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Introduction

Polymer blends are systems of technological importance
since the blending of materials with specific properties is
cheaper than the chemical synthesis of new polymers.
From a scientific point of view, these systems are inter-
esting since a set of generally accepted macroscopic time
evolution equations to describe their complicated rheo-
logical response is not yet available. A main problem in
the macroscopic description of polymer blends with a
droplet morphology lies in the choice of the appropriate

microstructural variable to account for the droplet
shape. Two different second-rank tensor structural
variables have been proposed in the literature thus far: a
droplet shape tensor manifesting as a contravariant,
second-rank structural tensor whose eigenvalues are the
squared magnitudes of the droplet axes (Maffettone and
Minale 1998), and an anisotropy tensor defined as a
covariant, second-rank structural tensor which is the
area average of the dyadic of the surface normal vector
divided by the droplet volume (Almusallam et al. 2000;
Doi and Ohta 1991). Following initial work on this
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Abstract We examine the effects of
matrix phase viscoelasticity on the
rheological modeling of polymer
blends with a droplet morphology.
Two contravariant, second-rank
tensor variables are adopted along
with the translational momentum
density of the fluid to account for
viscoelasticity of the matrix phase
and the ellipsoidal droplet shapes.
The first microstructural variable is
a conformation tensor describing the
average extension and orientation of
the molecules in the matrix phase.
The other microstructural variable is
a configuration tensor to account for
the average shape and orientation of
constant-volume droplets. A Hamil-
tonian framework of non-equilib-
rium thermodynamics is then
adopted to derive a set of continuum
equations for the system variables.
This set of equations accounts for
local conformational changes of the

matrix molecules due to droplet
deformation and vice versa. The
model is intended for dilute blends
of both oblate and prolate droplets,
and droplet breakup and coalescence
are not taken into account. Only the
matrix phase is considered as visco-
elastic; i.e., the droplets are assumed
to be Newtonian. The model equa-
tions are solved for various types of
homogeneous deformations, and
microstructure/rheology relation-
ships are discussed for transient and
steady-state conditions. A compari-
son with other constrained-volume
rheological models and experimental
data is made as well.
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subject by Doi and Ohta (1991), several attempts were
undertaken recently to establish a more fundamental set
of macroscopic time evolution equations for polymer
blends, working either in terms of the droplet shape
tensor (Maffettone and Minale 1998) or the anisotropy
tensor (Almusallam et al. 2000). Recently, non-equilib-
rium thermodynamics has been used to obtain dynami-
cally consistent time evolution equations for polymer
blends with a droplet morphology and to propose
expressions for the extra stress tensor that are thermo-
dynamically consistent with the time evolution equation
for the structural variable and the momentum balance
(Aı̈t-Kadi et al. 1999; Edwards and Dressler 2003; Ed-
wards et al. 2003; Grmela et al. 2001).

A shortcoming of almost all theoretical works on
polymer blend rheology, and in particular of the works
dealing with the droplet shape tensor theory and the
anisotropy tensor theory, is that they treat blends of
Newtonian fluids, hence neglecting non-Newtonian flow
behavior of the matrix fluid. Therefore, in these models
the viscoelastic response of the blend is exclusively due
to the elastic interface between the components. It is
clear that the limitation of Newtonian blend compo-
nents is a very severe one since commercial polymer
blends are made of high molecular weight polymers with
a characteristic non-Newtonian flow behavior. If the
blend consists of a continuous matrix of one polymer
with microscopic droplets of a second phase, the visco-
elastic response is due to the matrix and not just the
interface. Recently, Greco (2002) has treated the prob-
lem of drop deformation for non-Newtonian fluids in
slow steady flows using a perturbative approach to find
particular solutions of the relevant continuum equa-
tions. In the present work, we wish to propose a ther-
modynamic description for polymer blends consisting of
a continuous phase with microscopically small droplet
inclusions of a second phase, the former having a dis-
tinct viscoelastic flavor. We do this in order to explore
the consequences that matrix phase non-Newtonian
characteristics have on flow-induced droplet morphol-
ogy, and to discern when such effects become relevant.
In the next section we give a brief summary of relevant
theoretical work, which, up to now, has been presented
in the field of polymer blend rheology.

Models for polymer blends with droplet morphology

Over the past 15 years, non-equilibrium thermodynam-
ics has become a well established theory with which to
investigate fluids with internal microstructure (Beris and
Edwards 1990a, 1990b, 1994; Edwards and Beris 1991a,
Edwards et al. 1991; Grmela 1988, 1989; Grmela and
Carreau 1987; Grmela and Öttinger 1997; Öttinger and
Grmela 1997). Recently, polymer blends have become
the subject of investigation in applied non-equilibrium

thermodynamics, with the goal being to derive dynam-
ical time evolution equations for these systems. The first
attempts (Grmela and Aı̈t-Kadi 1998; Grmela et al.
1998; Lacroix et al. 1998; Wagner et al. 1999) in this
direction focused on blends of Newtonian liquids with a
co-continuous morphology and, in particular, on the
improvement of the Doi-Ohta (DO) Model (Doi and
Ohta 1991). This model was developed for blends of
equi-density and equi-viscosity Newtonian liquids. The
research efforts of Grmela and Aı̈t-Kadi (1998), Grmela
et al. (1998), Lacroix et al. (1998), and Wagner et al.
(1999) tried to obtain more realistic relaxation expres-
sions within the context of the Doi-Ohta theory without
changing the microstructural variable (the anisotropy
tensor) of the original model. Recently, Lhuillier (2003)
has examined coherently a blend of Newtonian fluids
with unequal viscosities.

Since 1998, research activities in theoretical polymer
blend rheology also shifted towards blends with a
droplet morphology, where a disperse phase is present as
microscopically small droplets in a continuous matrix.
Maffettone and Minale (1998) introduced the first con-
strained-volume model for the deformation, orientation,
and advection of ellipsoidal droplets of a Newtonian
fluid in a second Newtonian matrix fluid. In this model,
the droplet is described in terms of a second-rank,
contravariant microstructural tensor with constant
determinant to account for volume preservation of the
disperse phase. The time evolution equation of the
Maffettone-Minale (MM) Model is

@Sab
@t

¼ �tcrcSab þ f2þ1
2

Sacrctb þ Sbcrcta
� �

þ f2�1
2

Sacrbtc þ Sbcratc
� �

� f1
k

Sab � 3
trS�1 dab

� �

ð1Þ
where S is the droplet configuration tensor, v is the
velocity field, tr denotes the trace, f1, f2 are phenome-
nological parameters, and k is the relaxation time related
to the interface between the two Newtonian fluids. In
Eq. (1), an isotropic relaxation mechanism due to
interfacial tension between the blend components is used
implicitly to describe a viscoelastic recovery of the
droplet phase and the concept of non-affine motion is
adopted to recover non-axisymmetric droplet configu-
rations with three different semiaxes. Note that the MM
Model, as developed by Maffettone and Minale (1998),
is purely phenomenological and does not give an
expression for the extra stress tensor. Aı̈t-Kadi et al.
(1999) were the first researchers to undertake a ther-
modynamic study of general constrained-volume models
which lead to a restricted set of time evolution equations
for these systems. Later, this restricted set of time evo-
lution equations was generalized by Edwards and
Dressler (2003). Grmela et al. (2001) adopted a non-
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equilibrium thermodynamics approach and introduced a
phenomenological expression for the elastic free energy
to obtain a thermodynamically consistent expression for
the extra stress tensor for the MM Model, which has
been evaluated and compared with experimental data
for emulsions by Yu et al. (2002a, 2002b).

An alternative constrained-volume model for blends
of Newtonian liquids with a droplet morphology was
presented in Almusallam et al. (2000). The Almusallam-
Larson-Solomon (ALS) Model is written in terms of a
modified anisotropy tensor of the DO type with non-
vanishing trace, q. For this variable, an approximate
volume for the droplet inclusions is defined in terms of
the scalar invariants of q, and a set of time evolution
equations is proposed, which was intended to conserve
the approximate volume related to the anisotropy ten-
sor. However, this is a quite difficult task, which was
fully accomplished only recently by Edwards and
Dressler (2003) adopting the methodology proposed by
Edwards et al. (2003).

The DO Model and the constrained-volume rheo-
logical models have been invoked in several instances
(see, e.g., Jansseune et al. 2000, 2001) to recover mor-
phological properties of polymer blends from rheologi-
cal measurements. The idea of these works was to
measure transient and steady-state shear stresses and
first normal stress differences, which could be linked to
an orientation angle via a stress-optical rule. Then, a
rheological blend model such as the MMModel, the DO
Model, or the ALS Model was invoked to obtain the
average size of the dispersed droplets (Jansseune et al.
2000). A posteriori stress tensor expressions, such as the
formula of Batchelor, have been adopted to obtain vis-
cometric properties from morphological measure-
ments—see, e.g., Minale and Maffettone (2003).

A common limitation of the DO Model, the MM
Model, and the ALS Model, is that they make the
assumption of Newtonian blend components. In the
subsequent section, we wish to derive a set of continuum
equations for polymer blends with a droplet morphology
taking into account the non-Newtonian flow behavior of
the viscoelastic matrix. We will develop our description
in terms of the droplet shape tensor, S, since it has a
clear connection to the underlying spherical micro-
structure of the blend and it allows a rigorous, yet
simple, representation of the droplet volume in terms of
the determinant of the droplet shape tensor.

