct asymptotic limit of the 3D model when the thickness approaches
zero in the hard clamped, hard simply supported and free plate situations by using
the Prager-Synge hypercircle theorem [29]. Next, rigorous error estimates between
the 3D solution and its limit were proved by Shoikhet [31] and by Ciarlet and
Destuynder [5, 13, 3]. Further terms were exhibited by Nazarov & Zorin [24],
and the whole asymptotic expansion was constructed in [8, 9].

Different types of lateral boundary conditions are of interest: let us quote the soft
clamped plate where the tangential in-plane component of the displacement is free,
the hard simply supported plate where its normal component is free, the soft simply
supported plate where both above components of the displacement are free, and also
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35042 Rennes, France (gruais@univ-rennes1.fr).

‡Mathematical Institute A/6, University of Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Ger-

many (roessle@mathematik.uni-stuttgart.de). Supported by a grant of the German National
Science Foundation (DFG, graduate collegium ‘GKKS – Modelling and discretization methods in
continua and fluids’).

1



2 M. DAUGE, I. GRUAIS AND A. RÖSSLE

the totally free plate. These cases were investigated by Arnold & Falk [1] where an
asymptotics for the Reissner-Mindlin plate was constructed, and by Chen [2] where
error bounds between the 3D solution and its limit were evaluated.

In this paper, we prove the validity of an infinite asymptotic expansion of the
displacement with optimal error estimates in H1, L2 and energy norms. Such an
expansion can be differentiated and provides then corresponding results for the stress
and the strain tensors, see [7] for the clamped case. Like in [24] and [8, 9], this
asymptotics includes

• An outer part containing displacements only depending on the in-plane vari-
ables x∗ and on the scaled transverse variable x3,

• An inner part containing exponentially decaying profiles (boundary layer
terms), depending on two scaled variables (x3 and t = r/ε where r is the
distance to the lateral boundary).

As material law, we choose to remain in the framework of homogeneous, isotropic
materials, which allows to uncouple the boundary layer terms ϕ into two parts:

• The horizontal tangential component ϕs governed by a Laplace equation,
• The two other components ϕt and ϕ3 governed by the bi-dimensional Lamé

equations, whose solutions can themselves be uncoupled in membrane and
bending modes, i.e. possessing parity properties with respect to the transverse
variable: the former having an even ϕt and an odd ϕ3 and the latter having
converse properties.

Thus, conditions ensuring the exponential decay at infinity of solutions of the above
problems can be made explicit, resulting into simple coupling formulas between the
inner and outer parts of the expansion. These coupling formulas lead to the determi-
nation of boundary conditions for the limit membrane and bending problems.

The first boundary layer terms bring the quantitative limitation of accuracy of
bi-dimensional models. In the clamped and simple support cases, we find a strong
boundary layer term with generically non-zero membrane and bending parts, whereas
in the frictional and free cases, we find a first boundary layer term which has the
bending type and only the in-plane tangential component non-zero, and moreover, the
sub-principal term in the outer part of the expansion is a Kirchhoff-Love displacement
as usual, but with zero membrane part. Thus if the right hand side has the membrane
type, the solution of the 3D Lamé equations for the free plate converges to the usual
limit Kirchhoff-Love displacement with improved accuracy.

This paper contains twelve sections: in section 1 we introduce the elasticity prob-
lems and in section 2 we present our results in the form of several tables. In section 3
we give as an algorithm the construction rules for the outer part of the Ansatz, while
in section 4 we formulate the boundary value problems on a half-strip governing the
boundary layer profiles ϕ and give in section 5 the conditions on the data ensuring
the existence of exponentially decreasing solutions to these problems. The five next
sections are devoted to each of the eight types of lateral boundary conditions with
more emphasis on five of them: hard and soft clamped, hard simple support, sliding
edge and free plates. In section 11, we prove error estimates between the 3D solution
and any truncated series from the asymptotic expansion, and analyze the regularity of
the different terms in the asymptotics: whereas the outer expansion terms are smooth
if the data are so, the profiles have singularities along the edges of the plate. We con-
clude in section 12 by considerations about relative errors between the 3D solution
and a limit 2D solution, which has to be carefully chosen according to what we wish
to approximate (the displacement in H1 norm, or the strain in L2 norm).
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1. Lateral boundary conditions. We aim to study the behavior of the dis-
placement field uε in a family of thin elastic three-dimensional plates Ωε as the thick-
ness parameter ε tends to zero. The plates Ωε are constituted of a homogeneous,
isotropic material with Lamé constants λ and µ and are defined as follows:

Ωε = ω × (−ε,+ε) with ω ⊂ R
2 a regular domain and ε > 0 .

Let Γε
−

+ be their upper and lower faces ω × {−+ε} and Γε
0 be their lateral faces ∂ω ×

(−ε,+ε).

1.1. Cartesian, scaled and local coordinates. Let x̃ = (x1, x2, x̃3) be the
cartesian coordinates in the plates Ωε. We will often denote by x∗ the in-plane
coordinates (x1, x2) ∈ ω and by α or β the indices in {1, 2} corresponding to the
in-plane variables. The dilatation along the vertical axis (x3 = ε−1 x̃3) transforms Ωε

into the fixed reference configuration Ω = ω × (−1,+1):

x̃ = (x∗, x̃3) ∈ Ωε = ω × (−ε,+ε) 7−→ x = (x∗, x3) ∈ Ω = ω × (−1,+1).(1.1)

We also have to introduce in-plane local coordinates (r, s) in a neighborhood of
the boundary ∂ω. Let n be the inner unit normal to ∂ω and τ be the tangent unit
vector field to ∂ω such that the basis (τ ,n) is direct in each point of ∂ω. Denote by
s a curvilinear abscissa (arc length) along ∂ω oriented according to τ . Let S ∼ ∂ω be
the set of the values of s:

S ∋ s 7−→ γ(s) ∈ ∂ω.

For a point x∗ ∈ R2, let r = r(x∗) be its signed distance to ∂ω oriented along n,
i.e. r is this distance if x∗ ∈ ω and r is minus this distance if x∗ 6∈ ω. If |r| is small
enough, there exists a unique point x0

∗ ∈ ∂ω such that |r| = dist(x∗, x
0
∗) and we define

s = s(x∗) as the curvilinear abscissa of x0
∗. Thus, we have a tubular neighborhood

of ∂ω which is diffeomorphic to (−r0, r0) × S via the change of variables x∗ 7→ (r, s).
And, in this tubular neighborhood, the partial derivatives ∂r and ∂s are well defined
(and, of course, commute with each other).

We extend the vector fields n and τ from S to (−r0, r0) × S by

∀r ∈ (−r0, r0), ∀s ∈ S, n(r, s) = n(s) and τ (r, s) = τ (s).

We have

n =

(
n1

n2

)
and τ =

(
n2

−n1

)
.

Moreover, with R = R(s) the curvature radius of ∂ω at s from inside ω and κ = 1
R

the curvature, there holds (the last identities are Frenet’s relations)

∂rn = 0, ∂rτ = 0 and ∂sn = − κ τ , ∂sτ = κn.

Thus, relying on the relation x∗ = γ(s) + rn(s), we obtain

∂r = n1∂1 + n2∂2 and ∂s = (1 − κ r)(n2∂1 − n1∂2).(1.2)

Of course ∂n = ∂r.
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1.2. Cartesian, scaled and local tensors. The displacement and traction
tensors in Ωε are denoted uε and T ε and their cartesian components are (uε

1, u
ε
2, u

ε
3)

and (T ε
1 , T

ε
2 , T

ε
3 ). As u is covariant, it is naturally transformed by the scaling (1.1)

into u(ε) according to

uα(ε)(x) = uε
α(x̃), α = 1, 2, u3(ε)(x) = ε uε

3(x̃),(1.3)

whereas T which is contravariant is transformed according the same laws as the
volume force field fε: by the scaling (1.1) fε is transformed into f(ε)

fα(ε)(x) = fε
α(x̃), α = 1, 2, f3(ε)(x) = ε−1fε

3 (x̃).(1.4)

In the tubular neighborhood (−r0, r0) × S, in view of (1.2) we can introduce the
in-plane normal and tangential components of u and T by

un = n1u1 + n2u2 and us = (1 − κ r)(n2u1 − n1u2),(1.5a)

Tn = n1T1 + n2T2 and Ts = (1 − κ r)−1(n2T1 − n1T2).(1.5b)

1.3. The equations of elasticity. As standard, let e(u) denote the linearized
strain tensor eij(u) = 1

2 (∂iuj + ∂jui) associated with the displacement u. Then the
stress tensor σ(u) is given by Hooke’s law σ(u) = Ae(u) where the rigidity matrix
A = (Aijkl) of the material is given by Aijkl = λ δijδkl +µ(δikδjl +δilδjk). The inward
traction field at a point on the boundary is T defined as σ(u)n where n is the unit
interior normal to the boundary.

We make the assumption that the boundary conditions on the upper and lower
faces Γε

−

+ of the plate are of traction type. On the lateral face Γε
0 we are going to

consider the eight ‘canonical’ choices of boundary conditions which will be denoted
by ©i where i = 1, · · · , 8. Indeed, on the lateral boundary Γε

0 we can distinguish
three natural components in the displacements or the tractions: normal, horizontal
tangential, vertical, and we obtain 8 ‘canonical’ lateral boundary conditions, according
to how we choose to prescribe the displacement or the traction for each component.

Table 1.1

Lateral boundary conditions.

©i Type Dirichlet Neumann A
©i

B
©i

©1 hard clamped u = 0, {n, s, 3}

©2 soft clamped un, u3 = 0, Ts = 0 {n, 3} {s}

©3 hard simply supported us, u3 = 0, Tn = 0 {s, 3} {n}

©4 soft simply supported u3 = 0, Tn, Ts = 0 {3} {n, s}

©5 frictional I un, us = 0, T3 = 0 {n, s} {3}

©6 sliding edge un = 0, Ts, T3 = 0 {n} {s, 3}

©7 frictional II us = 0, Tn, T3 = 0 {s} {n, 3}

©8 free T = 0 {n, s, 3}

On Γε
0, we recall that the normal component of u is un = u1n1 + u2n2, its

horizontal tangential component is us = u1n2 − u2n1 and its vertical component is
u3. Similar notations apply to T . To each boundary condition ©i corresponds two
complementary sets of indices A©i and B©i where A©i is attached to the Dirichlet
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conditions of ©i , i.e. ua = 0 for each index a ∈ A©i : these are the stable conditions.
The Neumann conditions are Tb = 0 for each index b ∈ B©i and appear as natural
conditions.

To each boundary condition ©i is associated the space of displacements V©i (Ωε)

of the v ∈ H1(Ωε)3 such that va = 0 for all a ∈ A©i , and the space R©i of the rigid
motions satisfying the Dirichlet conditions of V©i . Then, the variational formulation
of the problem consists in finding





uε ∈ V©i (Ωε)

∀v ∈ V©i (Ωε),

∫

Ωε

Ae(uε) : e(v) =

∫

Ωε

fε · v +

∫

Γε

+

gε,+ · v −

∫

Γε

−

gε,− · v,
(1.6)

where fε represents the volume force and gε,
−

+

the prescribed horizontal tractions. If
the right hand side satisfies the correct compatibility condition (orthogonality to all
v ∈ R©i (Ωε)), then there exists a unique solution to (1.6) satisfying the orthogonality

conditions
∫
Ωε u

ε · v = 0 for all v ∈ R©i (Ωε).

After the scaling (1.3), an asymptotic expansion of u(ε) makes sense if the scaled
data have comparable behaviors as ε is varying. To this aim, we make the assumption
on the right hand sides that they are given by profiles in x3, namely

fε
α(x̃) = fα(x), α = 1, 2, ε−1fε

3 (x̃) = f3(x),(1.7a)

ε−1g
ε,

−

+

α (x̃) = g−

+

α(x∗), α = 1, 2, ε−2g
ε,

−

+

3 (x̃) = g−

+

3 (x∗),(1.7b)

compare with (1.4) for the homogeneities. To simplify, we assume that the profiles f
and g−

+

are regular up to the boundary, i.e. f ∈ C∞(Ω)3 and g−

+

∈ C∞(ω)3.
After scaling (1.3) and assumption (1.7), problem (1.6) is transformed into a

new boundary value problem on Ω, where now the operators depend on the small
parameter ε: The variational formulation of the problem for the scaled displacement
u(ε) consists in finding





u(ε) ∈ V©i (Ω)

∀v ∈ V©i (Ω),

∫

Ω

Aθ(ε)(u(ε)) : θ(ε)(v) =

∫

Ω

f · v +

∫

Γ+

g+ · v −

∫

Γ
−

g− · v,
(1.8)

where V©i (Ω) is the space of the geometrically admissible displacements v ∈ H1(Ω)3

associated with the problem with lateral boundary conditions ©i , and θ(ε)(v) denotes
the scaled linearized strain tensor defined by

θαβ(ε)(v) := eαβ(v) , θα3(ε)(v) := ε−1 eα3(v) , θ33(ε)(v) := ε−2 e33(v) ,(1.9)

for α, β = 1, 2; note that there holds θ(ε)(u(ε)) = e(uε).
Denoting by R©i (Ω) the space of rigid motions satisfying the Dirichlet conditions

of V©i (Ω), the compatibility condition becomes

∀v ∈ R©i (Ω),

∫

Ω

f · v +

∫

Γ+

g+ · v −

∫

Γ
−

g− · v = 0,(1.10)

and u(ε) satisfies the orthogonality condition

∀v ∈ R©i (Ω),

∫

Ω

u(ε) · v = 0 .(1.11)
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Problem (1.8) can be written in the boundary value problem form (1.12)-(1.14)
on Ω as follows. To formulate it, we use the repeated index convention. Moreover u∗

is a condensed notation for (u1, u2), div∗ u∗ denotes ∂1u1 + ∂2u2 and ∆∗ denotes the
horizontal Laplacian ∂11 + ∂22. The in-plane components, indexed by α = 1, 2, and
the vertical component of the interior equations in Ω are:

2µ∂3eα3(u) + λ∂α3u3 + ε2
(
(λ+ µ)∂α div∗ u∗ + µ∆∗uα

)
= −ε2fα,(1.12a)

(λ+ 2µ)∂33u3 + ε2
(
λ∂3 div∗ u∗ + 2µ∂βeβ3(u)

)
= −ε4f3.(1.12b)

The boundary conditions on the horizontal sides Γ
−

+ := {x3 = −+1} ∩ ∂Ω are

2µ eα3(u) = ε2g−

+

α , α = 1, 2,(1.13a)

(λ+ 2µ)∂3u3 + ε2 λdiv∗ u∗ = ε4g−

+

3 .(1.13b)

The boundary conditions on the lateral side Γ0 = ∂ω × (−1, 1) can be written as

ua = 0, ∀a ∈ A©i and Tb = 0, ∀b ∈ B©i .(1.14)

The normal, tangential horizontal and vertical components of the traction T =
T (ε) on Γ0 are given by respectively

Tn(ε) = λ∂3u3(ε) + ε2
(
λdiv∗ u∗(ε) + 2µ∂nun(ε)

)
,(1.15a)

Ts(ε) = ε2µ
(
∂sun(ε) + ∂nus(ε) + 2κus(ε)

)
,(1.15b)

T3(ε) = µ
(
∂nu3(ε) + ∂3un(ε)

)
.(1.15c)

2. Description of results. We first state the common features of the asymp-
totics of the scaled displacement u(ε), next deduce the asymptotics of the displace-
ment uε in the thin plates. Then we describe the first terms of the asymptotics in
each of the eight lateral boundary conditions.