Thermodynamic description of matrix-phase
viscoelasticity in polymer blends

In this section we develop a description for polymer
blends with a droplet morphology that incorporates two
second-rank structural tensor fields that are allowed to

interact with each other under flow. The blend is mod-
eled as a thermodynamic continuum with internal
microstructure consisting of two immiscible phases. The
thermodynamic variables in a continuum description of
matter are statistical mechanical averages over all con-
stituent molecules and other microstructural compo-
nents which constitute a single fluid particle of the
continuum. The average elongation and orientation of
the matrix molecules at a fixed position in space is de-
scribed in terms of a conformation tensor field. The
shape and orientation of the droplets at a certain loca-
tion in the continuum is accounted for in terms of a
droplet shape tensor field, which can be viewed as a
statistical mechanical average over the size and config-
uration of all droplets in a single fluid particle. The
macroscopic flow of the blend is quantified in terms of
the momentum density field, defined as the velocity of a
fluid particle times its density. In the present work, we
adopt the approximation of ellipsoidal droplet shapes
with constant volume. For single droplets with diame-
ters larger than microns (40–500 lm), this approxima-
tion has been investigated experimentally by Guido and
Villone (1998) and by Hu and Lips (2003) in simple
shear flow and in planar hyperbolic flow, respectively.
Implicitly, we assume the validity of the ellipsoidal
droplet and constant-volume assumptions on smaller
length scales than those examined experimentally. Fur-
thermore, we neglect break-up and coalescence phe-
nomena, this being a reasonable approximation in
appropriate deformation and strain rate regimes. Note
that the continuum equations to be derived in this sec-
tion are not limited to a small deformation regime which
is typically encountered in low amplitude oscillatory
shear flow. In the subsequent section various sample
calculations referring to the non-linear viscoelastic
material behavior will be presented. We assume that the
dispersed phase concentration and the material proper-
ties of the blend components are such that breakup and
coalescence do not occur.

We wish to present only the most important steps in
the construction of the relevant macroscopic flow
equations since the basic ideas of the thermodynamic
description of complex materials in terms of multiple
conformation tensors are explained elsewhere (Beris and
Edwards 1994; Edwards et al. 1996). The dynamical
evolution equations for the polymer blend are obtained
from a master equation

dF

dt
¼ F ;Hf g þ F ;H½ �; ð2Þ

where F=F [x] is an arbitrary functional of a set of field
variables x, H denotes the Hamiltonian or the generator
of the dynamics, {Æ,Æ}, [Æ,Æ] denote the Poisson and dissi-
pation brackets, respectively, and dÆ/dt is the time
derivative. Equation (2) is a special case of the more

259



general GENERIC expression of Grmela and Öttinger
(1997) and Öttinger and Grmela (1997), applied herein
to isothermal and incompressible fluids. The physical
variables for the description of the blend are the
momentum density, M=qv (q being the effective mass
density of the medium and v the velocity field), an
unconstrained contravariant second-rank tensor, C,
describing the microstructure of the continuous phase,
i.e., the conformation of the polymer molecules in the
matrix, and a constrained contravariant second-rank
tensor, S, to describe ellipsoidal droplet shapes: hence
x=[M,C,S]. Since the disperse phase is assumed to be
incompressible, we impose the microstructural con-
straint, detS=1, to account for volume preservation of
the deforming micro-droplets. Further droplet configu-
ration tensors or conformation tensors may be included
into the above set of variables to describe systems with
non-uniform droplet size distribution or rheologically
more complex matrix fluids, if desired.

To derive a set of continuum equations using Eq. (2),
one has to specify the Poisson and dissipation brackets,
as well as the generator of the dynamics. The Poisson
bracket for a viscoelastic fluid described in terms of x
has been derived in Beris and Edwards (1990a, 1990b,
1994), Edwards and Beris (1991a, 1991b), and Edwards
et al. (1991, 2003). For the dissipation bracket, we adopt
the following expression:

F ;H½ �¼�
Z

KC
abc2

dF

dCab

dH

dCc2
d3x�

Z

KS
abc2

dF

dSab

dH

dSc2
d3x

þ1
3

Z

KS
abc2SqgS

�1
ab

dF

dSqg

dH

dSc2
d3x

�
Z

Aabc2
dF

dCab

dH

dSc2
þ dH

dCab

dF

dSc2

� �

d3x

þ1
3

Z

Aabc2
dF

dCab

dH

dSqg
SqgS

�1
c2þ

dH

dCab

dF

dSqg
SqgS

�1
c2

� �

d3x;

ð3Þ

with the three phenomenological matrices L
C, LS, and

A. The above dissipation bracket represents a general-
ization of the dissipation bracket for the Two Coupled
Maxwell Modes Model of Beris and Edwards (1994) to a
system that is described in terms of an unconstrained
conformation tensor, C, and a constrained droplet ten-
sor, S, with detS=1. The first integral in the above
dissipation bracket is the relaxation of the viscoelastic
matrix. The second and the third integral account for the
relaxation of the droplet inclusions under the auspices of
the constraint detS=1, and were derived by Edwards
et al. (2003). The last two integrals, involving the phe-
nomenological matrix A, describe the coupling of the
viscoelastic matrix fluid with the droplet interface and

they have been derived with the procedure developed in
Edwards et al. (2003). In the above dissipation bracket,
we neglect viscous dissipation of the matrix fluid since it
appears implicitly in the Maxwell viscosity
(nCkBTkC—see below for definitions of these symbols if
unclear) and droplet diffusivity. The latter phenomenon
can be included in the dissipation bracket to obtain a
more sophisticated set of equations for this system, if so
desired.

The Poisson and dissipation brackets yield a set of
dynamical evolution equations of the form

q
@ta
@t

¼ �qtbrbta �rap þrbrab; ð4aÞ

@Cab

@t
¼ @Cab

@t

�

�

�

�

cons

þ @Cab

@t

�

�

�

�

diss

; ð4bÞ

@Sab
@t

¼ @Sab
@t

�

�

�

�

cons

þ @Sab
@t

�

�

�

�

diss

: ð4cÞ

Equation (4a) is the momentum balance equation in
a spatial description of macroscopic fluid flow, where the
pressure and the extra stress tensor have been denoted
with p and r, respectively. Pressure and velocity are thus
viewed as averaged quantities at each location in space-
time coordinates; i.e., they are coarse-grained averages
of the matrix fluid particles and droplets contained in the
fluid particle at (x,t). They arise naturally through
the mathematical structure of the Poisson bracket. The
pressure obeys a Poisson equation with appropriate
boundary conditions, and the extra stress tensor is
derived as

rab ¼ 2Cac

dH

dCcb

þ 2Sac
dH

dScb
� 2

3
Sc2

dH

dSc2
dab: ð5Þ

Equations (4b) and (4c) are the time evolution
equations for the structural tensors, each with a con-
servative and a dissipative part. The conservative terms
in the time evolution equations are given as

@Cab

@t

�

�

�

�

cons

¼ �tcrcCab þ Cacrctb þ Cbcrcta; ð6aÞ

@Sab
@t

�

�

�

�

cons

¼ �tcrcSab �
2

3
rctcSab þ Sacrctb þ Sbcrcta:

ð6bÞ

Equation (6a) is the upper-convected derivative of
the second-rank tensor, C, and Eq. (6b) is the corre-
sponding derivative for a tensor with the determinant
constrained to unity. The dissipative contributions to
Eqs. (4b) and (4c) follow from the dissipation bracket,
Eq. (3):

260



@Cab

@t

�

�

�

�

diss

¼ �KC
abc2

dH

dCc2
� Aabc2

dH

dSc2
þ 1

3
Aabc2

dH

dSqm
SqmS

�1
c2 ;

ð7aÞ

@Sab
@t

�

�

�

diss
¼ �KS

abc2
dH
dSc2

þ 1
3
KS

qgc2SabS
�1
qg

dH
dSc2

� Aabc2 dH
dCc2

þ 1
3
Aqmc2 dH

dCqm
S�1
c2 Sab:

ð7bÞ

With the procedure developed by Edwards et al.
(2003), it can be shown for Eqs. (6b) and (7b) that detS
is a conserved quantity independent of the mathematical
form of the phenomenological matrices LC, LS, A, and
the Hamiltonian, H[M,C,S]. In order to obtain a specific
set of system equations from the set of Eqs. (4, 4b, 4c),
we have to define expressions for the Hamiltonian and
the phenomenological matrices appearing in the dissi-
pation bracket, Eq. (3). These are the four ingredients
required to reduce the set of general time evolution
equations (Eqs. 4a, 4b, 4c, 5, 6a, 6b, 7a and 7b) to a
specific model for the polymer blend.

In what follows, we wish to study a system which can
be envisioned as a Maxwell fluid with characteristic
elastic constant, K, coupling non-linearly to an elastic
interface with interfacial tension, G¢. One particular
realization of such a system can be described in terms of
the Hamiltonian

Hm M ;C; S½ � ¼ K M½ � þ A C; S½ �

¼
Z
�

MaMa

2q
þ 1

2
nCK 1� /ð ÞtrC

� 1

2
nCkBT 1� /ð Þ ln detCð Þ þ 1

2
C/IS2

	

d3x; ð8Þ

where IS2 is the second invariant of S, / is the concen-
tration of droplets, nC is the degree of elasticity per unit
volume of the matrix, and G=G¢/R where R is the
average droplet radius in the undeformed state. Equa-
tion (8) represents the kinetic energy of the system (first
term in the integral) plus a linear superposition of the
elastic free energy of a system of Hookean springs
(second and third terms) and the energy of the elastic
interface, with IS2 being associated with the droplet sur-
face area (fourth term). The subscript ‘‘m’’ in the
Hamiltonian denotes that the description of the polymer
blend is purely mechanical, i.e., we have not considered
a balance equation for the entropy density to account
for the transfer of mechanical energy into internal de-
grees of freedom. Note that the last term in the integral
of Eq. (8) is different from the expression for the ther-
modynamic potential introduced in Grmela et al. (2001).