2.1. Common features. Just as in the well-known situation of the clamped
plate, the scaled displacement u(ε) tends in Ω to a Kirchhoff-Love displacement. Let
us recall:

Definition 2.1. A displacement u in Ω is called a Kirchhoff-Love displacement
if there exist a displacement ζ∗ = (ζ1, ζ2) in the mean surface ω and a function ζ3 on
ω such that

u = (ζ1 − x3∂1ζ3, ζ2 − x3∂2ζ3, ζ3).

The function ζ := (ζ∗, ζ3) is called the generator of u, and the de-scaled displacement
associated with u in Ωε has exactly the same form with x3 replaced by x̃3. Then

uKL,b = (−x3∂1ζ3,−x3∂2ζ3, ζ3) and uKL,m = (ζ1, ζ2, 0)(2.1)

are respectively the bending and membrane parts of u.

The asymptotics of u(ε) contains three types of terms for k ≥ 0:
• uk

KL : Kirchhoff-Love displacements with ‘generating functions’ ζk = (ζk
∗ , ζ

k
3 ),

i.e. uk
KL(x) =

(
ζk
∗ (x∗) − x3∇∗ζ

k
3 (x∗), ζ

k
3 (x∗)

)
,

• vk : displacements with zero mean value: ∀x∗ ∈ ω,
∫ +1

−1 v
k(x∗, x3) dx3 = 0,

• wk : exponentially decreasing profiles as t→ +∞
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and can be written as:

u(ε)(x) ≃ u0
KL + εu1(x,

r

ε
) + · · · + εkuk(x,

r

ε
) + · · ·(2.2)

where

u1(x, t) = u1
KL + χ(r)w1(t, s, x3) with w1

3 = 0,
uk(x, t) = uk

KL + vk + χ(r)wk(t, s, x3) for k ≥ 2 ,
(2.3)

with χ a cut-off function equal to 1 in a neighborhood of ∂ω.

Theorem 2.2. Let u(ε) be the unique solution of problem (1.8) satisfying the
mean value conditions (1.11). Then there exist Kirchhoff-Love generators ζk for k ≥
0, displacements with zero mean value vk for k ≥ 2 and profiles wk for k ≥ 1 such
that there holds ∀N ≥ 0

‖u(ε)(x) − u0
KL(x) −

N∑

k=1

εkuk(x,
r

ε
)‖

H1(Ω)3
≤ C εN+1/2(2.4)

with uk(x, r
ε ) given in (2.3).

Let us point out that the ‘physical’ displacement uε expands like u(ε) in the
following way in the sense of asymptotic expansions

uε ≃
1

ε
ũ0

KL,b + ũ0
KL,m + ũ1

KL,b + ε(ũ1
KL,m + ũ2

KL,b + ṽ1 +ϕ1) + . . .

. . .+ εk(ũk
KL,m + ũk+1

KL,b + ṽk +ϕk) + · · ·
(2.5)

where
• ũk

KL,b and ũk
KL,m are the bending and membrane parts on Ωε of the Kirchhoff-

Love displacement with generator ζk;
• ṽk = ṽk(x∗,

x̃3

ε ), i.e. does not depend on ε in the scaled domain Ω;

• ϕk = ϕk( r
ε , s,

x̃3

ε ) is a boundary layer profile.
The links with expansion (2.2) on the thin plates are simply provided by the following
relations

{
ũk

KL,b(x̃) = εuk
KL,b(x), ũk

KL,m(x̃) = uk
KL,m(x),

ṽk = (vk
∗ , v

k+1
3 ) and ϕk = (wk

∗ , w
k+1
3 ) .

(2.6)

In Table 3.1, we will give the formulas linking the displacements v to the Kirchhoff-
Love generators. These formulas do not depend on the nature of the lateral boundary
conditions. In particular, the first non-Kirchhoff displacement ṽ1 = (0, v2

3) is com-
pletely determined by ζ0, cf Destuynder [14] for a similar formula:

ṽ1(x∗, x3) =
λ

6(λ+ 2µ)

(
0, 0, −6x3 div∗ ζ

0
∗ + (3x2

3 − 1)∆∗ζ
0
3

)
.(2.7)

2.2. Specific features: The Kirchhoff-Love generators. The generators ζk
∗

and ζk
3 of the above Kirchhoff displacements are solutions of membrane and bending

equations respectively, with boundary conditions on ∂ω. Let us first write down
the Dirichlet and Neumann conditions associated with the membrane and bending
operators. Then we describe the boundary operators and data associated with the
generators.
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2.2.1. Membrane. The bilinear form associated with the membrane operator
Lm (plane stress model)

Lmζ∗ = µ∆∗ζ∗ + (λ̃+ µ)∇∗ div∗ ζ∗(2.8)

is
∫

ω
λ̃ eαα(ζ∗) eββ(η∗) + 2µ eαβ(ζ∗) eαβ(η∗) with the homogenized Lamé coefficient

λ̃ =
2λµ

λ+ 2µ
.(2.9)

In normal and tangential components, cf (1.5)

ζn = n1ζ1 + n2ζ2 and ζs = (1 − κ r)(n2ζ1 − n1ζ2),

the Dirichlet traces are simply (ζn, ζs) on ∂ω, and the Neumann traces are

Tm
n (ζ∗) = λ̃div∗ ζ∗ + 2µ∂nζn,(2.10a)

Tm
s (ζ∗) = µ(∂sζn + ∂nζs + 2κ ζs),(2.10b)

where ∂n and ∂s are defined in (1.2).

2.2.2. Bending. The bilinear form associated with the bending operator Lb,

Lbζ3 = (λ̃+ 2µ)∆2
∗ζ3(2.11)

is
∫

ω λ̃ ∂ααζ3 ∂ββη3 + 2µ∂αβζ3 ∂αβη3. Its Dirichlet traces are ζ3 and ∂nζ3 on ∂ω,
whereas the Neumann traces are

Mn(ζ3) = λ̃∆∗ζ3 + 2µ∂nnζ3,(2.12a)

Nn(ζ3) = (λ̃+ 2µ)∂n∆∗ζ3 + 2µ∂s(∂n + κ)∂sζ3.(2.12b)

The mechanical interpretation of these boundary operators is that Mn corresponds
to the ‘Kirchhoff bending moment’ and Nn corresponds to the ‘Kirchhoff shear force’
on the lateral side of the plate (up to constants only depending on λ and µ).

2.2.3. Boundary value problems for the Kirchhoff-Love generators. The
ζk
∗ and ζk

3 are solution of equations of the type

Lm(ζk
∗ ) = Rk

m in ω, γm,1(ζk
∗ ) = γk

m,1 and γm,2(ζk
∗ ) = γk

m,2 on ∂ω,(2.13a)

Lb(ζk
3 ) = Rk

b in ω, γb,1(ζk
3 ) = γk

b,1 and γb,2(ζk
3 ) = γk

b,2 on ∂ω,(2.13b)

(see Table 3.1 for expressions of the right hand sides Rk
m and Rk

b) where the boundary
operators γm,j and γb,j, j = 1, 2, depend on the nature of lateral boundary conditions
according to table 2.1.

2.2.4. Boundary data for ζ0. For conditions ©1 – ©4 , the boundary data γ0
m,j

and γ0
b,j , j = 1, 2, are all zero, whereas for conditions ©5 – ©8 , only the membrane

boundary data γ0
m,j, j = 1, 2, are always zero.

In the cases ©5 and ©7 , we assume for simplicity that ω is simply connected.
Then γ0

b,1 which is the trace of ζ0
3 on ∂ω, is a prescribed constant (so that ζ0

3 has a
zero mean value in accordance with the orthogonality condition (1.11)) which is given
by the scalar product of R0

b versus the solution of a typical problem of type (2.13b).
The other boundary data γ0

b,2 is zero.
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Table 2.1

Boundary operators for the Kirchhoff-Love generators.

Membrane part Bending part

γm,1(ζ∗) γm,2(ζ∗) γb,1(ζ3) γb,2(ζ3)

©1 ζn ζs ζ3 ∂nζ3

©2 ζn Tm
s (ζ∗) ζ3 ∂nζ3

©3 Tm
n (ζ∗) ζs ζ3 Mn(ζ3)

©4 Tm
n (ζ∗) Tm

s (ζ∗) ζ3 Mn(ζ3)

©5 ζn ζs ζ3 ∂nζ3

©6 ζn Tm
s (ζ∗) ∂nζ3 Nn(ζ3)

©7 Tm
n (ζ∗) ζs ζ3 Mn(ζ3)

©8 Tm
n (ζ∗) Tm

s (ζ∗) Mn(ζ3) Nn(ζ3)

In the cases ©6 and ©8 the boundary condition related to γb,2 = Nn is given by

Nn(ζ0
3 ) =

3

2

( ∫ +1

−1

x3 fn dx3 + g+
n + g−n

) ∣∣∣∣∣
∂ω

.(2.14)

The mechanical interpretation of the right hand side in this relation reads that this
expression has the dimension of a moment and can be understood as a prescribed
moment on the lateral side of the plate, generated by fn, g+

n and g−n . Obviously,

this right hand side is zero, if the supports of the data fn and g−

+

n avoid Γ0 and ∂ω,
respectively. The other boundary data γ0

b,1 is zero.

2.2.5. Boundary data for ζ1. For conditions ©1 – ©4 , all the boundary data
for ζ1 are special traces of ζ0, according to the next table (we recall that κ is the
curvature of ∂ω)

Table 2.2

Boundary data for ζ1.

Membrane part Bending part

γ1
m,1 γ1

m,2 γ1
b,1

γ1
b,2

©1 c
©1
1

div∗ ζ
0
∗ 0 0 c

©1
4

∆∗ζ0
3

©2 c
©2
1

div∗ ζ
0
∗ c

©2
2

∂s div∗ ζ
0
∗ 0 c

©2
4

∆∗ζ0
3

©3 c
©3
1

κ2 ζ0
n 0 0 c

©3
4

κ2 ∂nζ0
3

©4 c
©4
1

κ div∗ ζ
0
∗ c

©4
2

∂s div∗ ζ
0
∗ 0 (c

©4
4

κ2 + c
©4
5

∂ss) ∂nζ0
3

Here, the constants c
©i
j depend only on λ and µ and come from typical boundary

layer profiles.
In contrast to the four ‘clamped’ lateral conditions, for the four ‘free’ lateral

conditions ©5 – ©8 the boundary conditions related to the membrane part ζ1
∗ are all

zero, which combined with the fact that the interior right hand side R1
m is zero yields

that ζ1
∗ is itself zero.



10 M. DAUGE, I. GRUAIS AND A. RÖSSLE

The traces of ζ1
3 are generically not zero: in cases ©5 and ©7 (and if ω is simply

connected) all traces can be expressed with the help of the function

L(s) =

[
−

2

3
(λ̃+ 2µ)∂n∆∗ ζ

0
3 +

∫ +1

−1

x3 fn dx3 + g+
n + g−n

] ∣∣∣∣∣
∂ω

.(2.15)

In cases ©6 and ©8 the prescribed values of the traces involve more complicated
operators. We write the boundary data for ζ1

3 in a condensed form in the next table.

Table 2.3

Boundary data for ζ1
3 .

γ1
b,1

γ1
b,2

©5 Λ©5 0

©6 0 P©6 (ζ0
3
) + κK©6 (fn, g−

+

n )

©7 Λ©7 c
©7
4

L

©8 c
©8
3

∂s(∂n + κ)∂sζ0
3 P©8 (ζ0

3 ) + κK©8 (fn, g−

+

n )

Here Λ©5 and Λ©7 are special double primitives of L on ∂ω. P©6 is a linear
combination of ∂sκ

2∂s, (κ∂s)
2 and κ∂n∆∗, and P©8 of κ∂n∆∗, ∂s(κ(∂n + κ))∂s and

κ∂s(∂n+κ)∂s. Finally, K©6 andK©8 are operators preserving the support with respect
to the in-plane variables.

2.3. Specific features: The first boundary layer profile. For conditions
©1 – ©4 , the first boundary layer profile ϕ1 can be described as a sum of three terms
in tensor product form in the variables s and (t, x3) with t = r

ε :

ϕ1 = ℓm(s) ϕ̄m(t, x3) + ℓb(s) ϕ̄b(t, x3) + ℓs(s) ϕ̄s(t, x3) .(2.16)

Here ϕ̄m, ϕ̄b and ϕ̄s are typical profiles only depending on the Lamé constants and
whose components have special parities with respect to x3: ϕ̄

m is a membrane dis-
placement whereas ϕ̄b and ϕ̄s are bending displacements, moreover some of their
components are zero, which is summarized in the next table.

Table 2.4

Typical boundary layer profiles.

Components ϕ̄m ϕ̄b ϕ̄s

Normal even odd 0

Horizontal tangential 0 0 odd

Vertical odd even 0

The functions ℓ are given as traces of ζ0 along the boundary ∂ω according to
table 2.5.

Again in contrast to the four ‘clamped’ lateral conditions, the normal and trans-
verse components of the first boundary layer profile ϕ1 are always zero in the cases
©5 – ©8 . Only the in-plane tangential component ϕ1

s is generically non-zero, and it
is odd with respect to x3. This means that ϕ1 is a bending displacement.
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Table 2.5

Lateral traces coming up in the first boundary layer profile.

Case ℓm ℓb ℓs

©1 and ©2 div∗ ζ
0
∗ ∆∗ζ0

3 0

©3 κ ζ0
n κ ∂nζ0

3
0

©4 div∗ ζ
0
∗ κ ∂nζ0

3
∂s(∂nζ0

3
)

Table 2.6

The first boundary layer profile.

Case ℓs ϕ̄s

©5 ∂sζ0
3

ϕ̄s
Dir

©6 κ∂sζ0
3 ϕ̄s

Neu

©7 ∂sζ0
3

ϕ̄s
Dir

©8 (∂n + κ)∂sζ0
3 ϕ̄s

Neu

The component ϕ1
s can be written in tensor product form ℓs(s) ϕ̄s(t, x3) according

to table 2.6. Here ϕ̄s
Dir and ϕ̄s

Neu are solutions on the half strip R+× (−1, 1) of special
boundary problems for the Laplace operator, see Lemmas 5.5 and 5.7.

Note the presence of κ in front of the traces for the hard simple support case ©3
and for the sliding edge case ©6 (compare also with [2] and [27] respectively): due
to the possibility of reflecting the solution across any flat part of the boundary, the
existence of boundary layer terms is linked to non-zero curvature.

3. Inner – Outer expansion Ansatz.

3.1. The Ansatz. The determination of the asymptotics (2.2) can be split into
two steps. The first one consists in finding all suitable power series

u(ε)(x) ≃ u0(x) + εu1(x) + · · · + εkuk(x) + · · ·(3.1)

which solve in the sense of asymptotic expansions the interior equations (1.12) in Ω
and conditions (1.13) of traction on the horizontal sides Γ

−

+. We refer to Maz’ya,

Nazarov & Plamenevskii [19, Ch. 15] for general developments relating to the
structure of expansion (3.1).

We will see in the sequel that all the terms in the suitable series (3.1) are strictly
determined except the elliptic traces of the Kirchhoff-Love generators ζk. The second
step which we will initiate in the next section, consists in finding the profileswk so that∑

k ε
kwk(rε−1, s, x3) solves equations (1.12) in Ω with zero volume force, conditions

(1.13) of zero traction and so that the lateral boundary conditions (1.14) are satisfied
by the complete Ansatz. The outcome will be that the existence of exponentially
decaying profiles is subordinated to the determination of the remaining degrees of
freedom in the series (3.1).

3.2. The algorithms of the outer expansion part. This section is devoted
to the construction of the most general power series (3.1) solving (1.12)-(1.13). Let
us introduce the two operators A and B which associate with a displacement u in Ω
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a volume force in Ω and tractions on the horizontal sides on Γ
−

+ according to:

Au =

(
2µ∂3eα3(u) + λ∂α3u3, (λ+ 2µ)∂33u3 ; 2µ eα3(u)

∣∣
Γ
−

+
, (λ+ 2µ)∂3u3

∣∣
Γ
−

+

)

Bu =

(
(λ+ µ)∂αdiv∗u∗ + µ∆∗uα, λ ∂3 div∗u∗ + 2µ∂βeβ3(u) ; 0

∣∣
Γ
−

+
, λdiv∗u∗

∣∣
Γ
−

+

)

the first group of arguments being the in-plane volume forces, the second, the trans-
verse volume force, and similarly for the tractions. Solving (1.12)-(1.13) by a power
series (3.1) is equivalent to solve the system of equations






Auk = 0 for k = 0, 1,

Au2 +Bu0 =
(
−fα , 0 ; g−

+

α

∣∣
Γ
−

+
, 0
∣∣
Γ
−

+

)
,

Au4 +Bu2 =
(
0 , −f3 ; 0

∣∣
Γ
−

+
, g−

+

3

∣∣
Γ
−

+

)
,

Auk +Buk−2 = 0, for k = 3 and k ≥ 5.

(3.2)

It is well known that the solutions of the problem Au = 0 are the Kirchhoff-Love
displacements. Thus u0 = u0

KL and u1 = u1
KL, with generators ζ0 and ζ1.

In order to solve the series of equations of odd order Auk + Buk−2 = 0, let us
introduce the operator V .

Definition 3.1. The operator V : ζ 7→ V ζ is defined from C∞(ω)3 into C∞(Ω)3

by

(V ζ)α = p̄2 ∂α div∗ ζ∗ + p̄3 ∂α∆∗ζ3

(V ζ)3 = p̄1 div∗ ζ∗ + p̄2 ∆∗ζ3
(3.3)

with p̄j for j = 1, 2, 3 the polynomials in the variable x3 of degrees j defined as

p̄1(x3) = −
λ̃

2µ
x3, p̄2(x3) =

λ̃

4µ

(
x2

3 −
1

3

)
,

p̄3(x3) =
1

12µ

(
(λ̃+ 4µ)x3

3 − (5λ̃+ 12µ)x3

)
.

(3.4)

Here λ̃ still denotes the ‘homogenized’ Lamé coefficient 2λµ(λ+ 2µ)−1.

With Lm the membrane operator (2.8), direct computations yield

Lemma 3.2. Let ζ belong to C ∞(ω)3 and let uKL be the associated Kirchhoff-
Love displacement. Then the field V ζ is the unique solution with zero mean values on
each fiber x∗ × (−1, 1) of the problem

A(V ζ) +B(uKL) =
(
Lmζ∗ , 0 ; 0

∣∣
Γ
−

+
, 0
∣∣
Γ
−

+

)
.(3.5)

Then, if Lmζ1
∗ = 0, we can take u3 = u3

KL +V ζ1. In order to proceed, we remark
that each component of B(V ζ) can be split into two parts, both of them being the
product of a polynomial in x3 and of ∆∗ div∗ ζ∗ or ∆2

∗ζ3, or a derivative of these
expressions. With the bending operator (2.11) we easily obtain that if Lmζ∗ and
Lbζ3 are zero, then B(V ζ) is zero, too. Thus, the odd part of the outer Ansatz is
solved, since we obtain by an induction argument:
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Proposition 3.3. For any k = 1, 3, 5, . . . let ζk be such that Lmζk
∗ = 0 and

Lbζk
3 = 0. Then, setting for k = 3, 5, . . .

uk = uk
KL + V ζk−2 ,

we obtain all the solutions of the odd order equations in system (3.2).

Let us consider now the equations of even order. The operator A is block trian-
gular and its diagonal is made of ordinary Neumann problems on the interval (−1, 1).
So actually, in order to have solvability for these problems, compatibility conditions
are required on the right-hand sides. Conversely, if the problems are solvable, the
solutions are uniquely determined if we require that they have a mean value zero on
each fiber x∗ × (−1, 1) with x∗ ∈ ω.

With u0 = u0
KL, we will find u2 being of the form u2

KL + V ζ0 +G(f , g−

+

), where
G is another solution operator. But prior to this, we need two sorts of primitive of
an integrable function u on the interval (−1,+1):

Notation 3.4. Let us introduce:
• The primitive of u with zero mean value on (−1,+1)

∮ x3

u dy3 :=

∫ x3

−1

u(y3) dy3 −
1

2

∫ +1

−1

∫ z3

−1

u(y3) dy3 dz3,

• The primitive of u which vanishes in −1 and 1 if u has a zero mean value on
(−1,+1) and which is even, resp. odd, if u is odd, resp. even

∫ y3

− u dz3 :=
1

2

(∫ y3

−1

u(z3) dz3 −

∫ +1

y3

u(z3) dz3

)
.

Definition 3.5. The operator G : (f , g−

+

) 7→ G(f , g−

+

) is defined from C ∞(Ω)3×
C

∞(ω)6 into C
∞(Ω)3 by





(G(f , g−

+

))3 = 0

(G(f , g−

+

))α =
1

2µ

∮ x3
[
−2

∫ y3

− fα +
(
g+

α − g−α +

∫ +1

−1

fα

)
y3 + g+

α + g−α

]
dy3 .

The reason for the introduction of G is

Lemma 3.6. For any (f , g−

+

) ∈ C ∞(Ω)3 × C∞(ω)6, G(f , g−

+

) is the unique
solution with zero mean values on each fiber x∗ × (−1, 1) of the problem

A
(
G(f , g−

+

)
)

=

(
−fα +

1

2

[∫ +1

−1

fα dx3 + g+
α − g−α

]
, 0 ; g−

+

α

∣∣
Γ
−

+
, 0
∣∣
Γ
−

+

)
.

Now, we can see that if we set

R0
m(x∗) = −

1

2

[∫ +1

−1

f∗(x∗, x3) dx3 + g+
∗ (x∗) − g

−
∗ (x∗)

]
,(3.6)

for any ζ0
∗ satisfying the membrane equation Lm(ζ0

∗) = R0
m, the displacement u2 =

u2
KL + V ζ0 +G(f , g−

+

) solves the equation of order k = 2 of system (3.2). We denote
by v2 = V ζ0 +G its part with zero mean values on each fiber x∗ × (−1, 1).
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In order to go further in solving the even part of the Ansatz, we are going to
introduce a residual operator F = (F∗, F3) and a new solution operator W .

Definition 3.7. (i) The operator F : v 7→ Fv = (F∗v, F3v) is defined from
C∞(Ω)3 into C∞(ω)3 by






F3v = µ

∫ +1

−1

∂βeβ3(v) dy3 ,

Fαv =
λ̃

2

∫ +1

−1

∫ y3

− ∂αβeβ3(v) dz3 dy3 .

(ii) The operator W : v 7→Wv is defined from C∞(Ω)3 into itself by





W3v = −

∮ x3
(
λ̃

2µ
div∗ v∗ +

λ̃

λ

∫ y3

− ∂βeβ3(v)

)
dy3

Wαv = −

∮ x3
(
∂αW3v +

∫ y3

−
(λ
µ
∂α3W3v +

λ+ µ

µ
∂α div∗ v∗ + ∆∗vα

))
dy3.

With these operators, we can prove

Lemma 3.8. Let v in C ∞(Ω)3 be a displacement field with zero mean values on
each fiber x∗ × (−1, 1), x∗ ∈ ω. Then Wv has also zero mean values on each fiber
x∗ × (−1, 1) and solves the problem

A(Wv) +B(v) =
(
0 , 0 ; −+F∗(v)

∣∣
Γ
−

+
, +−F3(v)

∣∣
Γ
−

+

)
.

Now, it is natural to search for u4 with the form u4
KL +V ζ2 +W (V ζ0 +G) +H .

In view of Lemmas 3.2 and 3.8, with such an Ansatz, H has to solve the problem

AH =
(
−Lm(ζ2

∗) , −f3 ; +−F∗(V ζ
0 +G)

∣∣
Γ
−

+
, g−

+

3 −+ F3(V ζ
0 +G)

∣∣
Γ
−

+

)
.(3.7)

Thus, it is important to have more information about F (V ζ0 +G). It is not difficult
to check:

Lemma 3.9. For all ζ in C∞(ω)3 we have

F∗(V ζ) = 0 and F3(V ζ) = − 1
3L

bζ3 .

Moreover, we have

F3(G) =
1

2
div∗

[∫ +1

−1

x3 f∗ dx3 + g+
∗ + g−∗

]
.(3.8)

Then there holds

Lemma 3.10. Let R0
b be defined as

R0
b =

3

2

[∫ +1

−1

f3 dx3 + g+
3 − g−3 + div∗

(∫ +1

−1

x3 f∗ dx3 + g+
∗ + g−∗

)]
,(3.9)

and R2
m be defined as

R2
m = F∗(G) −

λ̃

4µ
∇∗

[∫ +1

−1

x3 f3 dx3 + g+
3 + g−3

]
.(3.10)
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If there hold Lb(ζ0
3 ) = R0

b and Lm(ζ2
∗) = R2

m, then equation (3.7) admits a unique
solution H = H(f , g−

+

) with zero mean values on each fiber x∗×(−1, 1) which is given
by






H3 =
1

2(λ+ 2µ)

∮ x3
[(
−2

∫ y3

− f3
)

+ g+
3 + g−3

]
dy3

Hα = −

∮ x3
[
∂αH3 +

1

µ
y3 F∗(G) +

λ

µ

∫ y3

−

{
∂α3H3 −

1

2

∫ +1

−1

∂α3H3 dz3

}]
dy3 .

Thus, we have found u4 as u4
KL +v4 where v4 has zero mean values on each fiber

x∗ × (−1, 1): v4 is given by V ζ2 +W (V ζ0 +G) +H = V ζ2 +Wv2 +H .
Next, we search for a u6 with the form u6

KL + V ζ4 + Wv4 + Y . In view of
Lemmas 3.2 and 3.8, with such an Ansatz, Y has to solve the problem

AY =
(
−Lm(ζ4

∗) , 0 ; +−F∗(v
4)
∣∣
Γ
−

+
, −+ F3(v

4)
∣∣
Γ
−

+

)
.(3.11)

This problem is solvable if
(i) F3(v

4) is zero, which holds true if Lbζ2
3 = 3F3(Wv

2 +H),
(ii) Lm(ζ4

∗) = F∗(v
4), compare Lemma 3.10.

Then Y = Y (ζ4
∗) solves equation (3.11), with the solution operator Y defined as

Definition 3.11. For ζ∗ ∈ C∞(ω)2, Y = Y (ζ∗) is defined as

Y3 = 0 and Y∗ = −2 λ̃−1 p̄2 L
m(ζ∗) .

And from now on, the solution of the series of equations (3.2) is self-similar.
Summarizing, we obtain by induction that every expansion (3.1) solving (1.12)-(1.13)
can be described according to Table 3.1 below, where G and H are a condensed
notation for G(f , g−

+

) and H(f , g−

+

) respectively and Rk
m and Rk

b are the prescribed
values for Lm(ζk

∗ ) and Lb(ζk
3 ) respectively (note that R0

m, R2
m and R0

b are defined in
(3.6), (3.10) and (3.9)).

Table 3.1

Algorithm formulas.

k uk vk yk−2 Rk
m Rk

b

0 u0
KL

— — R0
m R0

b

2 u2
KL

+ v2 V ζ0 + y0 G R2
m 3F3(Wv2 + H)

4 u4
KL

+ v4 V ζ2 + y2 Wv2 + H F∗v
4 3F3(Wv4 + Y ζ4∗)

2ℓ+2 u2ℓ+2

KL
+ v2ℓ+2 V ζ2ℓ + y2ℓ Wv2ℓ + Y ζ2ℓ

∗ F∗v
2ℓ+2 3F3(Wv2ℓ+2+Y ζ2ℓ+2

∗ )

1 u1
KL

— — 0 0

2ℓ+1 u2ℓ+1

KL
+ v2ℓ+1 V ζ2ℓ−1 — 0 0

Here, the even order terms and the odd order ones are independent from each
other. We will see later on that they are connected by the lateral boundary conditions
via the boundary layer terms. We emphasize that each term uk in the algorithm is
the sum of two terms uk = uk

KL + vk with uk
KL representing the general solution of
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homogeneous Neumann problems for ordinary differential equations over each fiber
x∗ × (−1, 1) and vk being particular solutions of inhomogeneous ordinary Neumann
problems across the thickness with mean value zero.

3.3. Formulas for the determined part of the displacements. The formu-
las in Table 3.1 giving the vk yield in a straightforward way that

v2k+1 = V ζ2k−1 ,

v2k+2 =

k∑

ℓ=0

W ℓ ◦ V ζ2(k−ℓ) +

k−2∑

ℓ=0

W ℓ ◦ Y ζ
2(k−ℓ)
∗

+W k ◦G(f , g−

+

) +W k−1 ◦H(f , g−

+

)

(3.12)

with the convention that W−1 = 0 and W 0 = Id.
Using the definitions of V and W , we can prove

Lemma 3.12. For ℓ = 0, 1, · · ·, we have the following formulas for the iterates
W ℓ ◦ V

(W ℓ ◦ V ζ)α = r̄2ℓ+2 ∂α∆ℓ
∗ div∗ ζ∗ + r̄2ℓ+3 ∂α∆ℓ+1

∗ ζ3

(W ℓ ◦ V ζ)3 = q̄2ℓ+1 ∆ℓ
∗ div∗ ζ∗ + q̄2ℓ+2 ∆ℓ+1

∗ ζ3
(3.13)

with q̄j, r̄j the polynomials in the variable x3 of degrees j and of parities j defined
recursively as

q̄1 = p̄1, q̄2 = p̄2, r̄2 = p̄2, r̄3 = p̄3,

with p̄j for j = 1, 2, 3 the polynomials defined in (3.4), and

q̄j(x3) = −

∮ x3
(
λ̃

2µ
r̄j−1 +

λ̃

2λ

∫ y3

− (q̄j−2 + r̄ ′
j−1)

)
dy3, for j ≥ 3

r̄j(x3) = −

∮ x3
(
q̄j−1 +

∫ y3

−
(λ
µ
q̄ ′

j−1 +
λ+ 2µ

µ
r̄j−2

))
dy3, for j ≥ 4.

(3.14)

Similarly, using the definition of Y we are able to show

Lemma 3.13. For ℓ = 0, 1, · · ·, we have the following formulas for the iterates
W ℓ ◦ Y

(W ℓ ◦ Y ζ∗)α = s̄2ℓ+2 ∂α∆ℓ
∗ div∗ ζ∗ + t̄2ℓ+2 ∆ℓ+1

∗ ζα

(W ℓ ◦ Y ζ∗)3 = s̄2ℓ+1 ∆ℓ
∗ div∗ ζ∗

(3.15)

with s̄j and t̄j the polynomials in the variable x3 of degrees j and of parities j defined
recursively as

s̄1 = 0, s̄2 = −
λ+ 2µ

λ
p̄2 and t̄2 = −

3λ+ 2µ

λ
p̄2

with p̄2 given in (3.4), and for ℓ ≥ 1:

s̄2ℓ+1(x3) = −

∮ x3
(
λ̃

2µ
(s̄2ℓ + t̄2ℓ) +

λ̃

2λ

∫ y3

− (s̄2ℓ−1 + s̄ ′
2ℓ + t̄ ′2ℓ)

)
dy3,

s̄2ℓ+2(x3) = −

∮ x3
(
s̄2ℓ+1 +

∫ y3

−
(λ
µ
s̄ ′
2ℓ+1 +

λ+ µ

µ
(s̄2ℓ + t̄2ℓ) + s̄2ℓ

))
dy3,

t̄2ℓ+2(x3) = −

∮ x3
(∫ y3

− t̄2ℓ

)
dy3.