A physical justification for the choice for this term is
that the specific surface energy is proportional to the
surface area (at least for small deviations from spheric-
ity) and it assumes a minimum for the spherical droplet.

Next, we specify the dissipative phenomenological
coefficients appearing in the bracket of Eq. (3). We
adopt the phenomenological matrix for the Maxwell
Model to describe the relaxation of the matrix fluid
(Beris and Edwards 1994):

KC
abc2 ¼ 1

2GkC

kBT

K
Cacdb2 þ Ca2dbc þ Cbcda2 þ Cb2dac
� �

;

ð9Þ
where kC is a characteristic relaxation time associated
with the continuous phase and we have introduced the
elastic modulus of the continuous phase G=nCkBT. In
conjunction with the C -terms in the above Hamiltonian,
Eq. (8), and with A=0, this expression gives the Upper-
Convected Maxwell Model (UCMM) for the matrix
phase. To fit the model to experimental data it is nec-
essary to incorporate the viscoelastic characteristics of
the matrix phase into the relaxation matrix LC. Here we

use a variable relaxation time, kc � kc 1=3tr~C
� �k

(k being
a power law index, ~C ¼ CK=kBT ), according to the Ex-
tended White-Metzner (EWM) Model of Souvaliotis
and Beris (1992) to incorporate the effects of matrix
shear thinning into the model. Furthermore, we adopt
the following anisotropic expression for the relaxation
matrix of the interface:

KS
abc2¼

1

CkS

�

1þpð Þ2p
2

Sacdb2þSa2dbcþSbcda2þSb2dac
� �

þ 3p

IS1 I
S
2

dacdb2þda2dbc
� �

	

; ð10Þ

where kS is a characteristic time scale associated with the
elastic interface and IS1 is the first invariant of S. The
quantity p is a phenomenological parameter which de-
pends on the viscoelastic properties of the phases and
will be specified below. The first term in the square
brackets accounts for droplets which deform into ob-
lates for startup of steady shearing flow, the second term
accounts for droplets which deform into prolates for
startup of steady shearing flow. The difference between
oblate and prolate droplet shapes is illustrated in sub-
sequent figures, which will be explained in more detail in
the next section.

The phenomenological matrix A is adopted in anal-
ogy with the coupling matrix introduced by Beris and
Edwards (1994):

Aabc2¼
1

2

1þpð Þ2h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GCkCkS
p CacSb2þCa2SbcþCbcSa2þCb2Sac

� �

;

ð11Þ

261



where h is a phenomenological coupling parameter. This
relaxation matrix has to be generalized in analogy to
Eq. (9) if the shear thinning behavior of the matrix
phase is incorporated into the modeling, i.e.

kC � kC 1=3tr~C
� �k

. For h>0, the above phenomenolog-
ical matrix gives oblate droplet configurations. Note that
the coupling matrix vanishes for p=)1. The phenome-
nological coefficient h may be taken as a function of the
scalar invariants of the structural variables, if so desired;
however, here we want to work with h being a constant,
real number for simplicity. There is no universal recipe
available to determine the phenomenological parameter,
h, and we propose how this coefficient could be related
either to morphological or viscometric properties of the
blend: If morphological properties of the blend can be
measured easily in a well-defined flow field (e.g., in
steady shear flow) then one might study the corre-
sponding solutions of the system equations as a function
of h and use the value for h that gives the most satis-
factory fit to experimental data. If morphological
properties cannot be measured easily, then one might
refer to nonlinear viscometric properties of the blend
and to calculate these properties as a function of the
coupling parameter from the time evolution equations.
This method has been proposed in Edwards et al. (1996)
where the negative ratio of the normal stress differences
has been chosen as the viscometric property from which
to obtain a value for the coupling parameter.

In order to rationalize the thermodynamic admissi-
bility of the phenomenological matrices (Eqs. 9, 10, and
11), we consider the rate of mechanical energy dissipa-
tion generated by the Hamiltonian, Eq. (8):

dHm

dt
¼ Hm;Hm½ �6 0; ð12Þ

which is a decreasing function of time (Beris and Ed-
wards 1994). Equation (12) is obtained from Eq. (2) by
exploiting the antisymmetry of the Poisson bracket and
the fact that mechanical energy has to be dissipated into
internal degrees of freedom in the long time limit.
Inequality (12) is the appropriate condition to give a
physically meaningful description of the system, and it
can lead to counterintuitive results for the range of
thermodynamically admissible phenomenological coef-
ficients adopted herein. Mathematical criteria which are
imposed directly onto the dissipative phenomenological
coefficients, e.g., on the relaxation times, kC and kS, on
the coupling parameter, h, or on the dissipative coeffi-
cient, p, do not necessarily satisfy the inequality (12),
and may therefore lead to aphysical results. This will
become evident in the following paragraph, where we
notice that the dissipative phenomenological coefficient,
p, has to be negative to account for a physically mean-
ingful droplet relaxation according to the phenomeno-
logical matrix of Eq. (10).

For the dissipation bracket of Eq. (3), the inequality
(Eq. 12) is equivalent to

Hm;Hm½ � ¼ Hm;Hm½ �Cþ Hm;Hm½ �Sþ Hm;Hm½ �CS
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where IC�1 ¼C�1
aa ¼ IC2 =I

C
3 . The first integral is the

mechanical energy dissipation of a Maxwell fluid,
[Hm,Hm]C, the second and third integrals are the
mechanical energy dissipation due to droplet relaxation
including oblate and prolate relaxation, [Hm,Hm]S, and
the fourth integral is the rate of mechanical energy dis-
sipation due to the irreversible coupling of the matrix
fluid and the droplet interface, [Hm,Hm]CS. Each of the
first three integrals on the right-hand side of Eq. (13) has
to be negative since they account for matrix chain
relaxation and droplet retraction, respectively. This
specifies the range of thermodynamically admissible
phenomenological coefficients, kC, kS, p. Furthermore,
the last integral has to be negative since the irreversible
coupling between the two phases should not lead to an
increase of mechanical energy in the long time limit. If
one of the four integrals was positive, the mechanical
dissipation rate could become positive for specific values
of the physical variables.

In the following, we want to evaluate generically the
four integrals in Eq. (13) for start-up of homogeneous,
weak shear flow, _c\\1, and for vanishing coupling
parameter, h=0, to find the correct range of the ther-
modynamically admissible phenomenological coefficient
p. Numerical calculations (cf. Fig. 1) corroborate that
the scalar invariants of the structural variables increase
upon start-up of steady shear flow (except the third
invariant of the droplet shape tensor, detS=1). The
invariant IC�1 assumes values above its equilibrium value,
IC�1 ¼ 3K= kBTð Þ; however, the variations in IC�1 are small
compared to the variations of IC1 . Therefore, the first
integral in Eq. (13) is negative since the expression in
parentheses is positive (the relaxation times, kC, kS, and
the elastic moduli, G, G, are positive numbers). Due to
IS1>3 and IS2>3, the expressions in parentheses in the
second and the third integrals are negative. Conse-
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quently, the phenomenological friction coefficient, p, has
to be negative to give a negative dissipation rate due to
droplet relaxation.

Neglecting the prolate contribution in Eq. (10) for
the time being (but still keeping h=0), we notice that the
range of thermodynamically admissible phenomenolog-
ical coefficients kC, kS, and p in the two relaxation
matrices at Eqs. (9) and (10) is different, although both
expressions have an identical mathematical form. The
deduction of the thermodynamic admissibility criterion
p<0 from Eq. (10), arguing that the droplets relax to the
lowest energy state of the spherical droplet in absence of
entropic forces and flow, is not obvious. Instead the
admissibility criterion p<0 is obtained from Eq. (12).
Our analysis shows that the constraint detS=1 and the
functional form of the thermodynamic potential,
ES ¼ 1=2C/IS2 , produce this counterintuitive example of
a phenomenological dissipative coefficient being nega-
tive. Nevertheless, if p is taken as positive, then there is a
direct violation of the Second Law of Thermodynamics.

For a vanishing coupling parameter, h=0, the last
integral in Eq. (12) is zero. For a small value of the

coupling parameter, h<<1, the coupling parameter has
to be positive to yield a negative dissipation of me-
chanical energy due to the coupling between the two
variables. Note that the possibility of a negative phe-
nomenological friction coefficient was also found in
Edwards et al. (1996), where the coupling parameter was
shown to be h2[)1,1]. Furthermore, note that the aspect
of a negative friction coefficient in the droplet configu-
ration equation is not worked out rigorously by Grmela
et al. (2001) and Yu et al. (2002a).

Since experimental evidence suggests that the defor-
mation behavior of droplets in a continuous phase into
prolates and oblates (see, e.g., Guido and Villone 1998;
Levitt et al. 1996) depends on the viscosity ratio and the
linear viscoelastic properties of the blend components,
we take p as the negative viscosity ratio, p=)gd/gc. If the
viscosity of the interface is considered the only relevant
quantity to characterize the droplet phase and it is taken
as a viscosity defined in analogy with the Maxwell
Model, gd=GkS, then the viscosity ratio, p, is not an
independent quantity since we have p=)(GkS)/(GkC),
which is determined once the linear viscoelastic

Fig. 1 The invariants of the
structural variables, C and S,
and the mechanical dissipation
rate, [Hm,Hm]/W for start-up of
steady shear flow, _c ¼ 0:1, as a
function of strain, c. The
parameters in the model have
been specified as follows: G/
G=4 for the ratio of elastic
strengths, kC/kS=1for the ratio
of relaxation times (i.e.,
p=)0.25), and /=0.1 for the
dispersed phase concentration.
We chose two values for the
coupling parameter, h=0 (solid
lines) and 0.1 (dashed lines)
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properties of the matrix and the interface are defined.
We clarify that the quantity gd is not the Newtonian
viscosity of the droplet phase but it is the Maxwellian
viscosity which is related to the interfacial elastic mod-
ulus, G, and the droplet relaxation time, kS.

In what follows, we motivate this choice of the rele-
vant physical parameter to describe droplet deformation
in blends with matrix phase viscoelasticity and we pro-
vide a clarification concerning the effects of the matrix
phase on the dynamics of droplets as compared to
blends of Newtonian liquids. For blends of Newtonian
liquids the droplet dynamics is governed by two
dimensionless groups: the viscosity ratio and the Capil-
lary number. For the present study we assume that
droplet deformation and retraction are only due to
interfacial tension between the two phases since there is
no secured knowledge on the physical mechanisms of
droplet dynamics in blends of non-Newtonian liquids.
Therefore, the elastic free energy in Eq. (8) has been
chosen to depend on the surface area of the droplets, I2S ,
and the relaxation matrix of Eq. (10) accounts for vis-
coelasticity of the interface. It will become evident in the
next section when we render the equations dimensionless
that this means a reduction of the number of dimen-
sionless groups since the Capillary Number becomes the
negative inverse of the viscosity ratio. However, it is also
possible to introduce explicitly the Newtonian viscosity
of the droplet phase, g*, along with gc=GkC but instead
of gd=GkS. In this case p=)g*/gc becomes the negative
ratio of the Newtonian viscosities of the blend compo-
nents, and droplet dynamics are governed by the vis-
cosity ratio, p, and interfacial modulus, G, as known
from blends of Newtonian liquids.

Evaluating the Volterra derivatives of the Hamilto-
nian (8) and inserting the phenomenological matrices of
Eqs. (9) and (10) into Eqs. (7a and 7b), we obtain the
dissipative contributions to the time evolution equations
of the structural variables:
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Eq. (14a) is the dissipative contribution to the con-
formation tensor dynamics. For h=0, we obtain the
relaxation terms of the UCMM and our set of equations
reduces to an uncoupled multi-mode model. For h „ 0
and p „ )1, we have a non-trivial coupling of the droplet
phase to the matrix. This means that the droplet defor-
mation induces changes in the average conformation of
the molecules in the matrix phase. Equation (14b) rep-
resents the dissipative contributions to the droplet
relaxation dynamics. The first term on the right-hand
side of Eq. (14b) accounts for oblate droplets and the
second term accounts for prolate droplets. The third
term captures the influence of the local polymer con-
formation in the matrix phase on the shape and relax-
ational behavior of the droplets, and it gives oblate
droplets for h>0.

For p=)1, i.e., equi-viscosity blends, the oblate term
in the droplet configuration equation and the coupling
terms drop out and we recover a model of the MM type
together with a UCMM. Note that for equi-viscosity
blends, the droplet deformation in the MM model is
described by the upper-convected time derivative and
the prolate relaxation term since the degree of non-affine
motion was taken as f2=5/(3)2p) in Maffettone and
Minale (1998); consequently, it vanishes for equi-vis-
cosity liquids. For p „ )1, the prolate contribution in
the droplet configuration equation and the coupling
terms become different from zero, and the droplets de-
form into non-axisymmetric shapes for start-up of
steady shearing flow. In the MM model this effect is
obtained through the inclusion of the Gordon-Schow-
alter derivative into the droplet configuration equation.
For p fi 0– (i.e., Ca fi ¥, cf. the next section), the
interfacial tension between the two phases is negligible,
and variations of the droplet shape are due to the cou-
pling of the viscoelastic matrix to the droplets, i.e., the
last term in Eq. (14b). Vice versa, droplet deformation
induces structural changes in the matrix fluid via the
coupling term in Eq. (14a). The coupling term in
Eq. (14a) is a consequence of the modeling approach
and it ensures thermodynamic consistency of the partial
differential equations. Consequently, droplet deforma-
tion is always coupled with structural changes in the
matrix for thermodynamic consistency requirements.
However, for specific choices of the physical parameters
(G, kC) and (G, kS), the coupling terms in Eq. (14a) can
be small compared to those in Eq. (14b) so that there is
only a small effect of droplet deformation on the struc-
tural properties of the matrix. Note that in the limit
p fi 0–, the degree of non-affine motion as defined in
Maffettone and Minale (1998) is f2=5/3>1. For this
value of f2, the deformation of the droplets is not de-
scribed by the usual Gordon-Schowalter derivative since
f262[)1,1]. For p fi )¥ (i.e., Ca=0), the droplet relax-
ation terms in Eq. (14a) become the dominant ones, and
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the drops behave like rigid particles (note that the cou-
pling term in Eq. (14b) vanishes for S=d, i.e., in the
undeformed state or for non-deformable droplets). For
the dilute regime, / fi 0, only the coupling term in
Eq. (14b) is different from zero, which predicts oblate
droplet shapes. However, the presence of the droplet
phase allows changes in the local polymer conformation
of the matrix phase constituents.

The elastic extra stress tensor of the blend is the linear
combination of the extra stress tensor of the two com-
ponents. With Eq. (8), the general expression of Eq. (5)
for the extra stress tensor is equivalent to

rab ¼rCab þ rSab ¼ nCK 1� /ð ÞCab � nCkBT 1� /ð Þdab

þ C/ IS1 Sab � SacScb �
2

3
IS2 dab

� �

: ð15Þ

For the dilute regime (/ fi 0), we have mainly a
stress contribution due to the matrix phase and the
droplet configuration is governed by the coupling term
in Eq. (14b). For the concentrated regime (/ fi 1), the
extra stress is due to the droplet phase and the non-
linear coupling terms are the only contributions in the
conformation tensor evolution equation, Eq. (14a).
Equation (15) is consistent with the extra stress tensor
obtained by Grmela et al. (2001).

Sample calculations for various types
of homogeneous deformations

The set of continuum equations (Eqs. 4a, 4b, 4c), de-
rived in the previous section, has been solved for various
combinations of physical parameter values to determine
its characteristic features for various homogeneous
flows, characterized by the velocity gradient tensor, �v.
These equations have been rendered dimensionless using
quantities �t ¼ t=

ffiffiffiffiffiffiffiffiffiffiffi

kCkS;
p

~C ¼ K=kBTC, ~S ¼ S, and ~r ¼
r=

ffiffiffiffiffiffiffi

GC
p� �

. In all that follows, we omit the tilde over
dimensionless quantities. The equations have been
solved for various ratios of elastic strengths (G/G) and
relaxation times (kC/kS), i.e., viscosity ratios, p=)(GkS)/
(GkC), various droplet concentration regimes, /, and
coupling parameter values, h, using a fourth-order
Runge-Kutta scheme. The Capillary Number is defined
as Ca=gcR/(G¢kS) in analogy with Edwards and Dressler
(2003), i.e., the intrinsic time scale of the viscoelastic
interface is adopted in the definition of the Capillary
Number instead of the time scale related to the velocity
gradient.

The groups that we adopt to render the system of
equations dimensionless thus only involve characteristic
material properties and intrinsic time scales. We feel that
once one incorporates matrix-phase viscoelasticity into
the problem, this is a more physically realistic definition;

however, this is largely a matter of taste and a ripe
subject for future debate. However, using the standard
definition of Ca, this quantity depends on space and
time for transient and non-homogeneous flow fields;
hence the advantage gained in using a Ca defined in
terms of material properties only.

With the above relationship, we see that the Capillary
Number is fixed once the viscoelastic properties of the
two phases have been specified: Ca=)1/p. The reason
for the Capillary Number being the only dimensionless
group lies in the choice of a single elastic modules, G,
and the corresponding relaxation time, kS, to define the
physical properties of the droplet phase, i.e., we did not
introduce an additional droplet viscosity, g*, but set
gd=GkS in analogy with the UCMM.

In the following, we discuss the basic features of the
set of continuum equations derived in the previous sec-
tion. We will focus mainly on (i) a dilute model blend
(Ca=4) whose linear viscoelastic properties are defined
as G/G=4 for the ratio of elastic strengths and kC/
kS=1for the ratio of relaxation times, and (ii) a model
blend (Ca=2) also with kC/kS=1. Furthermore, the
equations are also solved for Ca=0.1, 1, and 10 in order
to discuss the predictions over a larger range of Capil-
lary Numbers, and to compare our equations with the
predictions of the MM Model and the ALS Model to
examine the contribution of the viscoelastic matrix
phase. The dispersed phase concentration is taken as /
=0.1 in most sample calculations. The morphological
and viscometric properties of the model blend will be
studied for various coupling parameter values. In the
MM Model, the Gordon-Schowalter derivative has been
adopted to describe droplet deformation in blends of
Newtonian liquids with a viscosity ratio different from
unity. In this article, we do not want to adopt the
Gordon-Schowalter derivative since it is an irreversible
contribution to the system dynamics which does not lead
to dissipation of mechanical energy; i.e., it does not
contribute to Eq. (12), even though it is irreversible!
Instead, we wish to study the effect of the oblate relax-
ation term in Eq. (14b) and of the coupling terms in
Eqs. (14a and 14b) on the rheological and microstruc-
tural properties of the blend. Finally, we will fit our
model to experimental data. For this purpose the vis-
cosity ratio will be used as an independent quantity and
the EWM Model will be adopted to account for the
shear thinning behavior of the matrix fluid.