(3.16)



ASYMPTOTICS IN THIN ELASTIC PLATES 17

Condensing G(f , g−

+

) into G and H(f , g−

+

) into H , we obtain the following for-
mulas for the first vk (k even).

v2
α = p̄2 ∂α div∗ ζ

0
∗ + p̄3 ∂α∆∗ζ

0
3 + Gα

v2
3 = p̄1 div∗ ζ

0
∗ + p̄2 ∆∗ζ

0
3 ,

(3.17)

v4
α = p̄2 ∂α div∗ ζ

2
∗ + p̄3 ∂α∆∗ζ

2
3 + r̄4 ∂α∆∗ div∗ ζ

0
∗ + r̄5 ∂α∆2

∗ζ
0
3 + (WG+H)α

v4
3 = p̄1 div∗ ζ

2
∗ + p̄2 ∆∗ζ

2
3 + q̄3 ∆∗ div∗ ζ

0
∗ + q̄4 ∆2

∗ζ
0
3 + (WG+H)3 .

(3.18)

4. The principles of construction of the inner expansion part. After the
construction of the most general power series (3.1) solving (1.12)-(1.13), we see that
the only remaining degrees of freedom can be given by traces of the Kirchhoff-Love
generators ζk. As will be investigated for each case in particular, complementing
traces of the Kirchhoff-Love generators ζk can be determined along with the compu-
tation of the boundary layer terms wk.

The boundary layer Ansatz, namely
∑

k≥1 ε
kwk must satisfy the equations (1.12)

inside Ω with vanishing right hand side and the boundary conditions (1.13) of zero
traction on the horizontal faces of Ω, and must compensate for the lateral boundary
conditions of the power series

∑
k≥0 ε

kuk so that the lateral boundary conditions
(1.14) are fulfilled. We present in this section some common features of all problems.

4.1. The equations of the inner expansion.

4.1.1. Lateral boundary conditions. In order to obtain the relations which
have to be satisfied by the inner part of the expansion, we evaluate the boundary
conditions for a displacement u of the form

u(ε)(x) = u(x) + (ϕ∗, εϕ3)(
r

ε
, s, x3),(4.1)

where u =
∑

k≥0 ε
kuk and ϕ =

∑
k≥1 ε

kϕk. The form of the boundary layer term
(ϕ∗, εϕ3) is related to the covariant nature of displacements: indeed we return with
ϕ to the homogeneity of the original unknown uε. We denote by ϕt the normal
component of ϕ.

For u of the form (4.1), the formulas for the lateral Dirichlet conditions are
obvious, and the lateral Neumann conditions can be written with the help of the
following boundary operators acting on the profiles ϕ

T
(0)
t (ϕ) = λ∂3ϕ3 + (λ+ 2µ)∂tϕt, T

(1)
t (ϕ) = λ(∂sϕs −

1
R ϕt),

T
(0)
s (ϕ) = µ∂tϕs, T

(1)
s (ϕ) = µ(∂sϕt + 2

R ϕs),

T
(0)
3 (ϕ) = µ(∂tϕ3 + ∂3ϕt).

(4.2)

Thus, we can write the components of the lateral traction, cf (1.15), as

Tn(ε) = ε T
(0)
t (ϕ) + ε2T

(1)
t (ϕ) + λ∂3 u3 + ε2

(
λdiv∗ u∗ + 2µ∂nun

)
(4.3a)

Ts(ε) = ε T (0)
s (ϕ) + ε2T (1)

s (ϕ) + ε2µ
(
∂sun + ∂nus + 2

R us

)
(4.3b)

T3(ε) = T
(0)
3 (ϕ) + µ(∂nu3 + ∂3un).(4.3c)
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4.1.2. Interior equations. In variables (t, s, x3) and unknowns

ϕ = (ϕt, ϕs, ϕ3) ∼ (w∗,
1

ε
w3)

the interior equations (1.12) for w have the form

B(ε ; t, s ; ∂t, ∂s, ∂3)ϕ = 0,

where the three components B(ε)t, B(ε)s and B(ε)3 of B(ε) can be written as
polynomials of degree 2 in ε with coefficients involving partial derivative operators of
degree ≤ 2 combined with integer powers of R = R(s) and of 1

ρ with

ρ = R(s) − r = R(s) − εt

which is the curvature radius in s of the curve {x∗ ∈ ω, dist(x∗, ∂ω) = r}. The
thorough expression of B(ε) can be found in [11, §3]. A Taylor expansion at t = 0 of
ρ−1 = (R− εt)−1 yields an asymptotic expansion of B in a power series of ε:

B ∼ B
(0) + εB(1) + · · · εk

B
(k) + · · ·(4.4)

where the B(k)(t, s ; ∂t, ∂s, ∂3) are partial differential systems of order 2 with polyno-
mial coefficients in t independent from ε. Here follow the expressions for B(0) and
B

(1):

(B(0)ϕ)t = µ
(
∂ttϕt + ∂33ϕt

)
+ (λ+ µ) ∂t

(
∂tϕt + ∂3ϕ3

)

(B(0)ϕ)s = µ
(
∂ttϕs + ∂33ϕs

)

(B(0)ϕ)3 = µ
(
∂ttϕ3 + ∂33ϕ3

)
+ (λ+ µ) ∂3

(
∂tϕt + ∂3ϕ3

)
(4.5)

and, with the curvature κ = 1
R :

(B(1)ϕ)t = −µκ ∂tϕt + (λ+ µ) ∂t

(
−κϕt + ∂sϕs

)

(B(1)ϕ)s = µκ
(
∂tt(tϕs) + ∂33(tϕs)

)
− µκ ∂tϕs + (λ + µ) ∂s

(
∂tϕt + ∂3ϕ3

)

(B(1)ϕ)3 = −µκ ∂tϕ3 + (λ+ µ) ∂3

(
−κϕt + ∂sϕs

)
.

(4.6)

Thus, the interior equation B(ε)ϕ = 0 can be written as

B
(0)ϕ+ εB(1)ϕ+ · · · εk

B
(k)ϕ+ · · · ∼ 0.(4.7)

4.1.3. Horizontal boundary conditions. The boundary conditions on the
horizontal sides x3 = −+1 are, cf (1.13)

µ(∂3ϕt + ∂tϕ3) = 0,(4.8a)

µ∂3ϕs + ε µ ∂sϕ3 = 0,(4.8b)

(λ+ 2µ)∂3ϕ3 + λ∂tϕt + ε λ
(
− 1

ρϕt + R
ρ ∂s(

R
ρ ϕs)

)
= 0.(4.8c)

Similarly to the interior equations, we can develop the horizontal boundary conditions
G (4.8) in powers of ε:

G ∼ G
(0) + εG (1) + · · · εk

G
(k) + · · ·(4.9)
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where the G (k)(t, s ; ∂t, ∂s, ∂3) are partial differential systems of order 1 with polyno-
mial coefficients in t. The expressions for G (0) and G (1) are:

(G (0)ϕ)t = µ(∂3ϕt + ∂tϕ3), (G (1)ϕ)t = 0,

(G (0)ϕ)s = µ∂3ϕs, (G (1)ϕ)s = µ∂sϕ3,

(G (0)ϕ)3 = (λ+ 2µ)∂3ϕ3 + λ∂tϕt, (G (1)ϕ)3 = λ(−κϕt + ∂sϕs).

(4.10)

Thus, the horizontal boundary conditions G (ε)ϕ = 0 can be written as

G
(0)ϕ+ εG (1)ϕ+ · · · εk

G
(k)ϕ+ · · · ∼ 0.(4.11)

4.2. The recursive equations. Assuming that
∑

k ε
kuk already fulfills the

relations in Table 3.1, we determine now the equations satisfied by the profiles ϕk

and the remaining conditions satisfied by the displacements uk so that

∑

k ≥ 0

εkuk +
∑

k ≥ 1

εk(ϕk
∗ , εϕ

k
3)(4.12)

satisfies equations (1.12)-(1.14).

4.2.1. Interior equations. (4.7) yields that

∀k ≥ 0,

k∑

ℓ=0

B
(ℓ)ϕk−ℓ = 0,(4.13)

which guarantees (1.12) for the whole expansion (4.12).

4.2.2. Horizontal boundary conditions. (4.11) yields that

∀k ≥ 0,

k∑

ℓ=0

G
(ℓ)ϕk−ℓ = 0,(4.14)

which guarantees (1.13) for the whole expansion (4.12).

4.2.3. Lateral Dirichlet boundary conditions. Let
∑

k ε
kDk

n,
∑

k ε
kDk

s and∑
k ε

kDk
3 be the normal, tangential and vertical components of the lateral Dirichlet

traces of the series (4.12). The lateral Dirichlet boundary conditions then read

∀k ≥ 0, Dk
n = 0 if n ∈ A, Dk

s = 0 if s ∈ A, Dk
3 = 0 if 3 ∈ A,(4.15)

which immediately yields the Dirichlet conditions for the whole expansion (4.12).
For the terms Dk, we have

D0
n = u0

n, D0
s = u0

s, D0
3 = u0

3, D1
3 = u1

3,(4.16)

and for k ≥ 1

Dk
n = ϕk

t + uk
n,(4.17a)

Dk
s = ϕk

s + uk
s ,(4.17b)

Dk+1
3 = ϕk

3 + uk+1
3 .(4.17c)
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4.2.4. Lateral Neumann boundary conditions. Let
∑

k ε
kT k

n ,
∑

k ε
kT k

s and∑
k ε

kT k
3 be the normal, tangential and vertical components of the lateral Neumann

traces of the series (4.12). The lateral Neumann boundary conditions then read

∀k ≥ 0, T k
n = 0 if n ∈ B, T k

s = 0 if s ∈ B, T k
3 = 0 if 3 ∈ B,(4.18)

which immediately yields the Neumann conditions for the whole expansion (4.12).
Let us evaluate the terms T k. To that aim, we rely on the following formulas for

uk, cf Table 3.1, either uk = uk
KL + vk, i.e.

uk
n = ζk

n − x3 ∂nζ
k
3 + vk

n,(4.19a)

uk
s = ζk

s − x3 ∂sζ
k
3 + vk

s ,(4.19b)

uk
3 = ζk

3 + vk
3 ,(4.19c)

or uk = uk
KL + V ζk−2 + yk−2, i.e.

uk
n = ζk

n − x3 ∂nζ
k
3 + p̄2 ∂n div∗ ζ

k−2
∗ + p̄3 ∂n∆∗ζ

k−2
3 + yk−2

n ,(4.20a)

uk
s = ζk

s − x3 ∂sζ
k
3 + p̄2 ∂s div∗ ζ

k−2
∗ + p̄3 ∂s∆∗ζ

k−2
3 + yk−2

s ,(4.20b)

uk
3 = ζk

3 + p̄1 div∗ ζ
k−2
∗ + p̄2 ∆∗ζ

k−2
3 + yk−2

3 ,(4.20c)

where p̄1, p̄2, p̄3 are introduced in (3.4).
Thus, we find

T 0
n = 0, T 1

n = 0, T 0
s = 0, T 1

s = 0, T 0
3 = 0,(4.21)

and for k ≥ 1, cf (2.10), (2.12), (4.2):

T k+1
n = T

(0)
t (ϕk) + T

(1)
t (ϕk−1) + Tm

n (ζk−1
∗ ) − x3Mn(ζk−1

3 )

+ λ∂3 y
k−1
3 + λdiv∗ v

k−1
∗ + 2µ∂nv

k−1
n

(4.22a)

T k+1
s = T

(0)
s (ϕk) + T

(1)
s (ϕk−1) + Tm

s (ζk−1
∗ ) − 2µx3 (∂n + 1

R )∂sζ
k−1
3

+ µ
(
∂sv

k−1
n + ∂nv

k−1
s + 2

R vk−1
s

)(4.22b)

T k
3 = T

(0)
3 (ϕk) + µ(p̄2 + p̄ ′

3) ∂n∆∗ζ
k−2
3

+ µ(∂ny
k−2
3 + ∂3y

k−2
n ).

(4.22c)

4.3. Solving the inner expansion. According to the calculations of the pre-
vious subsection, to solve the problem with the Ansatz (4.12), it remains to find a
sequence of profiles (ϕk)

k
and a sequence of Kirchhoff-Love generators (ζk)

k
such

that (4.13), (4.14), (4.15) and (4.18) hold.
Let us consider now the profiles ϕk for k ≥ 1 as main unknowns. In view of

(4.13), (4.14), (4.17) and (4.22), we see that the sequence of problems satisfied by the
ϕk can be written in a recursive way: for each k ≥ 1 the profile ϕk has to solve the
equation

B©i (ϕk) = (fk; gk; hk),(4.23)

where
• B©i is the operator B(0) inside the domain, the traction operator G (0) on the

horizontal sides, the Dirichlet traces on the lateral side for a ∈ A©i and the
Neumann traces on the lateral side for b ∈ B©i ,
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• fk and gk are the following functions of the previous profiles

fk = −

k∑

ℓ=1

B
(ℓ)ϕk−ℓ and gk = −

k∑

ℓ=1

G
(ℓ)ϕk−ℓ,(4.24)

so that (4.13)-(4.14) is solved, and hk involves previous profiles as well and
certain traces of the Kirchhoff-Love generators ζℓ according to (4.15)-(4.22).

An important point is now to note that neither B(0), nor G (0), nor the lateral
trace operators of B©i contain any derivative with respect to the tangential variable

s. Thus, the equations (4.23) can be solved in the variables t ∈ R+ and x3 ∈ (−1, 1),
the role of s being only that of a parameter. So we introduce the half-strip

Σ+ =
{
(t, x3); 0 < t, −1 < x3 < 1

}
.(4.25)

Its boundary has two horizontal parts γ
−

+ = R+ × {x3 = −+1} and a lateral part

γ0 =
{
(t, x3); t = 0, −1 < x3 < 1

}
.(4.26)

Thus, we have

B©i (ϕ) = (f; g; h) ⇐⇒





B(0)(ϕ) = f, in Σ+,

G (0)(ϕ) = g, on γ
−

+,

ϕa = ha, on γ0, ∀a ∈ A©i ,

T
(0)
b (ϕ) = hb, on γ0, ∀b ∈ B©i .

(4.27)

Essential is the possibility of finding exponentially decreasing solutions when f and g

have the same property. This is what we start to investigate in the next section.

5. Exponentially decaying profiles in a half-strip.

5.1. General principles. The properties of the operators B©i are closely linked

to those of the corresponding operator B on the full strip Σ := R × (−1, 1), defined
as B(ϕ) = (f; g) with f = B(0)(ϕ) in Σ and g = G (0)(ϕ) on R × {x3 = −+1}, see also
Nazarov & Plamenevskii [23, Ch. 5].

Let P be the space of polynomial displacements Z satisfying B(Z) = 0. Com-
putations like those of Mielke in [20] yield that P has eight dimensions and that a
basis of P is given by the following polynomial displacements Z [1], · · · ,Z [8]

Z [1] =




1
0
0


 Z [2] =




0
1
0


 Z [3] =




0
0
1


 Z [4] =




−x3

0
t




Z [5] =




t
0
p̄1



 Z [6] =




0
t
0



 Z [7] =




−2tx3

0
t2 + 2p̄2





Z [8] =




−3t2x3 + 6p̄3

0
t3 + 6tp̄2




where p̄1(x3), p̄2(x3), p̄3(x3) are the polynomials previously introduced in (3.4).
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Let us introduce weighted spaces Hm
η on the half-strip Σ+: for η > 0, their

elements are exponentially decreasing as t→ ∞:

Definition 5.1. Let η ∈ R. For m ≥ 0 let Hm
η (Σ+) be the space of functions

v such that eηtv belongs to Hm(Σ+). We also denote H0
η (Σ+) by L2

η(Σ+). Similar
definitions hold for R+.