Simple shear flow

First, we investigate the system equations for start-up of
steady shear flow, i.e., r2t1 ¼ _c, focusing on the non-
linear rheological features of the two coupled modes
description of the blend. Figure 1 illustrates the tran-
sient behavior of the scalar invariants of the structural
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variables as a function of shear strain, c, for a given
shear rate, _c, and two values of the coupling parameter,
h, according to Eqs. (4a), (4b), (4c), (6a), (6b),(14a)and
(14b). In this case, all fields are spatially homogeneous
and the integrals in Eq. (13) give the total system vol-
ume, W. The calculations are for the Ca=4 model blend,
i.e., p=)0.25<0 to satisfy thermodynamic admissibility
criteria for the system equations. We note that the in-
variants of C (Fig. 1a–c) increase upon start-up of
steady shear flow, and that they each attain a value
greater than their equilibrium values. The solid lines in
Fig. 1a–c correspond to the single-mode UCMM, and
they can be obtained analytically solving this linear
viscoelastic model. The first and the second invariant of
S (Fig. 1d,e) show a strongly non-linear behavior which
is related to the increase of the surface area of the
ellipsoidal inclusions. The third invariant of S is always
unity, as prescribed by the constant-volume constraint.
Figure 1g displays the total rate of mechanical energy
dissipation, [Hm,Hm]/W, according to Eq. (13).

Figure 2 shows the transient behavior of the confor-
mation tensor, C, which describes the average confor-
mation and orientation of the molecules in the matrix
phase. We notice that the 11- and the 12-components of
the conformation tensor attain a steady state before
approximately one shear strain unit has been applied,
whereas the 22- and the 33-components reach their
steady-state values only at much higher strain values.
The non-trivial behavior of the latter components is
directly attributable to the fact that h „ 0 in Fig. 4b.
Only for h=0 does the conformation tensor equation

(Eq. 4b), reduce to the UCMM, for which C22=C33=1
in simple shear flow.

The morphological properties of the polymer blend
are represented by the average magnitude of the three
semiaxes of the ellipsoidal droplets and the average
orientation of the droplets with respect to the flow
direction. The semiaxes of the droplets are the square
roots of the eigenvalues of the droplet configuration
tensor, S. The droplet semiaxes in the flow direction, in
the direction of the shear gradient, and in the direction
of the vorticity axis are denoted with L, B, W, respec-
tively. Upon inception of weak steady shear flow, _c\1,
the major droplet axis, L, increases and the minor
droplet axis, B, decreases. However, the vorticity axis,
W, can be greater than, smaller than, or equal to unity
upon start-up of flow and the droplets are thus either
oblate or prolate: one has oblate droplets for W>1 and
prolate droplets for W<1. The orientation angle, v, is
the angle between the eigenvector corresponding to the
largest eigenvalue of the S -tensor and the flow direction
and it is defined as v=1/2arctan[2S12/(S11–S22)].

Figure 3 displays the start-up behavior of the three
droplet semiaxes upon inception of steady shear flow for
a fixed value of the coupling parameter and three dif-
ferent shear rates (Fig. 3a), as well as for a fixed shear
rate and three coupling parameter values (Fig. 3b). We
see that the model predicts a transition from the prolate
to oblate droplet configurations for increasing shear rate
or increasing coupling parameter value when h „ 0. At
intermediate shear rates and coupling parameter values,
there is a competition between the prolate and the oblate

Fig. 2 The components of the
conformation tensor, C, for
start-up of steady shear flow for
three shear rates, _c ¼ 0:05 (solid
lines), 0.1 (dashed lines), and 0.2
(dotted lines) as a function of
shear strain, c, for the Ca=4
blend with dispersed phase
concentration /=0.1. The phe-
nomenological coupling
parameter is h=0.1
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droplet deformations that ends up in a prolate non-
equilibrium state for high shear strains.

Another example of the competition between oblate
and prolate droplet shapes is illustrated in Fig. 4 for the
Ca=2 blend with dispersed phase concentration /=0.1.
In Fig. 4, the vorticity axis for an ellipsoidal droplet is
plotted as a function of shear strain for start-up of
steady shearing flow, _c, for five coupling parameter
values. It is seen that the droplets deform into prolate

ellipsoids at high shear strains. The inset in Fig. 4 shows
the vorticity axis for small shear strains immediately
after start-up of flow. We see that for higher values of
the coupling parameter, h, the droplets deform into
oblates immediately after start-up of steady shearing
flow. At a critical shear strain, the vorticity axis reaches
a maximum and then decreases below the equilibrium
value, where the prolate steady state is achieved at high
shear strains. Levitt et al. (1996) report an increase of the

Fig. 3 The same as Fig. 2 for
the average semiaxes of the
ellipsoidal droplets, L, B, W,
and the orientation angle, v, for
start-up of steady shear flow for
(a) constant coupling parame-
ter, h=0.1, and three shear
rates _c ¼ 0:05 (solid lines), 0.1
(dashes lines), 0.2 (dotted lines);
(b) constant shear rate, _c ¼ 0:05
and three coupling parameter
values h=0.1 (solid lines), 0.2
(dashes lines), and 0.4. (dotted
lines). Depending on the shear
rate and the magnitude of the
coupling parameter, the model
predicts either oblate droplets
(W>1) or prolate droplets
(W<1). For _c ¼ 0:1 and small
shear strains, we observe a
competition between oblate and
the prolate configurations
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vorticity axis upon start-up of steady shearing flow for a
single polypropylene droplet in a viscoelastic polystyrene
matrix with G/Gd�3 and in other droplet/matrix pairs of
synthetic polymers with 1\G=Gd\9, where Gd is the
elastic modulus of the dispersed phase. In these experi-

ments, a single droplet was subjected to simple shear
flow in a parallel-plate geometry while the droplet was
observed with a camera. A maximum value of 1.4 was
observed for the vorticity axis, W, relative to the equi-
librium droplet radius in the G/Gd�3 blend. Levitt et al.
(1996) attributed this droplet behavior to matrix phase
viscoelasticity and they used a phenomenological force
balance at the critical shear strain to capture the effect of
matrix viscoelasticity on droplet deformation.

In Fig. 5 we display the transient viscometric prop-
erties of the Ca=4 blend for three shear rates. The
continuum equations derived in the previous section
predict a typical non-linear viscoelastic response as
encountered often in synthetic polymer rheology. The
right column in Fig. 5 displays the shear stress, r21, and
the shear viscosity, gS ¼ r21= _c, as a function of shear
strain. The shear stress shows a strongly non-linear
transient behavior with over- and undershoots, which
increase with increasing shear rate. The first normal
stress difference, N1=r11)r22, is positive. Similarly to
the shear stress, it shows a non-linear behavior with
over- and undershoots, and it is of the same order of
magnitude as the shear stress. The second normal stress
difference, N2=r22)r33, is negative and approximately
half the magnitude of the first normal stress difference.
The normal stress differences attain a steady state at
higher shear strains compared to the shear stress. Fi-
nally, the transient shear viscosity, gS, is also reported in
Fig. 5; it displays the characteristic shear-thinning
behavior. This is illustrated more clearly in Figs. 6a and
7a where we present the steady-state viscometric prop-
erties for the Ca=4 and the Ca=2 blend.

Fig. 4 The vorticity axis of ellipsoidal droplets for a Ca=2 blend
with dispersed phase concentration /=0.1, five coupling parameter
values, h=0.1 (solid line), 0.2 (long-dashed), 0.4 (dotted), 0.6
(dashed), 0.8 (dot-dashed), and shear rate _c ¼ 0:05. The inset shows
the behavior of the vorticity axis immediately after start-up of
steady shear flow. The vorticity axis reaches a maximum at a
critical shear strain and evolves into a prolate steady state

Fig. 5 The same as Fig. 2 for
the transient viscometric prop-
erties of the Ca=4 blend. The
left column shows the start-up
behavior of the shear stress and
the shear viscosity, r12 and gS,
while the right column displays
the start-up behavior of the
normal stress differences, N1

and N2
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It is interesting to determine correlations between the
magnitude of the semiaxes of the ellipsoidal droplets and
the viscometric functions of the material. Such a pro-
cedure is discussed, e.g., in Yu et al. (2002a), who pro-
pose correlations between the viscometric properties of
the blend and higher-order Taylor deformation param-
eters of the type, DXY=(X2

)Y2)/(X2+Y2), where
X,Y=L,B,W denote the semiaxes of the drop. Possibly,
it is more instructive to establish correlations between
the semiaxes and the viscometric functions instead of
defining generalized Taylor deformation parameters. A
comparison of Figs. 5 and 3a shows, e.g., that the first
normal stress difference correlates with the major semi-

axis, L, and the second normal stress difference corre-
lates with the minor droplet semiaxis, B. However, such
correlations should be used with caution due to the non-
linear character of the underlying dynamics. We will
comment further on such correlations below.

In Figs. 6 and 7 we present the steady-state visco-
metric and morphological properties of the Ca=4 and
the Ca=2 model blends in shear flow. Figs. 6a and 7a
show the viscometric functions for the two model
blends with dispersed phase concentration /=0.1. We
observe a shear-thinning behavior in the three visco-
metric functions. The plateau values of the viscometric
functions decrease as the coupling parameter is

Fig. 6 The (a) steady-state vis-
cometric; (b) morphological
properties of the Ca=4 model
blend with dispersed phase
concentration, /=0.1, for three
coupling parameter values:
h=0.05 (solid lines), 0.1 (dashed
lines), and 0.15 (dotted lines) in
simple shear flow: (a) shows the
steady state viscometric func-
tions gS, Y1, Y2 and the ratio
Y1/Y2; (b) displays the droplet
semiaxes L, B, W, and the
orientation angle, v
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increased. The power-law index of the shear viscosity
curve in the shear-thinning region decreases with
increasing coupling parameter. However, the power-law
indices of the steady-state normal stress coefficients
increase with increasing coupling parameter. This is
seen more clearly in Fig. 8, where all viscometric
functions have been normalized with respect to the zero
shear-rate values of the respective flow curves. For
both model blends (Ca=4 and 2), the shear-thinning
regime sets in at shear rates of _c � 0:01, and there is a
broad transition from the plateau in the low shear-rate
regime to the power-law region in the intermediate and
high shear-rate regimes. For _c � 0:2, the steady-state
viscometric functions start to deviate from power-law

behavior and a second Newtonian plateau is reached.
For even higher shear rates, the onset of a shear-
thickening region is observed where the shear viscosity
begins to increase with increasing shear rate. A
dimensionless value of __c � 1 corresponds to extremely
high shear rates in reality since we have already left the
power-law region of the flow curves. Finally, the ratio
)Y2/Y1 is reported in Figs. 6a and 7a which varies
between 0.1 and 0.6 for both blends. The dot-dashed
lines in Figs. 6a and 7a are the predictions of the MM
Model, Y2/Y1=)0.5. We realize that our set of
equations allows for a more general behavior of the
ratio of normal stress differences compared to the MM
Model.

Fig. 7 The same as Fig. 6 for a
Ca=2 model blend with dis-
persed phase concentration /
=0.1 and three coupling
parameter values: /=0.1 (solid
lines), 0.2 (dashed lines), and 0.4
(dotted lines). The vorticity axis
of the droplets undergoes a
transition form a prolate to an
oblate configuration regime
with increasing shear rate
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Note that our set of continuum equations (4a, 4b, 4c),
allows us to compute steady-state viscometric properties
over an extremely large shear rate regime that extends
from a Newtonian plateau to a power-law regime at low
and intermediate shear rates, to a second Newtonian
plateau with perhaps the onset of a shear-thickening
region at extremely high shear rates. The prediction of
steady-state viscometric blend properties is critical for
both the ALS Model and the MM Model. As has been
pointed out, e.g., in Jansseune et al. (2001), the original
ALS Model does not yield a steady-state shear stress for
start-up of simple shear flow. The problem with the MM
Model, Eq. (1), is that it yields a critical shear rate,

_cC ¼ f1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

f 2
2 � 1

q

k
� �

. Beyond _cc, the droplet shape

tensor (and hence the extra stress tensor) increases to
infinity for start-up of steady shear flow. Therefore, the
steady-state shear viscosity and the first normal stress
difference can be predicted only over a limited range of
shear rates for the MM Model—see Yu et al. (2002a)
(Fig. 5). The present approach does not make use of the
mixed convected derivative for the droplet configuration
tensor, but is expressed in terms of the upper-convected
derivative, since S is a contravariant, second-rank ten-
sor. However, this corresponds to f2=1 which means
_cc ! 1 for the uncoupled set of evolution equations in
simple shear flow.

Figures 6b and 7b show the steady-state morphologi-
cal properties of the ellipsoidal inclusions in the visco-
elastic matrix. For both blends, we observe a strong
increase in the major droplet axis, L, which reaches a
maximum at _c � 0:4 and _c � 0:6 for the Ca=4 and
the Ca=2 model blends, respectively. This increase
in L correlates (i) with flow alignment of the droplet

inclusions since the orientation angle, v, decreases with
increasing shear rate, and (ii) with a strong increase of the
vorticity axis, W. The minor droplet axis, B, is a
decreasing function of shear rate over the entire range of
shear rates investigated herein. A comparison with Fig-
s. 6a and 7a shows that the increase in the major droplet
axis, L, correlates with the beginning of the power-law
region that is observed in the steady-state viscometric
functions. The decrease of the major droplet axis, L, and
the strong increase of the vorticity axis,W, correlate with
the approach of the viscometric functions to a second
Newtonian plateau. Also, the orientation angle ap-
proaches a plateau value for high shear rates, and for the
Ca=4 blend an increase of v is observed for h=0.15 at
very high shear rates.

Summarizing the results of Figs. 6b and 7b, we can
identify several steady-state droplet shape regimes. For
small shear rates, 10�3

\_c\10�2, the steady-state droplet
shape lies in the prolate deformation regime. For the
Ca=4 and the Ca=2 blends, the major droplet axis
increases with increasing shear rate and the minor
droplet axis decreases, whereas the vorticity axis, W,
remains almost unity. The droplets are non-symmetric,
B „ W. In the intermediate shear rate regime,
10�2
\_c\10�1, we observe a further stretching of the

droplets into prolates, which manifests as a further in-
crease of the L-axis and a further decrease of the B-axis.
Simultaneously, the vorticity semiaxis decreases below
unity, and the droplets are stretched into long ellipsoids
(cf. the inset in Fig. 6b). In the high shear rate regime,
_c[0:3, the vorticity axis shows a strong increase which is
compensated by a simultaneous decrease of the major
droplet axis to unity; i.e., a compression of the droplets
in flow direction. Hence, we recover flat prolates

Fig. 8 The same as Fig. 6a for
the steady-state viscometric
functions, normalized with re-
spect to their zero shear-rate
values
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(B<<1) with major semiaxes L�1, which are almost
aligned parallel to the shearing planes (v�0) and extend
into the vorticity direction.

Figure 9 displays the steady-state droplet characteris-
tics for the equi-viscosity blend,Ca=1, and three different
droplet concentrations with a vanishing coupling
parameter. In this case, the evolution equations for the
conformation tensor, C, and the droplet shape tensor, S,
decouple. The conformation tensor and the droplet shape
tensor evolve according to theUCMMand amodel of the
MMtype, respectively.We see that the vorticity axis in the
steady state decreases as a function of shear rate; i.e., the
MM Model predicts only prolate droplets. In order to
account for oblate contributions to droplet deformation,
we included a second contribution to the relaxation ma-
trix and the non-linear coupling terms in Eqs. (7a, 7b).

The viscometric properties of an equi-viscosity blend
for start-up and steady-state shear flow are presented in
Figs. 10, 11, 12, and 13, where we discuss solutions
of the model for several Capillary Number regimes.
Figures 10, 11, 12, and 13 present the transient (Figs. 10
and 11) and the steady-state (Figs. 12 and 13) visco-
metric functions, as calculated from the continuum
equations for the low (Ca=0.1, first row), the interme-
diate (Ca=1, second row), and the high (Ca=10, third
row) Capillary Number regimes and compare the results
with the MM Model.

Figure 10 displays the transient shear viscosity and
the first normal stress coefficient as a function of shear
strain for three shear rates in the three Capillary Number
regimes. The dispersed phase concentration and the

coupling parameter have been taken as /=0.1 and
h=0.01, respectively. Both quantities, gS and Y1, show a
non-linear increase towards the steady state with over-
and under-shoots and a shear-thinning behavior, as
shown before, cf. Fig. 5. Note that the magnitudes of gS
and Y1 increase, but that the steady state is attained at
approximately the same shear strain as the Capillary
Number increases. For p=)1, i.e., Ca=1 (second row of
Fig. 10), the nonlinear behavior of the viscometric
functions is due to the nonlinearity of the droplet con-
figuration tensor equation. Figure 11 displays the nega-
tive second normal stress coefficient, )Y2, and the
quantity )Y2/Y1 as functions of shear strain for the same
model parameters as adopted in Fig. 10. With increasing
Capillary Number, the absolute magnitude ofY2 andY2/
Y1 increases and an overshoot is observed in )Y2, which
becomes more pronounced as the Capillary Number in-
creases. The ratio )Y2/Y1 as a function of shear strain is
very small for Ca=0.1 and it varies between 0.0 and 0.7
for the Ca=1 and the Ca=10 blends.

Figure 12 displays the steady-state shear viscosity
and the first normal stress coefficient for the three model
blends Ca=0.1, 1, and 10. We display results for three
coupling parameters and droplet concentrations in the
three Capillary Number regimes. For the Ca=0.1 blend,
we note that an increase of the coupling parameter
increases the power-law index of the steady-shear vis-
cosity and the first normal stress coefficient curves. This
is qualitatively different from the results reported in
Figs. 6a and 8, where an increase of h resulted in a de-
crease of the power-law index of the steady-state shear

Fig. 9 The steady-state droplet
morphology for a Ca=1 model
blend for three concentrations,
/=0.1 (solid lines), 0.5 (dashed
lines), 1 (dotted lines). For equi-
viscosity conditions, the system
equations describe prolate
droplet shapes
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viscosity. For the Ca=1 blend, we report the steady-
state viscometric properties for three different droplet
concentrations in Fig. 12. The case /=1 corresponds to
the MM Model and it is identical to the stress tensor
predictions in Yu et al. (2002a). For Ca=10, we observe
that the power-law index of the steady-state shear vis-
cosity and the first normal stress coefficient are almost
insensitive to a variation of 0:005\h\0:02.

Figure 13 is the same as Fig. 12 for the second nor-
mal stress coefficient and for the ratio of normal stress
coefficients. In the low Capillary Number regime, we
note that Y2 is very small and almost constant over the
entire regime of shear rates displayed in Fig. 13. For
_c � 5, we observe an overshoot in )Y2 and then the
onset of a shear-thinning region. The negative ratio of
the normal stress coefficients is small and constant for
low values of the coupling parameter. It shows a sudden
increase at _c � 3 for higher values of the coupling

parameter. For equi-viscosity conditions, we report the
second normal stress coefficient and the ratio )Y2/Y1 for
several droplet concentrations. Over the entire range of
droplet concentrations examined, we recover a shear-
thinning behavior and for vanishing matrix phase, /=1,
we recover the ratio Y2/Y1=)0.5. In the high Capillary
Number regime, we recover the first Newtonian plateau
for )Y2 in the low shear-rate region, a power-law
behavior for intermediate shear rates, and a second
Newtonian plateau for high shear rates. For Ca=10, the
power-law index of )Y2 increases as the coupling
parameter is increased.