Like in [9, Lemmas 4.10 & 4.11], we have, with η0 the smallest exponent arising
from the Papkovich-Fadle eigenfunctions, compare Papkovich [26] for early reference
and Gregory & Wan [17]:

Lemma 5.2. Let η, 0 < η < η0. Let f belong to L2
η(Σ+)3 and g belong to

L2
η(R+)6, let ha belong to H1/2(γ0) for each a ∈ A©i and hb belong to H−1/2(γ0) for

each b ∈ B©i . Then there exist ϕ ∈ H1
η (Σ+)3 and Z ∈ P so that

B©i (ϕ+Z) = (f; g; h).(5.1)

But the solution given by Lemma 5.2 is not unique. Let T©i denote the space

of the polynomial displacements Z such that there exists ϕ = ϕ(Z) ∈ H1
η (Σ+)3

satisfying

B©i (Z +ϕ(Z)) = 0.

Like in [9, Proposition 4.12], we can prove that the dimension of T©i is 4. Thus P can
be split in the direct sum of two four-dimensional spaces Z©i and T©i , and we have
as corollary:

Lemma 5.3. Let f, g and h be as in Lemma 5.2. Then there exist ϕ unique in
H1

η (Σ+)3 and Z unique in the four-dimensional space Z©i so that (5.1) holds.

At this stage, the conclusion is that we have a defect number equal to four for
the solution of the sequence of the above equations (4.23) by exponentially decreasing
displacements ϕk, for each s ∈ ∂ω. But four traces on ∂ω are still available, allowing
to modify hk. Note that this is coherent with the principle of ‘matching asymptotics’,
according to which the behavior at infinity of the profiles is transformed into a function
of the primitive variable x (which is a Kirchhoff-Love displacement).

5.2. The operators acting on profiles. We can immediately see that the
operators B©i act separately on the couple of components (ϕt, ϕ3) that we denote ϕ♮,
and on ϕs. On ϕ♮ acts an elasticity operator with the Lamé constants λ and µ, and
on ϕs a Laplace operator.

The interior elasticity operator in Σ+ is

B
(0)
♮ : ϕ♮ 7−→ f♮ = µ(∂tt + ∂33)

(
ϕt

ϕ3

)
+ (λ+ µ)

(
∂t

∂3

)
(∂tϕt + ∂3ϕ3),(5.2)

its horizontal boundary conditions G (0) (4.10) on γ
−

+ are

G
(0)
♮ : ϕ♮ 7−→ g♮ =

(
µ(∂3ϕt + ∂tϕ3)

(λ+ 2µ)∂3ϕ3 + λ∂tϕt

)
(5.3)

and the lateral boundary conditions are either Dirichlet’s or Neumann’s acting on the

traction T
(0)
♮ = (T

(0)
t , T

(0)
3 ), cf (4.25).

Let us introduce the four elasticity operators that we need. For each of them

f♮ = B
(0)
♮ (ϕ♮) and g♮ = G

(0)
♮ (ϕ♮). Only differs the definition of the lateral trace h♮:
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• EDir: ϕ♮ 7→ (f♮; g♮; h♮) with h♮ the trace of ϕ♮ on γ0,

• EMix1: ϕ♮ 7→ (f♮; g♮; h♮) with h♮ the trace of
(
T

(0)
t (ϕ♮), ϕ3

)
on γ0,

• EMix2: ϕ♮ 7→ (f♮; g♮; h♮) with h♮ the trace of
(
ϕt, T

(0)
3 (ϕ♮)

)
on γ0,

• EFree: ϕ♮ 7→ (f♮; g♮; h♮) with h♮ the trace of T
(0)
♮ (ϕ♮) on γ0,

whereas the Laplace operators are defined as:

• LDir: ϕs 7→ (fs; gs; hs) with fs = µ∆ϕs, gs = µ∂3ϕs and hs = ϕs on γ0,
• LNeu: ϕs 7→ (fs; gs; hs) with fs = µ∆ϕs, gs = µ∂3ϕs and hs = µ∂tϕs on γ0.

Then we have the splittings:

B©1 = EDir⊕LDir B©2 = EDir⊕LNeu B©3 = EMix1⊕LDir B©4 = EMix1⊕LNeu

B©5 = EMix2⊕LDir B©6 = EMix2⊕LNeu B©7 = EFree⊕LDir B©8 = EFree⊕LNeu.

5.3. The Laplacian on the half-strip. The Neumann problem on the full strip
Σ has a polynomial kernel of dimension two generated by 1 and t, corresponding to
the elements Z [2] and Z [6] of the space P introduced at the beginning of the section.

5.3.1. Operator LDir. The polynomial kernel of this problem is the function t
and by integration by parts of t∆(ϕ + δ) on rectangles ΣL = (0, L) × (−1, 1) with
L→ +∞, we easily prove

Proposition 5.4. For η > 0, let f ∈ L2
η(Σ+), g−

+

∈ L2
η(R+)2 and h ∈ H1/2(γ0).

If moreover η < π/2, then the problem

LDir(ψ) = (f ; g−

+

;h)

has a unique solution ψ = ϕ+ δ in H1
η (Σ+) ⊕ span{1} with ϕ ∈ H1

η (Σ+) and

δ =
1

2µ

(
−

∫

Σ+

t f(t, x3) dt dx3 +

∫

R+

t
(
g+(t) − g−(t)

)
dt+ µ

∫ +1

−1

h(x3) dx3

)
.(5.4)

Later on we will use as model profile the exponentially decaying solution ϕ̄s
Dir of

a special problem involving LDir:

Lemma 5.5. Let ϕ̄s
Dir ∈ H1

η (Σ+) be the exponentially decaying solution of the
problem

LDir(ϕ̄
s
Dir) = (0; 0;x3) ,

then it holds
∫ ∞

0

ϕ̄s
Dir(t, 1) dt > 0.

Proof. The function ϕ̄s
Dir is an odd function with respect to x3. Hence ϕ̄s

Dir(t, 0) =
0 for t ∈ R+. Moreover, as ϕ̄s

Dir is harmonic, it can be reflected by parity at the line
x3 = 1 according to the reflection principle of Schwarz for harmonic functions. Thus,
we obtain a function ϕ̃, which is still harmonic, but now in Σ̃+ = R+ × (0, 2). Hence

ϕ̃ satisfies the Dirichlet problem ∆ ϕ̃ = 0 in Σ̃+ and ϕ̃ = Φ̃ on ∂Σ̃+ with Φ(t, x3) = 0
for x3 = 0, 2 and any t and Φ(0, x3) = x3 for 0 < x3 ≤ 1 and Φ(0, x3) = 2 − x3 for
1 ≤ x3 < 2. From the maximum principle for harmonic functions it follows ϕ̃ > 0 in
Σ̃+, hence the assertion.
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5.3.2. Operator LNeu. The polynomial kernel of this problem is the function 1
and there holds similarly:

Proposition 5.6. For η > 0, let f ∈ L2
η(Σ+), g−

+

∈ L2
η(R+)2 and h ∈ H−1/2(γ0).

If moreover η < π/2, then the problem

LNeu(ψ) = (f ; g−

+

;h)

has a unique solution ψ = ϕ+ δ t in H1
η (Σ+) ⊕ span{t} with ϕ ∈ H1

η (Σ+) and

δ =
1

2µ

(∫

Σ+

f(t, x3) dt dx3 −

∫

R+

(
g+(t) − g−(t)

)
dt+

∫ +1

−1

h(x3) dx3

)
.(5.5)

We introduce the solution ϕ̄s
Neu similarly as above, and using the second Green

formula for the product x3 ∆ϕ̄s
Neu(t, x3) on Σ+ we prove:

Lemma 5.7. Let ϕ̄s
Neu ∈ H1

η (Σ+) be the exponentially decaying solution of the
problem

LNeu(ϕ̄
s
Neu) = (0; 0; 2µx3) ,

then it holds
∫ ∞

0

ϕ̄s
Neu(t, 1) dt = −

2

3
.

5.4. Elasticity on the half-strip. The problem (5.2)-(5.3) on the full strip

has a polynomial kernel of dimension six generated by Z
[1]
♮ ,Z

[3]
♮ ,Z

[4]
♮ ,Z

[5]
♮ ,Z

[7]
♮ ,Z

[8]
♮ ,

where the two components of Z
[j]
♮ are the first and third ones of Z [j]. In particular a

basis of the 2D rigid motions is given by

Z
[1]
♮ =

(
1
0

)
Z

[3]
♮ =

(
0
1

)
Z

[4]
♮ =

(
−x3

t

)
.

5.4.1. Operator EDir. From [9, Proposition 4.12], we obtain that

Proposition 5.8. For η > 0, let f♮ ∈ L2
η(Σ+)2, g−

+

♮ ∈ L2
η(R+)4 and h♮ ∈

H1/2(γ0)
2. If moreover η < η0, then the problem

EDir(ψ) = (f♮; g
−

+

♮ ; h♮)

has a unique solution in H1
η (Σ+)2 ⊕ span{Z

[1]
♮ ,Z

[3]
♮ ,Z

[4]
♮ }.

5.4.2. Other operators. Concerning the other operators EMix1, EMix2 and
EFree, and in contrast to the case of EDir, they have a polynomial kernel generated

by some of the Z
[j]
♮ . Relying on the following duality relations (5.7) satisfied by the

Z [j], formulas for the coefficients in the asymptotics at infinity of the solutions can
be obtained from integrations by parts.

Lemma 5.9. Let T (0) denote the lateral inward traction operator (T
(0)
t , T

(0)
s , T

(0)
3 ),

see (4.2). With σ the permutation

σ(1) = 5, σ(2) = 6, σ(3) = 8, σ(4) = 7,

σ(5) = 1, σ(6) = 2, σ(7) = 4, σ(8) = 3,



ASYMPTOTICS IN THIN ELASTIC PLATES 25

the anti-symmetrized flux, which can be defined for any L ∈ R by

Φ(Z [i],Z [j]) :=

∫ +1

−1

(
T (0)(Z [i]) ·Z [j] − T (0)(Z [j]) ·Z [i]

)
(L, x3) dx3(5.6)

is independent of L, compare [9, Lemma 3.1], and satisfies, for i, j ∈ {1, · · · , 8}

Φ(Z [i],Z [j]) = γ̄i δjσ(i),(5.7)

with γ̄i a non zero real number.

For i = 2, 6 we find again the simple relations on which rely Propositions 5.4
and 5.6. For the remaining values of i, the relations (5.7) apply to the bi-dimensional

displacements Z
[i]
♮ . Relying on (5.7) and integration by parts, we are able to present

formulas for the coefficients in the asymptotics at infinity of the solutions to the
problems concerning the operators EMix1, EMix2 and EFree.

Proposition 5.10. For η > 0, let f♮ ∈ L2
η(Σ+)2, g−

+

♮ ∈ L2
η(R+)4, ht ∈ H−1/2(γ0)

and h3 ∈ H1/2(γ0). If moreover η < η0, then the problem

EMix1(ψ) = (f♮; g
−

+

♮ ; h♮)

has a unique solution ψ = ϕ+ δ3Z
[3]
♮ + δ5Z

[5]
♮ + δ7Z

[7]
♮ with ϕ ∈ H1

η (Σ+)2 and

γ̄5δ5 =

∫

Σ+

ft −

∫

R+

(g+
t − g−t ) +

∫ +1

−1

ht ,(5.8a)

γ̄7δ7 =

∫

Σ+

(−x3ft + tf3) +

∫

R+

(
g+

t + g−t − t(g+
3 − g−3 )

)
−

∫ +1

−1

x3ht ,(5.8b)

γ̄3δ3 =

∫

Σ+

f♮·Z
[8]
♮ −

∫

R+

(
g+·Z

[8]
♮

∣∣
γ+−g−·Z

[8]
♮

∣∣
γ−

)
+6

∫ +1

−1

p̄3 ht−µ(p̄2+p̄
′
3)h3.(5.8c)

Proposition 5.11. For η > 0, let f♮ ∈ L2
η(Σ+)2, g−

+

♮ ∈ L2
η(R+)4, ht ∈ H1/2(γ0)

and h3 ∈ H−1/2(γ0). If moreover η < η0, then the problem

EMix2(ψ) = (f♮; g
−

+

♮ ; h♮)

has a unique solution ψ = ϕ+ δ1Z
[1]
♮ + δ4Z

[4]
♮ + δ8Z

[8]
♮ with ϕ ∈ H1

η (Σ+)2 and

γ̄8δ8 =

∫

Σ+

f3 −

∫

R+

(g+
3 − g−3 ) +

∫ +1

−1

h3 ,(5.9a)

γ̄1δ1 =

∫

Σ+

tft−

∫

R+

t(g+
t −g−t )−

∫ +1

−1

(λ̃+2µ)ht−
λ̃

2µ

(∫

Σ+

x3f3−

∫

R+

(g+
3 +g−3 )+

∫ +1

−1

x3h3

)
,

(5.9b)

γ̄4δ4 =

∫

Σ+

f♮ ·Z
[7]
♮ −

∫

R+

(
g+ ·Z

[7]
♮ −g− ·Z

[7]
♮

)
+2

∫ +1

−1

(
p̄2h3+(λ̃+2µ)x3ht

)
.(5.9c)
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Proposition 5.12. For η > 0, let f♮ ∈ L2
η(Σ+)2, g−

+

♮ ∈ L2
η(R+)4 and h♮ ∈

H−1/2(γ0)
2. If moreover η < η0, then the problem

EFree(ψ) = (f♮; g
−

+

♮ ; h♮)

has a unique solution ψ = ϕ+ δ5Z
[5]
♮ + δ7Z

[7]
♮ + δ8Z

[8]
♮ with ϕ ∈ H1

η (Σ+)2 and

γ̄5δ5 =

∫

Σ+

ft −

∫

R+

(g+
t − g−t ) +

∫ +1

−1

ht ,(5.10a)

γ̄8δ8 =

∫

Σ+

f3 −

∫

R+

(g+
3 − g−3 ) +

∫ +1

−1

h3 ,(5.10b)

γ̄7δ7 =

∫

Σ+

(−x3ft + tf3) +

∫

R+

(
g+

t + g−t − t(g+
3 − g−3 )

)
−

∫ +1

−1

x3ht .(5.10c)

6. Clamped plates.

6.1. Hard clamped plates: The first terms in the asymptotics. In [19,
Ch. 16], Maz’ya, Nazarov & Plamenevskii prove estimates like (2.4) for isotropic
clamped plates and in [8, 9], the analog of Theorem 2.2 is proved for monoclinic
clamped plates.

Here we will show how the formulas relating to lateral boundary condition ©1 in
Tables 2.1, 2.2, 2.4 and 2.5 can be derived.

From (4.16) it follows that boundary operators for the generators are the Dirichlet
ones and that the four traces of ζ0 are zero. We find again a fact known for long, cf
[5, 13] for early reference.

Let us investigate ζ1 and ϕ1 simultaneously. Condition (4.15) for k = 1 yields
that ζ1

3 = 0, ϕ1
n +ζ1

n−x3∂nζ
1
3 = 0 and ϕ1

s +ζ1
s −x3∂sζ

1
3 = 0 on Γ0. Moreover condition

(4.15) for k = 2 with (4.17c) yields that ϕ1
3 + ζ2

3 + v2
3 = 0 on Γ0.

Thus, the first profile ϕ1(s) : (t, x3) 7→ ϕ1(t, s, x3) has to solve for all s ∈ ∂ω —
cf (4.23), the equation B©1 (ϕ1(s)) = (0; 0; h1(s)) with the trace h1(s) equal to:

h1
n(s) = −(ζ1

n − x3∂nζ
1
3 )(s), h1

s(s) = −(ζ1
s − x3∂sζ

1
3 )(s), h1

3(s) = −(ζ2
3 + v2

3)(s).