Elongational flow

Figure 14 summarizes the predictions of the continuum
equations in uniaxial elongational flow, r1t1 ¼ _2;

Fig. 10 The transient shear vis-
cosity, gS (left column), and the
transient first normal stress
coefficient, Y1 (right column),
for three Capillary Numbers,
Ca=0.1 (first row), 1 (second
row), 10 (third row) and three
different shear rates denoted in
the legends within each row.
The droplet concentration and
the coupling parameter have
been taken as /=0.1 and
h=0.01, respectively
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r2t2 ¼ r3t3 ¼ � _2=2 for the Ca=4 blend and dispersed
phase concentration /=0.1. For uniaxial elongational
flow, the droplets maintain a symmetric shape, B=W.
The left column of Fig. 14 displays the transient mor-
phological and rheometrical properties of the blend for
constant coupling parameter and various elongation
rates, _2. In Fig. 14a, we show the transient behavior of
the major semiaxis of the ellipsoidal droplet, L, as a
function of elongational strain, 2¼ _2t, for three elon-
gation rates. For the two smallest elongation rates, we
have a monotonic increase of the major semiaxis and an
approach to a steady state. The steady-state value of L
increases in this elongation rate region. For the highest
elongation rate, we recover an overshoot and a slow
relaxation of the major semiaxis to the steady state.
Figure 14b shows the transient behavior of the minor
semiaxis of a droplet, which decreases monotonically for
small elongation rates and displays an undershoot for
the highest elongation rate examined. In Fig. 14c, we
report the transient elongational viscosity, gE ¼
r11 � r22ð Þ= _2. This quantity increases monotonically for

start-up of flow and reaches a plateau value at rather
low elongational strains. Note that for small elongation
rates, the slope of the transient elongational viscosity is
bigger than the slope of the transient droplet axis upon
start-up of elongational flow. The steady-state mor-
phological and viscometric properties of the model are
reported in the right column of Fig. 14 for three cou-
pling parameter values. The steady-state behavior of the
major droplet axis is shown in Fig. 14d. We see that the
major semiaxis increases monotonically up to elongation
rates _2 � 0:3, where it attains a maximum. The steady-
state behavior of the minor droplet semiaxis, B, reported
in Fig. 14e is a decreasing function of elongation rate
due to the volume preservation constraint, LB2=1. This
quantity decreases monotonically for small and inter-
mediate elongation rates, and reaches a minimum for
__2 � 0:3. Finally, we display the steady-state elonga-
tional viscosity for three coupling parameter values in
Fig. 14f. For small elongation rates, we observe a slight
strain softening of the blend which then turns into a
pronounced strain hardening as the elongation rate

Fig. 11 The same as Fig. 10 for
the second normal stress coeffi-
cient, Y2 (left column), and the
ratio )Y2/Y1 (right column).
The dot-dashed horizontal lines
in the right column are the
steady-state predictions of the
MM Model, Y2/Y1=)0.5
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approaches _2 � 0:1. The range of coupling parameter
values investigated in Fig. 14 has only a minor influence
on the steady-state morphological and rheological
properties in the high elongation-rate regime.

Figure 15 presents the predictions of the contin-
uum equations for planar elongational flow, r1t1 ¼ _2;
r2t2 ¼ � _2; and r3t3 ¼ 0. In the left column of
Fig. 15a–c, we plot the transient behavior of the three
semiaxes and of the elongational viscosity for two
elongation rates. For both elongation rates, we observe
a monotonic increase of L and W and a monotonic
decrease of B in Fig. 15a,b. This is contrary to the
predictions of the MM Model, which predicts prolate
droplet configurations in planar elongational flow (see
Yu et al. 2002a, Fig. 10). The transient elongational
viscosity in Fig. 15c shows the same qualitative
behavior as the transient evolution of L and W, and it
also increases monotonically. The steady-state mor-
phological and viscometric properties of the blend are
reported in Fig. 15d–f for several coupling parameter

values. Whereas for uniaxial elongational flow (cf.
Fig. 14d,e) we observe a stretching of the droplets into
elongated, prolate ellipsoids, the situation is more
complicated for planar elongational flow (Fig. 15d,e).
In this flow field, the droplets are first stretched into
prolates, and in this range of deformation rates the
elongational viscosity remains almost constant. How-
ever, for higher values of the elongation rate, the
droplets start to expand in the 3-direction deforming
into an oblate state. The steady-state curves are
insensitive with respect to a variation of h between 0.01
and 0.07. The equations predict a strong strain hard-
ening of the blend being subjected to planar hyperbolic
flow. The beginning of the strain hardening regime
(Fig. 15f) is observed in a rather narrow range of
elongation rates, and it correlates with a sharp increase
of the W-axis which is observed in the same elongation-
rate interval (Fig. 15e). The major semiaxis, L, and the
minor semiaxis, B, in Fig. 15d,e show a smooth in-
crease and a smooth decay to zero, respectively.

Fig. 12 The steady-state shear
viscosity, gS (left column), and
the first normal stress coeffi-
cient, Y1 (right column), for
three blends Ca=0.1 (first row),
1 (second row), 10 (third row)
with dispersed phase concen-
tration, /=0.1, and three cou-
pling parameter values, h,
denoted in the legend within
each row. For the Ca=1 blend,
we show three droplet concen-
trations
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Therefore, in the present situation, the strain hardening
in planar elongational flow is related to an expansion of
the droplets into the 3-direction. Note that the strain
hardening behavior recovered here is a feature which
was not observed in the recent work of Yu et al.
(2002a), who evaluated the extra stress tensor for the
MM model. Yu et al. (2002a) report a constant elon-
gational viscosity in uniaxial elongational flow and in
planar elongational flow (see Yu et al. 2002a, Eqs. 40,
44 and Figs. 8, 10). Viscometric properties of the ALS
model in uniaxial elongational flow have not been re-
ported thus far. Further sample calculations in planar
elongational flow are shown in Fig. 17, which will be
presented in the following subsection.

Four-roll mill flow

We have solved the time evolution equations for a
deformation that is found at the stagnation point of the
four roll mill:

rv ¼ 1

2
g

1þ a 1� a 0

�1þ a �1� a 0

0 0 0

0

@

1

A; ð16Þ

where g is the strength of the deformation field, and
)1<a<1, is a measure of the relative strength of the
straining motion and the vorticity in the flow. A purely
rotational flow, a purely straining motion, and a simple
shear flow are obtained with a=)1, +1, and 0, re-
spectively.

In Fig. 16 we display the droplet semiaxes and the
droplet orientation angle for two model blends with
Ca=0.25 (Fig. 16a) and Ca=4 (Fig. 16b) for start-up of
a four-roll mill flow. We chose a=0.2, i.e., the magni-
tude of strain rate, 1+a, over the magnitude of vorticity,
1)a, is three halves. The Ca=0.25 and the Ca=4 blend
are investigated for high and low values of the velocity
gradient strength, g, respectively. We have chosen the
same droplet concentration and coupling parameter
value for both blends, and we have tracked the transient

Fig. 13 The same as Fig. 12 for
the steady-state second normal
stress coefficient, Y2 (left col-
umn), and the ratio )Y2/Y1

(right column). The horizontal
lines in the right column are the
predictions of the MM Model,
Y2/Y1=)0.5
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droplet morphology for three strengths of the defor-
mation field. For the Ca=0.25 blend in Fig. 16a, we
observe a monotonic behavior of the droplet semiaxes
for small times and a steady state is obtained after a
dimensionless time of approximately one decade. For
this Capillary Number and the rather high values for g,
oblate droplet configurations are generated in the four-
roll mill. The orientation angle shows a non-linear in-
crease with a pronounced overshoot. The qualitative
behavior is different for the Ca=4 model blend and the
rather low values of g (Fig. 16b), where a non-mono-
tonic approach with damped oscillations is observed for
the transient behavior of the droplet morphology. A
steady state is attained at long times. In general, such an
oscillatory behavior of an internal variable is observed
if a corotational derivative is employed for the time

evolution equations of the structural variable. Here, the
oscillations in the droplet shape tensor components are
due to the non-linear coupling of the time evolution
equations involving the structural variables. For Ca=4,
we observe a competition between oblate and prolate
droplet shapes for small times immediately after start-up
of flow. In the steady state, a prolate droplet configu-
ration is recovered. The orientation angle shows an
increase with dimensionless time.