Note that the unknowns are the profile ϕ1 and the traces of ζ1
n, ζ1

s , ∂nζ
1
3 and ζ2

3 .
Since B©1 splits into the direct sum EDir ⊕LDir, for each s ∈ ∂ω (fixed now, thus

omitted),
• ϕ1

s is solution of the Poisson problem

LDir(ϕ
1
s) = (0; 0; h1

s),(6.1)

• the couple ϕ1
♮ is solution of the elasticity system

EDir(ϕ
1
♮ ) = (0; 0; h1

♮ ).(6.2)

We have to find the conditions on ζ1 so that equations (6.1) and (6.2) admit expo-
nentially decreasing solutions.

Concerning the Poisson problem, Proposition 5.4 yields that (6.1) admits an ex-

ponentially decreasing solution if the coefficient (5.4) is zero, i.e. if
∫ +1

−1
h1

s = 0. With
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the above expression of h1
s, this yields that ζ1

s = 0 on ∂ω. Since we already found
that ζ1

3 = 0 on ∂ω, we obtain that h1
s ≡ 0, thus ϕ1

s = 0.
Concerning the Lamé problem, Proposition 5.8 yields a solution for (6.2) in

H1
η (Σ+)2 ⊕ span{Z

[1]
♮ ,Z

[3]
♮ ,Z

[4]
♮ }. We first recall that, — cf (3.3)-(3.4)

v2
3(x∗, x3) = p̄1(x3) div∗ ζ

0
∗(x∗) + p̄2(x3) ∆∗ζ

0
3 (x∗) .(6.3)

Let ψ̄m
♮ be the solution in H1

η (Σ+)2 ⊕ span{Z
[1]
♮ ,Z

[3]
♮ ,Z

[4]
♮ } of

EDir(ψ̄
m
♮ ) = (0; 0; 0,−p̄1).(6.4)

Since the right hand side of (6.4) has the parities of a membrane mode (the first
component is even and the second odd with respect to x3), the symmetries of the
isotropic elasticity system yield that ψ̄m

t is even and ψ̄m
3 odd. Thus the asymptotic

behavior as t→ ∞ has the same parities: only Z
[1]
♮ is convenient.

Hence there exists a unique coefficient c
©1
1 such that ψ̄m

♮ splits into

ψ̄m
♮ = ϕ̄m

♮ + c
©1
1 Z

[1]
♮ with ϕ̄m

♮ exponentially decreasing.(6.5)

Similarly, let ψ̄b
♮ be the solution in H1

η (Σ+)2 ⊕ span{Z
[1]
♮ ,Z

[3]
♮ ,Z

[4]
♮ } of

EDir(ψ̄
b
♮ ) = (0; 0; 0,−p̄2).(6.6)

Since the right hand side of (6.6) has the parities of a bending mode, the symmetries

of the problem yield that ψ̄b
t is odd and ψ̄b

3 even with respect to x3. Thus only Z
[3]
♮

and Z
[4]
♮ are present in the asymptotics at infinity of ψ̄b

♮ .

Hence there exist unique coefficients c
©1
3 and c

©1
4 such that ψ̄b

♮ splits into

ψ̄b
♮ = ϕ̄b

♮ + c
©1
3 Z

[3]
♮ + c

©1
4 Z

[4]
♮ with ϕ̄b

♮ exponentially decreasing.(6.7)

Then ψ1
♮ defined as

ψ1
♮ (t, s, x3) = div∗ ζ

0
∗(s) ψ̄m

♮ (t, x3) + ∆∗ζ
0
3 (s) ψ̄b

♮ (t, x3)

is solution for each s ∈ ∂ω of — cf (6.3), (6.4) and (6.6):

EDir(ψ
1
♮ ) = (0; 0; 0,−v2

3).(6.8)

Thus, if we have for each s ∈ ∂ω, cf (6.5) and (6.7)
(
ζ1
n(s) − x3∂nζ

1
3 (s)

ζ2
3 (s)

)
= div∗ ζ

0
∗(s) c

©1
1 Z

[1]
♮

∣∣
γ0

+ ∆∗ζ
0
3 (s) (c

©1
3 Z

[3]
♮ + c

©1
4 Z

[4]
♮ )
∣∣
γ0

i.e.
(
ζ1
n(s) − x3∂nζ

1
3 (s)

ζ2
3 (s)

)
=

(
div∗ ζ

0
∗(s) c

©1
1 − x3∆∗ζ

0
3 (s) c

©1
4

∆∗ζ
0
3 (s) c

©1
3

)
(6.9)

then ϕ1
♮ defined as

ϕ1
♮ (t, s, x3) = div∗ ζ

0
∗(s) ϕ̄m

♮ (t, x3) + ∆∗ζ
0
3 (s) ϕ̄b

♮ (t, x3)(6.10)

is solution of EDir(ϕ
1
♮ (s)) = (0; 0; h1

♮ (s)), see (6.2). Thus we have obtained all the

results relating to ζ1 and ϕ1.
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6.2. The non-zero coupling constants. There holds

Lemma 6.1. The coefficients c
©1
1 and c

©1
4 are non-zero.

Let us prove first that c
©1
4 is not zero. Let us denote by Z♮ the polynomial

displacement 1
2Z

[7]
♮ . Thus Z♮ satisfies:

EDir(Z♮) = (0; 0; 0, p̄2).(6.11)

So, (6.11) joined with (6.6)-(6.7) yields that

K := Z♮ + ϕ̄b
♮ + c

©1
3 Z

[3]
♮ + c

©1
4 Z

[4]
♮ ∈ kerEDir .

The proof proceeds by computation about the ‘flux’, see also (5.6):

Φt=t0(u |v) :=

∫ +1

−1

T
(0)
♮ (u)(t0, x3) · v(t0, x3) dx3 .(6.12)

We have:

T
(0)
♮ (Z♮) =

(
−4 µ(λ+µ)

λ+2µ x3

0

)
.

Thus

Φt=0(Z♮ | c
©1
3 Z

[3]
♮ + c

©1
4 Z

[4]
♮ ) =

8

3

µ(λ+ µ)

λ+ 2µ
c
©1
4 .(6.13)

We are going to prove that, cf (6.7):

Φt=0(Z♮ | c
©1
3 Z

[3]
♮ + c

©1
4 Z

[4]
♮ ) = Φt=0(K | c

©1
3 Z

[3]
♮ + c

©1
4 Z

[4]
♮ + ϕ̄b

♮ )(6.14)

and that

Φt=0(K | c
©1
3 Z

[3]
♮ + c

©1
4 Z

[4]
♮ + ϕ̄b

♮ ) > 0.(6.15)

The fact that c
©1
4 > 0 is clearly a consequence of (6.13)-(6.15).

In order to prove (6.14) and (6.15), we abbreviate the notations by

c
©1
3 Z

[3]
♮ + c

©1
4 Z

[4]
♮ := R and ϕ := ϕ̄b

♮ .

Proof. Of (6.14). We want to prove that Φt=0(Z♮ |R) = Φt=0(K |R+ϕ). Indeed,
integrating by parts on the rectangle ΣL = (0, L) × (−1, 1) we obtain

∫ +1

−1

[
T

(0)
♮ (K) · (R +ϕ) −K · T

(0)
♮ (R +ϕ)

]
(0, x3) dx3 −

∫ +1

−1

[
T

(0)
♮ (K) · (R +ϕ) −K · T

(0)
♮ (R +ϕ)

]
(L, x3) dx3 =

∫ L

0

[
G

(0)
♮ (K) · (R +ϕ) −K · G

(0)
♮ (R+ϕ)

]
(t, 1) dt−

∫ L

0

[
G

(0)
♮ (K) · (R+ϕ) −K · G

(0)
♮ (R+ϕ)

]
(t,−1) dt−

∫

ΣL

B
(0)
♮ (K) · (R+ϕ) −K · B

(0)
♮ (R +ϕ) .
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As B
(0)
♮ (K) = B

(0)
♮ (Z♮) = 0 and G

(0)
♮ (K) = G

(0)
♮ (Z♮) = 0, the above right hand side

is zero. Therefore

Φt=0(K |R+ϕ) = Φt=L(K |R+ϕ) −

∫ +1

−1

K(L, x3) · T
(0)
♮ (R+ ϕ)(L, x3) dx3.

Since T
(0)
♮ (R) = 0 (R is a rigid displacement) and since ϕ is exponentially decreasing,

we deduce from the identity above that, for all 0 < η < η0

Φt=0(K |R+ϕ) = Φt=L(Z♮ |R) + O(e−ηL).

But for all L, we have the conservation of the flux against rigid displacements

Φt=L(Z♮ |R) = Φt=0(Z♮ |R),

whence the result.
Proof. Of (6.15). We want to prove that Φt=0(K |R + ϕ) > 0. To see it,

notice that, since Z♮

∣∣
t=0

= −(R + ϕ)
∣∣
t=0

and since we easily check the equality
Φt=0(Z♮ |Z♮) = 0, we have

Φt=0(K |R+ϕ) = Φt=0(Z♮ |R+ϕ) + Φt=0(R+ϕ |R+ ϕ)

= −Φt=0(Z♮ |Z♮) + Φt=0(ϕ |R +ϕ)

= Φt=L(ϕ |R+ϕ) +

∫

ΣL

Ae(∂t, ∂3)(ϕ) : e(∂t, ∂3)(R +ϕ)

=

∫

ΣL

Ae(∂t, ∂3)(ϕ) : e(∂t, ∂3)(ϕ) + O(e−ηL).

Since Z♮ +R is clearly not zero on {t = 0}, then ϕ 6≡ 0. The result follows from the
positivity of the elasticity matrix A.

The positivity of c
©1
1 can be proved analogously to that of c

©1
4 , taking into account

that Z
[5]
♮ satisfies problem EDir(Z

[5]
♮ ) = (0; 0; 0, p̄1), thus

Km := Z
[5]
♮ + ϕ̄m

♮ + c
©1
1 Z

[1]
♮ ∈ kerEDir

and that moreover there hold

T
(0)
♮ (Z

[5]
♮ ) =

(
4 µ(λ+µ)

λ+2µ

0

)
and Φt=0(Z

[5]
♮ | c

©1
1 Z

[1]
♮ ) =

8µ(λ+ µ)

λ+ 2µ
c
©1
1 .

6.3. Soft clamped plates: The first terms in the asymptotics. We have
now to take care of the space R©2 , which is the space of rigid motions v satisfying
the soft clamped plate conditions, i.e. vn and v3 = 0 on the lateral boundary Γ0. If
the mean surface ω is not a disk or an annulus, R©2 is reduced to {0}. If ω is a disk
or an annulus, that we may suppose centered in 0, R©2 is one-dimensional, generated

by the in-plane rotation (x2,−x1, 0) and the orthogonality condition (1.11) ensuring
uniqueness can be transcribed in Ω into

∫
Ω
u∗(ε) · (x2,−x1)

⊤ = 0.
Thus, in this situation, the compatibility conditions on ω for the membrane prob-

lems (2.13a) has to be checked and the coherence with the orthogonality condition
(1.11) has to be realized by an orthogonality condition for the ζk

∗ in ω. We refer to
[11, §6] for details.

The behavior of the boundary layer terms is very similar to the hard clamped case
because the boundary conditions involving the components ϕ♮ are Dirichlet’s as in
©1 , the only change concerns the lateral component ϕs, which is uncoupled from the
previous ones, and subject now to lateral Neumann conditions instead of Dirichlet’s.
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6.3.1. The traces of ζ0. Solving recursively equations (4.13)-(4.14), (4.15) and
(4.18), we find first the Dirichlet traces at the order zero: ζ0

n −x3∂nζ
0
3 and ζ0

3 are zero
on ∂ω. Thus, the Dirichlet conditions concerning ζ0 are obtained.

The terms T 0
s and T 1

s are always zero. Next, condition T 2
s = 0 yields, cf (4.22b)

T (0)
s (ϕ1) = −Tm

s (ζ0
∗) + 2µx3 (∂n + 1

R )∂sζ
0
3 .

Taking account of the already known Dirichlet conditions for ζ0
3 , we obtain that ϕ1

s

solves the Laplace Neumann problem on the half-strip:

LNeu(ϕ
1
s) = (0; 0;−Tm

s (ζ0
∗)).(6.16)

Since, for each fixed s ∈ ∂ω, Tm
s (ζ0

∗) is a constant, Proposition 5.6 yields that the
only exponentially decreasing solution is ϕ1

s ≡ 0 obtained with Tm
s (ζ0

∗) = 0 on ∂ω.
Then ζ0 satisfies zero boundary conditions according to Table 2.1.

6.3.2. The traces of ζ1. The equations (4.15) for k = 1 and for k = 2 yield
the same condition as in case ©1 for the trace of ζ1

3 which must vanish, and the same
equations (6.2) linking the couple ϕ1

♮ and the traces of ζ1
n, ∂nζ

1
3 , ζ2

3 . Thus, the result
concerning these traces is the same for the hard and soft clamped situations.

As a consequence the coefficients c
©2
1 and c

©2
4 are equal to their homologues c

©1
1

and c
©1
4 for the hard clamped plate.

Concerning the tangential component, the condition T 3
s = 0 yields, cf (4.22b)

T (0)
s (ϕ2) = −Tm

s (ζ1
∗) + 2µx3 (∂n + 1

R )∂sζ
1
3 − T

(1)
s (ϕ1).

Taking into account the already known trace condition ζ1
3 = 0, equation (4.23) leads

to the following Neumann problem for the lateral part ϕ2
s

LNeu(ϕ
2
s) =

(
− (B(1)ϕ1)s ;− (G (1)ϕ1)s ;− Tm

s (ζ1
∗)+2µx3∂snζ

1
3 −T

(1)
s (ϕ1)

)
.(6.17)

Proposition 5.6 yields that ϕ2
s is exponentially decreasing if and only if

Tm
s (ζ1

∗) = −
1

2

(∫

Σ+

(B(1)ϕ1)s(t, x3) dt dx3

−

∫

R+

(
(G (1)ϕ1)s(t, 1) − (G (1)ϕ1)s(t,−1)

)
dt

+

∫ +1

−1

T (1)
s (ϕ1)(0, x3) − 2µx3∂snζ

1
3 (0) dx3

)
.

(6.18)

Since ϕ1
s = 0, the terms involved in (6.18) reduce to

(B(1)ϕ1)s = (λ+ µ)∂s(∂tϕ
1
t + ∂3ϕ

1
3), (G (1)ϕ1)s = µ∂sϕ

1
3, T (1)

s (ϕ1) = µ∂sϕ
1
t .

Since only the even terms in x3 contribute to the integrals in (6.18) we see that we
have only to take into consideration the membrane part of ϕ1

♮ , which is equal to

div∗ ζ
0
∗(s) ϕ̄m

♮ (t, x3), cf (6.10). Thus Tm
s (ζ1

∗) = c
©2
2 ∂s div∗ ζ

0
∗ , with − 2

µ c
©2
2 equal to

λ+ µ

µ

∫

Σ+

(∂tϕ̄
m
t + ∂3ϕ̄

m
3 ) dt dx3 −

∫

R+

(
ϕ̄m

3 (t, 1)− ϕ̄m
3 (t,−1)

)
dt+

∫ +1

−1

ϕ̄m
t (0, x3) dx3.

Formulas of Table 2.2 concerning case ©2 are completely proved.
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6.3.3. Recursivity. It can be proved like in [8], see also [11, §6].