Figure 17 displays the steady state Taylor Deforma-
tion Parameter, D=(L)B)/(L+B) for a purely straining
motion, a=1, and a four-roll mill flow with a=0.2 for
four different Capillary Numbers and fixed droplet
concentration and coupling parameter. Normally, such
a representation of the Taylor Deformation Parameter is
employed to evaluate rheological models that include

Fig. 14 The morphological and
viscometric properties of the
Ca=4 blend with /=0.1 dis-
persed phase concentration in
uniaxial elongational flow: (a–c)
the transient behavior of the
droplet semiaxes and the elon-
gational viscosity for three
elongation rates, _2 ¼ 0:1 (solid
lines), 0.2 (dashed lines), 0.4
(dotted lines), and h=0.1; (d–f)
the steady-state properties of
the same quantities for three
coupling parameter values,
h=0.05 (solid lines), 0.1 (dashed
lines), 0.2 (dotted lines)
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droplet breakup. In this case, a strong increase of this
parameter is observed as the magnitude of the velocity
gradient, g, reaches a critical value where breakup could
occur. In Fig. 17 we see a monotonic increase of the
Taylor Deformation Parameter with increasing magni-
tude of the velocity gradient. Furthermore, the defor-
mation parameter decreases with decreasing Capillary
Number. The vertical dot-dashed line in Fig. 17b is the
critical deformation rate according to the MM Model in
planar elongational flow, gc=f1/(2f2k). Note that
the Taylor Deformation Parameter does not give
information whether the droplets are oblates or prolates;
however, the full droplet shape can be relevant for
the viscoelastic response of the blend, as the
preceding sample calculations have demonstrated.
Therefore, the information contained in the Taylor
Deformation Parameter may be insufficient for
correlating viscometric data with morphological char-
acteristics of the blend.

Comparison with experimental data

In this section we present a fit of our blend model with
morphological and rheological measurements carried
out on two different polymer blends by Guido et al.
(2003) and by Vinckier et al. (1996), respectively. The
two blends are very different with respect to their rhe-
ological and interfacial properties.

Guido et al. (2003) studied the dynamics of a single
silicon drop (R=50 lm, g*=13 Pa s) in a viscoelastic
matrix fluid made of corn syrup with 0.13 wt% poly-
acrylamide (gc=10 Pa s, Y1,c=2.5 Pa s2). The interfa-
cial tension between the two liquids is G¢=30 mN/m.
Invoking the UCMM and the relationship for the
interfacial elastic modulus, we obtain G=80 Pa and
G=600 Pa, respectively. Figure 18 shows steady-state
morphological predictions of our model (solid lines)
together with experimental data (symbols) reported
in Guido et al. (2003). Figure 18a shows a monotonic

Fig. 15 The same as Fig. 14 for
planar elongational flow: (a–c)
the transient behavior of the
droplet semiaxes and the elon-
gational viscosity for two elon-
gation rates _2 ¼ 0:05 (solid
lines), 0.1 (dashed lines), and
h=0.01; (d–f) the steady-state
properties of the same quanti-
ties for three coupling parame-
ter values, h=0.01 (solid lines),
0.05 (dashed lines), 0.07 (dotted
lines)
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increase and decrease of the major and the minor droplet
axes in the shearing plane, respectively. Figure 18b dis-
plays a strong decrease of the steady-state orientation
angle. Solid lines in Fig. 18 have been calculated for the
following values of the ratio of matrix and interfacial
elasticity, the viscosity ratio, and the droplet concen-
tration: G/G=0.13, p=)1.3, /=0.01. The EWM power
law index, k, has been taken as vanishing. Note that for
the calculations in Fig. 18 the phenomenological coeffi-
cient p has been taken as the viscosity ratio of the blend
components, i.e., p=)g*/gc=)1.3 is an independent

quantity. For the purpose of the present comparison
with experimental data we chose /=0.01 which is rea-
sonable to represent the low concentration regime of a
single droplet experiment. To fit experimental data the
following values for the relaxation times and the phe-
nomenological coupling parameter have been adopted:
kc=10–3 s, ks=5·10–4 s, h=0.01. (Note that model
predictions are insensitive for 0.01<h<0.05.) We notice
that the fit of the droplet semiaxes is satisfactory in
Fig. 18, whereas the strong decrease of the orientation
angle is not predicted by our model. The strong decrease

Fig. 16 The transient morpho-
logical properties for (a) a
Ca=0.25; (b) a Ca=4 model
blend for start-up of a four-roll
mill flow with a=0.2 and three
values for the strength of the
flow field, g. The droplet con-
centration and the coupling
parameter are /=0.1 and
h=0.01, respectively
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of the orientation angle with increasing shear rate is
presumably due to a non-affine motion of the silicon
droplet with respect to the externally-imposed flow field
and it may be recovered using the Gordon-Schowalter

derivative in the droplet shape tensor, Eq. (4c). The
perturbative approach proposed by Greco (2002) gives a
more satisfactory fit to experimental data compared to
the present model—cf. Guido et al. (2003) (Fig. 4).

Fig. 17 The Taylor Deforma-
tion Parameter, D, as a function
of the magnitude of the velocity
gradient at the stagnation point
of a four-roll mill flow for four
Capillary Numbers Ca=10, 1,
0.5, 0.25, and constant droplet
concentration, /=0.1, and
h=0.01. Two examples of the
strength of the straining motion
are shown: a=1 (solid lines) and
a=0.2 (dashed lines)

Fig. 18 The: (a) major and the minor semiaxes, L, B; (b)
orientation angle, v of a single silicon droplet in a viscoelastic
corn syrup matrix (symbols) together with model predictions (solid
lines). Experimental data are from Guido et al. (2003)

Fig. 19 The steady-shear viscosity and the first normal stress
coefficient for pure PDMS (circles) and two PIB/PDMS blends
(squares, diamonds) together with model predictions (lines).
Experimental data are from Vinckier et al. (1996)
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Vinckier et al. (1996) studied morphological and
rheological properties of different blends of polyisobu-
tene (PIB, g*=86 Pa s) and polydimethylsiloxane
(PDMS, gc=195 Pa s, Y1,c=10.4 Pa s2) in steady shear
flow. Whereas pure PDMS shows a pronounced shear
thinning behavior, pure PIB is Newtonian for shear rates
_c\10s�1 (Vinckier et al. 1996). Therefore, we compare
experiments on PIB/PDMS blends with our model.
Interfacial tension between the blend components is
G¢=2.3 mN/m. With the UCMM and the relation-
shipfor the interfacial elastic modulus we obtain
G�7300 Pa and G=230 Pa for an average droplet radius
of 10 lm. In what follows, we fit rheological measure-
ments of 10 wt% and 30 wt% PIB in PDMS with our
model.

In Fig. 19, we show the steady-state shear viscosity
and the first normal stress coefficient for the viscoelastic
PDMS matrix fluid and for two different PIB/PDMS
blends (symbols) together with model predictions (lines).
Experimental data have been taken from Vinckier et al.
(1996) and they have been normalized with their zero
shear rate values. Circles in Fig. 19 are for the visco-
metric properties of the pure PDMS matrix fluid,
squares and diamonds represent the /=0.1 and the /
=0.3 PIB/PDMS blend, respectively. Solid lines in
Fig. 19 have been calculated from the model equations
with G=7300 Pa, /=0, and k=)2 for the EWM power
law index to fit the shear thinning of the matrix phase.
The dashed lines and the dotted lines in Fig. 19 have
been calculated for G/G=30, k=)2 and /=0.1,0.3 for
the 10 wt% and the 30 wt% blends, respectively. The
relaxation times and the phenomenological coupling
parameter have been chosen to recover the shear-thin-
ning behavior. This is reasonable since there is no
standard technique available to determine the relaxation
time of the interface, ks—cf. Vinckier et al. (1996)
(Figs. 6 and 7). We took kc=0.03 s, h=0 for pure
PDMS, kc/ks=0.012, h=0.01 for the /=0.1 blend, and
kc/ks=0.04, h=0.01 for the /=0.3 blend. Note that in
Fig. 19 the phenomenological coefficient p is related to
the elasticity of the matrix phase and the interface, i.e.,
p=)(Gks) /(Gkc). We note that model predictions for the
steady-shear viscosity and the first normal stress coeffi-
cient are satisfactory for /=0.1. For /=0.3 only the
onset of the shear-thinning behavior is recovered from
the model and the model fails to predict the quantitative
behavior of the first normal stress coefficient. The fit to
both rheological characteristic functions is satisfactory
only in the dilute regime, /\0:2.

Conclusions

A set of time evolution equations of polymer blends with
droplet morphology has been developed in the frame-
work of non-equilibrium thermodynamics taking into
account matrix phase viscoelasticity. Our description is
restricted to blends without any droplet breakup or
aggregation, viscoelastic material properties are present
only in the matrix phase but not in the droplet phase,
and the equations derived herein apply to dilute blends
since droplet-droplet interactions have not been incor-
porated into the modeling. We have adopted two
microstructural variables that take into account the
conformation of the matrix molecules and the ellipsoidal
shape of the volume-preserving micro-droplets. The
droplet shape tensor used herein has a direct connection
to the underlying droplet volume, in contrast to the
anisotropy tensor adopted by Almusallam et al. (2000).
Moreover, it is possible to recover prolate as well as
oblate droplet shapes from the system equations (cf.
Maffettone and Minale 1998) and the droplet configu-
ration equation does not involve the Gordon-Schowalter
derivative. Finally, a strain-hardening effect can be
predicted from our continuum equations which was not
recovered in the previous work of Yu et al. (2002a) who
obtained a constant elongational viscosity.

Sample calculations have been carried out to study
the transient and steady-state blend properties in various
flows, such as start-up of simple shear flow, uniaxial
elongational flow, planar elongational flow, and the
four-roll mill flow. Our calculations in steady-shear flow
yield a compression of the major droplet axis and a
simultaneous droplet widening for high shear rates. This
morphological behavior correlates with the typical non-
linear viscoelastic response of synthetic polymeric
materials. For uniaxial elongational flow we recover a
strain softening for intermediate elongation rates and a
strain hardening for higher elongation rates. In planar
elongational flow, the strain hardening correlates with a
droplet widening in the neutral direction. For start-up of
the four-roll mill flow, we observe oscillations of the
droplet axes that have not been observed to date in
experiments. A fit of the model to experimental data of
Guido et al. (2003) and Vinckier et al. (1996) has been
presented.
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