7. Simply supported plates. The space of rigid motions R©3 is reduced to {0},
whereas R©4 is three-dimensional and spanned by the in-plane rigid motions. Here
we only present the analysis for the hard simply supported plate. The main feature
of the analysis of the soft simply supported plate is the treatment of compatibility
conditions: we refer to [11, §8] for this.

7.1. Hard simple support: The traces of ζ0. According to (4.15), D0
3 = 0

yields ζ0
3 = 0 on ∂ω, then D0

s = 0 is equivalent to ζ0
s = 0 on ∂ω. Next, D1

3 = 0
yields ζ1

3 = 0 on ∂ω, and D1
s = 0 provides the equation LDir(ϕ

1
s) = (0; 0;−ζ1

s ).
Then Proposition 5.4 yields that the only exponentially decreasing solution is ϕ1

s ≡ 0
obtained with ζ1

s = 0 on ∂ω.
Conditions T 2

n = 0, cf (4.22b), and D2
3 = 0 yield that ϕ1

♮ has to solve

EMix1(ϕ
1
♮ ) =

(
0; 0; −Tm

n (ζ0
∗) + x3Mn(ζ0

3 ), −(ζ2
3 + v2

3)
)
.(7.1)

With formulas (5.8) we can compute the three coefficients δ3, δ5 and δ7, and
determine conditions on Tm

n (ζ0
∗), Mn(ζ0

3 ) and ζ2
3 so that these three coefficients are

zero, ensuring that ϕ1
♮ is exponentially decaying. We have

γ̄5 δ5 =

∫ +1

−1

−Tm
n (ζ0

∗) + x3Mn(ζ0
3 ) dx3(7.2a)

γ̄7 δ7 =

∫ +1

−1

x3 T
m
n (ζ0

∗) − x2
3Mn(ζ0

3 ) dx3(7.2b)

γ̄3 δ3 =

∫ +1

−1

6p̄3(−T
m
n (ζ0

∗) + x3Mn(ζ0
3 )) + 6µ(p̄2 + p̄3

′)(ζ2
3 + v2

3) dx3.(7.2c)

With (7.2a) and (7.2b), the conditions δ5 = 0 and δ7 = 0 give immediately that
Tm

n (ζ0
∗) = 0 and Mn(ζ0

3 ) = 0 on ∂ω respectively. Then with the formula v2
3 =

p̄1 div∗ ζ
0
∗ + p̄2∆∗ζ

0
3 we can compute from (7.2c)

γ̄3 δ3 = −4(λ̃+ 2µ)
(
ζ2
3 −

λ̃

30µ
∆∗ζ

0
3

)
,

whence the relation 30µ ζ2
3 = λ̃∆∗ζ

0
3 on ∂ω ensuring the existence of a unique expo-

nentially decreasing profile solution of (7.1).
But we have on ∂ω

Tm
n (ζ∗) = (λ̃+ 2µ) div∗ ζ∗ + 2µ(κ ζn − ∂sζs)(7.3a)

Mn(ζ3) = (λ̃+ 2µ)∆∗ζ3 + 2µ(κ ∂nζ3 − ∂ssζ3).(7.3b)

Since ζ0
s and ζ0

3 are zero on ∂ω, then ∂sζ
0
s and ∂ssζ

0
3 are also zero and since Tm

n (ζ0
∗) = 0

and Mn(ζ0
3 ) = 0 we deduce from (7.3) the relations

div∗ ζ
0
∗ = −

2µ

λ̃+ 2µ
κ ζ0

n and ∆∗ζ
0
3 = −

2µ

λ̃+ 2µ
κ ∂nζ

0
3 .(7.4)

Therefore, with ϕ̄m
♮ the solution of EMix1(ϕ̄

m
♮ ) =

(
0; 0; 0, 2µ

λ̃+2µ
p̄1

)
, and with ϕ̄b

♮ the

solution of EMix1(ϕ̄
b
♮ ) =

(
0; 0; 0, 2µ

λ̃+2µ
( λ̃
30µ + p̄2)

)
, we obtain the expression in Table

2.5 of the first boundary layer term.
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7.2. The traces of ζ1. The next relations are deduced from T 3
n = 0 andD3

3 = 0:
ϕ2

♮ has to solve

−EMix1(ϕ
2
♮ ) =

(
(B(1)ϕ1)

♮
; (G (1)ϕ1)

♮
; T

(1)
t (ϕ1) + Tm

n (ζ1
∗) − x3Mn(ζ1

3 ), ζ3
3 + v3

3

)
.

Since ϕ1
s = 0, the terms in the right hand side reduce to

(B(1)ϕ1)t = −(λ+ 2µ)κ ∂tϕ
1
t , (G (1)ϕ1)t = 0, T

(1)
t (ϕ1) = −λκϕ1

t

The cancellation of the coefficients δ5, δ7 and δ3, cf (7.2) is ensured by relations
determining Tm

n (ζ1
∗), Mn(ζ1

3 ) and ζ3
3 . In particular we have

Tm
n (ζ1

∗) = −
1

2

(∫

Σ+

(B(1)ϕ1)t(t, x3) dt dx3

−

∫

R+

(
(G (1)ϕ1)t(t, 1) − (G (1)ϕ1)t(t,−1)

)
dt

+

∫ +1

−1

T
(1)
t (ϕ1)(0, x3) − x3Mn(ζ1

3 )(0) dx3

)
.

Combining with the already known expression for ϕ1, we obtain the formula of Table
2.2 for Tm

n (ζ1
∗). The trace Mn(ζ1

3 ) is determined similarly.

8. Sliding edge. Lateral condition ©6 is the other one, with ©3 , which allows
a reflexion across the boundary in any region V where it is flat. If the support of
the data avoids V , there are no boundary layer terms and u(ε) can be expanded in
a power series in V . In the special case when ω is a rectangle (in principle forbidden
here!) and if the support of the data avoids the lateral boundary, the solution can
be extended outside Ω in both in-plane directions into a periodic solution in R2 × I:
this link is indicated by Paumier in [27] where the periodic boundary conditions are
addressed.

If the mid-plane of the plate ω is not a disk or an annulus, then the space R©6
is one-dimensional and spanned by the vertical translation (0, 0, 1). But if ω is a
disk or an annulus, that we may suppose centered in 0, then R©6 is two-dimensional

generated by the vertical translation (0, 0, 1) and the in-plane rotation (x2,−x1, 0).
Here we will only treat the generic case.

8.1. The traces of ζ0. As the Dirichlet trace D0
n is zero, we have ζ0

n = 0 and
∂nζ

0
3 = 0 on ∂ω. We deduce the problem for ϕ1

♮ from D1
n = 0 and T 1

3 = 0:

EMix2(ϕ
1
♮ ) = (0; 0;−ζ1

n + x3∂nζ
1
3 , 0) .

Proposition 5.11 then yields the conditions ζ1
n = 0 and ∂nζ

1
3 = 0 on ∂ω and thus

ϕ1
♮ ≡ 0.

The condition T 2
s = 0 yields that ϕ1

s has to satisfy

LNeu(ϕ
1
s) = (0; 0;−Tm

s (ζ0
∗) + 2µx3(∂n + κ)∂sζ

0
3 ) .(8.1)

Proposition 5.6 yields that Tm
s (ζ0

∗) = 0 on ∂ω. Combining with ∂nζ
0
3 = 0 on ∂ω, this

solution is given by, cf Lemma 5.7,

ϕ1
s = κ ∂sζ

0
3 (s) ϕ̄s

Neu(t, x3).(8.2)
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With T 3
s = 0 we obtain that ϕ2

s has to satisfy

LNeu(ϕ
2
s) =

(
− (B(1)ϕ1)s ; − (G (1)ϕ1)s ; hs

)
,(8.3)

where the terms in the right hand side are given by, since ϕ1
♮ = 0:

(B(1)ϕ1)s = µκ
(
∂tt(t ϕ

1
s) + ∂33(t ϕ

1
s) − ∂tϕ

1
s

)
, (G (1)ϕ1)s = 0,

hs = −
(
2µκϕ1

s + Tm
s (ζ1

∗) − 2µx3(∂n + κ)∂sζ
1
3

)
.

With the help of Proposition 5.6 and the fact that ϕ1
s is odd with respect to x3 we

deduce that Tm
s (ζ1

∗) = 0 on ∂ω. Taking into account relation (8.2) and the already
known condition ∂nζ

1
3 = 0 on ∂ω, this solution is given by

ϕ2
s = −κ2∂sζ

0
3 ψ̄

s
Neu + κ ∂sζ

1
3 ϕ̄

s
Neu ,(8.4)

where ψ̄s
Neu is the (odd) exponentially decreasing solution of

LNeu(ψ̄
s
Neu) = µ

(
∆(t ϕ̄s

Neu) − ∂tϕ̄
s
Neu ; 0 ; 2ϕ̄s

Neu

)
.(8.5)

Conditions D2
n = 0 and T 2

3 = 0 lead to the following problem for ϕ2
♮

EMix2(ϕ
2
♮ ) =

(
− (B(1)ϕ1)

♮
; − (G (1)ϕ1)

♮
; ht , h3

)
,(8.6)

where the terms in the right hand side are given by

(B(1)ϕ1)t = (λ+ µ) ∂t∂sϕ
1
s , (G (1)ϕ1)t = 0,(8.7a)

(B(1)ϕ1)
3

= (λ+ µ) ∂3∂sϕ
1
s, (G (1)ϕ1)

3
= λ∂sϕ

1
s,(8.7b)

ht = −
(
ζ2
n − x3∂nζ

2
3 + p̄2 ∂n div∗ ζ

0
∗ + p̄3 ∂n∆∗ζ

0
3 + (G(f , g−

+

))n

)
,(8.7c)

h3 = −µ
(
(p̄2 + p̄′3) ∂n∆∗ζ

0
3 + ∂3(G(f , g−

+

))n

)
.(8.7d)

Combining with (8.2), the condition δ8 = 0 from Proposition 5.11 yields:

2µ∂s(∂n + κ)∂sζ
0
3

∫

R+

ϕ̄s
Neu(t, 1) dt =

∫ +1

−1

h3 dx3 .

Using the expressions of Gn, cf Definition 3.5, and of p̄2 and p̄3, cf (3.4), we derive

∫ +1

−1

h3 dx3 = −

[
−

2

3
(λ̃+ 2µ)∂n∆∗ ζ

0
3 +

∫ +1

−1

x3 fn dx3 + g+
n + g−n

] ∣∣∣∣
∂ω

.

Then Lemma 5.7 yields

2

3

(
(λ̃+ 2µ)∂n∆∗ ζ

0
3 + 2µ∂s(∂n + κ)∂sζ

0
3

)

︸ ︷︷ ︸
= Nn(ζ0

3 )

=

(∫ +1

−1

x3 fn dx3 + g+
n + g−n

) ∣∣∣∣
∂ω

,

hence the conditionNn(ζ0
3 ) = 3

2

∫ +1

−1
x3 fn dx3+g

+
n +g−n on ∂ω. Then the compatibility

condition for the solvability of problem (2.13b) for ζ0
3 reads:

∫

ω

R0
b(x∗) dx∗ −

∫

∂ω

3

2

(∫ +1

−1

x3 fn dx3 + g+
n + g−n

)
(0, s) ds = 0 .(8.8)
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With the help of the divergence theorem and formula (3.9), we can rewrite (8.8) as

3

2

∫

ω

{∫ +1

−1

f3 dx3 + g+
3 − g−3

}
dx∗ = 0 ,

which is nothing else than the compatibility condition (1.10), whence (8.8).

8.2. The traces of ζ1. The only remaining boundary condition is that for
Nn(ζ1

3 ). Therefore we only consider the problem for ϕ3
♮ , which is deduced fromD3

n = 0

and T 3
3 = 0 and reads

EMix2(ϕ
3
♮ ) =

(
− (B(1)ϕ2)

♮
− (B(2)ϕ1)

♮
; − (G (1)ϕ2)

♮
− (G (2)ϕ1)

♮
; ht , h3

)
.

The boundary condition prescribing Nn(ζ1
3 ) is then found by the cancellation of the

coefficient δ8 (5.9a). For this, we need an expression for ϕ2
♮ , which is derived from the

cancellation of the constants δ1 and δ4 (5.9b)-(5.9c) relating to problem (8.6). The
details can be found in [12, §5].

Let us check the compatibility condition for ζ1
3 . Setting ϕ = ϕ1 + εϕ2, we have

by construction

Nn(ζ0
3 + εζ1

3 ) =
3

2

(∫

Σ+

f3(ε) −

∫

R+

(
g+

3 (ε) − g−
3 (ε)

)
+

∫ +1

−1

h3(ε)

)

+ 2µ∂s(∂n + κ)∂s(ζ
0
3 + εζ1

3 ),

(8.9)

where

f(ε) = Bϕ + O(ε2), g(ε) = Gϕ+ O(ε2), h(ε) = Tϕ+ O(ε2).

With w(x̃) = χ(r)ϕ( r
ε , s,

x̃3

ε ) on Ωε and integrating (8.9) along ∂ω we obtain for any
rigid motion v = (0, 0, a) in R©6

∫

∂ω

Nn(ζ0
3 + εζ1

3 ) v3 = −
3

2

∫

Ωε

Ae(w) : e(v) + O(ε2) = O(ε2),

where we have used
∫

∂ω
∂s(∂n + κ)∂s(ζ

0
3 + εζ1

3 ) ds = 0. The desired compatibility
condition then follows.

9. Friction conditions. We only give a few precisions about the traces of the
first Kirchhoff-Love generators ζ0 and ζ1 for conditions ©5 and ©7 , referring to [12,
§4 & §6] for the proofs, which make use in particular of Lemma 5.5.

The membrane boundary operators γm,j, j = 1, 2, are Dirichlet’s in both cases
and the corresponding traces γ0

m,j and γ1
m,j are zero.

The spaces of rigid motions R©5 and R©7 are one-dimensional and both are gen-

erated by the vertical translation (0, 0, 1). As a consequence, the first terms ζ0
3 and ζ1

3

have to satisfy the zero mean value condition on ω. The bending boundary operators
γb,j, j = 1, 2, are Dirichlet’s for ©5 , and the trace operator on ∂ω and Mn for ©7 .
Thus the corresponding problems (2.13b) are uniquely solvable. The way out is that
the boundary conditions issued from the solution of the Ansatz include ∂sζ3 = 0 on
∂ω. Thus the trace of ζ3 can be fixed to any constant (we assume here for simplicity
that ∂ω is connected), which can be chosen such that

∫
ω ζ3 = 0. The formula for this

constant rely on the introduction of the solutions ηω and ξω of the following auxiliary
problems:
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Table 9.1

Auxiliary problems.

©5 mes(ω) Lb(ηω) = 1 in ω ηω = 0 and ∂nηω = 0 on ∂ω

©7 mes(ω) Lb(ξω) = 1 in ω ξω = 0 and Mn(ξω) = 0 on ∂ω

Notation 9.1. If L is an integrable function on ∂ω such that
∫

∂ω L = 0, then
we denote by

∮
∂ω
L the unique primitive of L along ∂ω with zero mean value on ∂ω

(that is
∫

∂ω

∮
Lds = 0). The second primitive

∮
∂ω

∮
∂ω L then makes sense.

For condition ©5 , ∂nζ
0
3 = 0 and ζ0

3 is equal to the constant −
∫

ω R
0
b ηω on ∂ω,

whereas for condition ©7 , Mn(ζ0
3 ) = 0 and ζ0

3 is equal to the constant −
∫
ω
R0

b ξω on
∂ω. Finally, here are the boundary conditions for ζ1

3 , with L given in (2.15):

Table 9.2

Boundary conditions.

©5 ζ1
3

= c
©5
3

 

H

∂ω

H

∂ω
L −

R

∂ω

„

H

∂ω

H

∂ω
L

«

Nn(ηω)

!

∂nζ1
3

= 0

©7 ζ1
3 = c

©7
3

 

H

∂ω

H

∂ω
L + 2µ

R

∂ω
L ∂nξω −

R

∂ω

„

H

∂ω

H

∂ω
L

«

Nn(ξω)

!

Mn(ζ1
3 ) = c

©7
4

L

10. Free. The space R©8 is six-dimensional and spanned by all rigid motions.

We are only going to explain how the traces of ζ0 can be determined by our method
and refer to [12, §7] for the traces of ζ1. The nonhomogeneity of the boundary
condition Nn(ζ0

3 ) is known, see Ciarlet [4, Th. 1.7.2].
From the conditions T 1

3 = 0 and T 2
n = 0 we obtain for ϕ1

♮

EFree(ϕ
1
♮ ) = (0; 0;−Tm

n (ζ0
∗) + x3Mn(ζ0

3 ), 0) .(10.1)

From the cancellation of the constants δ5 and δ7 in Proposition 5.12, the conditions
Tm

n (ζ0
∗) = 0 and Mn(ζ0

3 ) = 0 on ∂ω are obtained. Thus ϕ1
♮ ≡ 0.

The condition T 2
s = 0 yields that ϕ1

s has to satisfy problem (8.1). Thus Tm
s (ζ0

∗) =
0 on ∂ω and ϕ1

s is then given by, cf Lemma 5.7,

ϕ1
s = (∂n + κ)∂sζ

0
3 (s) ϕ̄s

Neu .(10.2)

With T 3
s = 0 we obtain that ϕ2

s has to satisfy problem (8.3), hence the condition
Tm

s (ζ1
∗) = 0 on ∂ω ensures the existence of an exponentially decaying profile. Taking

into account the relation (10.2), this solution is given by

ϕ2
s = −κ(∂n + κ)∂sζ

0
3 ψ̄

s
Neu + (∂n + κ)∂sζ

1
3 ϕ̄

s
Neu ,(10.3)

where ψ̄s
Neu is the solution of problem (8.5).

The conditions T 2
3 = 0 and T 3

n = 0 lead to the following problem for ϕ2
♮ :

EFree(ϕ
2
♮ ) =

(
− (B(1)ϕ1)

♮
; − (G (1)ϕ1)

♮
; ht , h3

)
,(10.4)

where the terms in the right hand side of (10.4) are given by

(B(1)ϕ1)t = (λ+ µ) ∂t∂sϕ
1
s , (G (1)ϕ1)t = 0 , ht = −

(
λ∂sϕ

1
s + Tm

n (ζ1
∗) − x3Mn(ζ1

3 )
)
,
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whereas (B(1)ϕ1)
3

and (G (1)ϕ1)
3

are still given by (8.7b) and h3 by (8.7d). Thus,
the cancellation of the constants δ5, δ7 and δ8 from Proposition 5.12 is required. The
cancellation of δ5 leads to the boundary condition Tm

n (ζ1
∗) = 0 on ∂ω. Inserting the

expressions involved, the condition δ7 = 0 reads

[
(λ+ µ)

∫

Σ+

(x3 ∂tϕ̄
s
Neu − t ∂3ϕ̄

s
Neu) dt dx3 + λ

∫ ∞

0

t (ϕ̄s
Neu(1, t) − ϕ̄s

Neu(1, t)) dt

+ λ

∫ +1

−1

x3 ϕ̄
s
Neu(0, x3) dx3

]
∂s(∂n + κ)∂sζ

0
3 −

∫ +1

−1

x2
3Mn(ζ1

3 ) dx3 = 0 .

As the boundary layer term ϕ̄s
Neu is odd, the above condition becomes

2

3
Mn(ζ1

3 ) = ∂s(∂n + κ)∂sζ
0
3

[
−µ

∫ +1

−1

x3 ϕ̄
s
Neu(0, x3) dx3 − 2µ

∫ ∞

0

t ϕ̄s
Neu(1, t) dt

]
.

Applying the second Green formula for Laplace to the functions ϕ̄s
Neu(t, x3) and

w(t, x3) = t x3, yields the relation

2

∫ ∞

0

t ϕ̄s
Neu(t, 1) dt =

∫ +1

−1

x3 ϕ̄
s
Neu(0, x3) dx3 .

Thus Mn(ζ1
3 ) = c

©8
3 ∂s(∂n + κ)∂sζ

0
3 on ∂ω with c

©8
3 = −3µ

∫+1

−1 x3 ϕ̄
s
Neu(0, x3) dx3.

The evaluation of the condition δ8 = 0 has been already done in §8.1, which yields
in exactly the same way formula (2.14) for the trace Nn(ζ0

3 ).

Now let us check the compatibility conditions ensuring the existence of the gener-
ator ζ0. Concerning ζ0

∗ , we have to show that the membrane right hand sideR0
m of the

limit problem is orthogonal to each of the two-dimensional rigid motions (1, 0), (0, 1)
and (x2,−x1), since we have homogeneous traction boundary conditions in the prob-
lem for ζ0

∗ . These orthogonality conditions are clearly a consequence of the expression
of the right hand sideR0

m and of the three-dimensional compatibility conditions (1.10)
for in-plane rigid motions.

The compatibility conditions for ζ0
3 remains to be checked. They are related to

the kernel of Lb with boundary conditions Mn and Nn, i.e. to the functions 1, x1 and
x2. It has been already shown in §8.1 that the condition (8.8) relating to the element
1 of the kernel is fulfilled. Now let us check the condition for x1, namely

∫

ω

x1 R
0
b(x∗) dx∗ −

3

2

∫

∂ω

x1

(∫ +1

−1

x3 fn dx3 + g+
n + g−n

)
(0, s) ds = 0 .

With the help of the divergence theorem we can rewrite it as

3

2

{ ∫

Ω

(x1 f3 − x3 f1) dx3 dx∗ +

∫

ω

{
x1 (g+

3 − g−3 ) − (g+
1 + g−1 )

}
dx∗

}
= 0 ,

which coincides with a compatibility condition (1.10) for the three-dimensional prob-
lem. Of course, the condition for x2 can be proved analogously.
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11. Error estimates. We provide in this section estimates in H1 and L2 norms.

11.1. In H1 norm. In this section we prove Theorem 2.2, which yields an opti-
mal estimation of the error between the scaled displacement u(ε) and the Ansatz of
order N . This extends the results obtained in [8, §5] for the hard clamped situation to
the eight ‘canonical’ boundary conditions on the lateral side. The proof relies on en-
ergy estimates and on a very simple argument consisting in pushing the development
a few terms further.

We define the space V©i (Ω) as the subspace of the admissible displacements u in

V©i (Ω) which are orthogonal for the L2 product to all the rigid motions v ∈ R©i (Ω).

Thus u(ε) belongs to V©i (Ω). Combining Korn’s inequality without boundary con-
ditions and the infinitesimal rigid displacement lemma we obtain a Korn inequality
with boundary conditions for arbitrary u ∈ V©i (Ω), compare [25] and [4], which reads

in terms of the scaled linearized strain tensor θ(ε)

(∫

Ω

Aθ(ε)(u) : θ(ε)(u)

)1/2

≥ C∗‖θ(ε)(u)‖
L2(Ω)9

≥ C‖u‖
H1(Ω)

.(11.1)

Defining the remainder at the order N of the asymptotics of u(ε) by U
N

(ε) :=
u(ε) − UN (ε), where UN (ε) denotes the asymptotic expansion of order N , namely

UN(ε) =

N∑

k=0

εk uk

︸ ︷︷ ︸
=: V N (ε)

+ χ(r)

N∑

k=1

εkwk(
r

ε
, s, x3)

︸ ︷︷ ︸
=: WN (ε)

(11.2)

with uk := uk
KL+vk, compare §3.1 for notations, we only need to establish an a priori

estimate for U
N

(ε) in the norm of the space H1(Ω)3.
Therefore, we split UN(ε) into its natural parts UN (ε) = V N (ε) + χ(r)WN (ε).

Considering carefully the construction algorithm, in particular the derivation of the
boundary layer terms, we observe that for any N ∈ N, UN(ε) belongs to the space
V©i (Ω). Thus, we have

∀N ∈ N , U
N

(ε) ∈ V©i (Ω)

and the variational form of the problem for U
N

(ε) can be written down, where we
split the deviation to the true solution into an error generated by V N (ε) and an error

coming from WN (ε), compare [8, (5.8)–(5.11)]. For the choice v = U
N

(ε) of the test

function in the variational formulation of the problem for U
N

(ε), we obtain as one
side of the resulting equation the energy associated to the remainder, namely

∫

Ω

Aθ(ε)(U
N

(ε)) : θ(ε)(U
N

(ε)) .

Korn’s inequality (11.1) and the coercivity of the operator of elasticity then provides
the following rough estimate

‖U
N

(ε)‖
H1(Ω)3

≤ CεN−3
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exactly in the same manner as in the proof of Lemma 5.3 in [8]. This estimate reads

for ‖U
N+4

(ε)‖
H1(Ω)3

≤ CεN+1 at the rank N + 4, whence

‖u(ε)(x) − u0
KL(x) −

N∑

k=1

εkuk(x,
r

ε
)‖

H1(Ω)3

≤ C εN+1 +

N+4∑

k=N+1

εk
(
‖uk‖

H1(Ω)3
+ ‖χ(r)wk(

r

ε
, s, x3)‖H1(Ω)3

)
.

(11.3)

With the help of the following H1-estimates of each term in the asymptotics

‖uk‖
H1(Ω)3

≤ C and ‖χ(r)wk(
r

ε
, s, x3)‖H1(Ω)3

≤ Cε−1/2 ,(11.4)

the estimate (2.4) directly follows from (11.3).

11.2. In other norms. The L2-estimates of each term corresponding to (11.4)

‖uk‖
L2(Ω)3

≤ C and ‖χ(r)wk(
r

ε
, s, x3)‖L2(Ω)3

≤ Cε1/2(11.5)

lead in a straightforward way to the following estimates in L2-norm

‖u(ε)−
N∑

k=0

εk uk − χ(r)
N∑

k=1

εkwk(
r

ε
, s, x3)‖L2(Ω)3

≤ C εN+1 .(11.6)

The question of estimates in higher norms, H2 for instance, is also considered
in [9] for the clamped case. Such estimates require a splitting of the solution and
of terms in the asymptotics, since in general the H2 regularity is not attained. The
situation is similar for all lateral conditions. Let us just emphasize that all the terms
in the outer expansion are smooth, but also that the singularities along the edges
∂ω × {−+1} of the plate are concentrated in the inner expansion: the model profiles

are all non-smooth, with a regularity between H3/2 and H3. For example ϕ̄s
Dir is

almost H2 and ϕ̄s
Neu is almost H3 whereas the profiles ϕ̄m

Dir,♮ and ϕ̄b
Dir,♮ occurring in

the clamped plates have less regularity, cf [10].

12. Conclusions. Coming back to the family of thin domains Ωε, we will briefly
address the question of the determination of a limit solution, and of the evaluation of
the relative error between this limit and the 3D solution. The correct answer depends
on the norm in which the error is evaluated and of the type of the loading.

12.1. H1 norm. We have first to evaluate the behavior of the H1(Ωε) norm
denoted by ‖ · ‖

H1
of each of the four types of components of series (2.5), namely

uk
KL,b, u

k
KL,m, ṽk and ϕk. We find:

‖uk
KL,b‖H1

= O(ε1/2), ‖uk
KL,m‖H1

= O(ε1/2),

‖ṽk‖
H1

= O(ε−1/2), ‖ϕk‖
H1

= O(1).

In the case of a bending load such that R0
b, cf (3.9), is non-zero, we have

‖uε − ε−1u0
KL,b‖H1

‖uε‖
H1

≤ C ε,(12.1)
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and this estimate is sharp for any lateral boundary condition, since the main contri-
bution to the error comes from ṽ1 which is equal to (0, 0, p̄2(x3)∆∗ζ

0
3 ): indeed, since

we assumed that R0
b is non-zero, ∆2

∗ζ
0
3 is non-zero, and ṽ1 6≡ 0.

In the case of a membrane load such that R0
m, cf (3.6), is non-zero, we have to

include ṽ1 in the limit solution to have a convergence: we set

ulim
m = u0

KL,m + εṽ1 = (ζ0
∗ , p̄1(x̃3) div∗ ζ

0
∗ ).(12.2)

Then

‖uε − ulim
m ‖

H1

‖uε‖
H1

≤ C ε1/2, in cases ©1 – ©4 ,(12.3)

this estimate being generically optimal, in the sense that it is sharp when ϕ1 is non-
zero, i.e. when div∗ ζ

0
∗ is non-zero on ∂ω in cases ©1 , ©2 and ©4 , and when κζ0

n is
non-zero on ∂ω in cases ©3 . On the other hand

‖uε − ulim
m ‖

H1

‖uε‖
H1

≤ C ε, in cases ©5 – ©8 ,(12.4)

this estimate being generically optimal too, in the sense that it is sharp when ṽ2 is
non-zero, i.e. when div∗ ζ

0
∗ 6≡ 0, compare also with [22] for a special membrane loading

on a free plate.

12.2. Energy norm. We now set ‖u‖
E

=
(∫

Ωε Ae(u) : e(u)
)1/2

. The energy

of the four types of terms in the series (2.5) has the same behavior as their H1 norm
except the one concerning uk

KL,b whose energy is one order smaller:

‖uk
KL,b‖E

= O(ε3/2).

We obtain exactly the same conclusions if we use this energy, or the L2 norm of the
strain tensor, or the complementary energy. We have to include the polynomial terms
up to the order 2 to obtain a convergence: we set ulim

m as above in (12.2) and moreover

ulim
b = u0

KL,b + εṽ1 = (−εx3∇∗ζ
0
3 , ζ

0
3 + εp̄2(x3)∆∗ζ

0
3 ),(12.5)

see also [28] and [30] in this context.
In the case of a bending load such that R0

b is non-zero, we have

‖uε − ulim
b ‖

E

‖uε‖
E

≤ C ε1/2,(12.6)

this estimate being generically optimal, in the sense that it is sharp when ϕ1 is non-
zero, i.e. when ℓb is non-zero on ∂ω in cases ©1 – ©4 , cf Table 2.5, and when ℓs is
non-zero on ∂ω in cases ©5 – ©8 , cf Table 2.6.

In the case of a membrane load such that R0
m is non-zero, we have exactly the

same behavior as with the H1 norm, see (12.3) and (12.4). In particular, the condition
for the optimality of the estimates is visibly sharp, which brings a conclusion to the
work [2].

The observation of the first terms in the asymptotics also sheds light on the order
of magnitude of the answer of the plate under the loading. The maximal answer
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rate (of order ε−2) is obtained with a bending load such that R0
b is non-zero and

corresponds to the flexural nature of plates. In contrast, the membrane (or stretching)
answer is of order 1 when R0

m is non-zero. Moreover, there are very many other types
of loading (bending or membrane) whose answer rate is much lower, see [6].
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[25] J. Nečas and I. Hlavaček, Mathematical theory of elastic and elasto-plastic bodies: an intro-

duction, Elsevier Scientific Publishing Company, Amsterdam, 1981.
[26] P. F. Papkovich, Stroitel’naia mekhanika korablia, Part II (Structural mechanics of ships)

(in Russian)., Sudpromgiz Publishers, Russia, 1941.
[27] J. C. Paumier, Existence and convergence of the expansion in the asymptotic theory of elastic

thin plates., Math. Modelling Numer. Anal., 25 (3) (1990), pp. 371–391.
[28] J. C. Paumier and A. Raoult, Asymptotic consistency of the polynomial approximation

in the linearized plate theory, application to the Reissner-Mindlin model, in Elasticité,
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