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Abstract 
 

This paper analyses the stresses and displacements in a uniformly 

prestressed Mohr-Coulomb continuum, caused by the excavation of an infinitely 

long cylindrical cavity. It  is shown that the solution to this axisymmetric 

problem passes through three stages as the pressure at the cavity wall is 

progressively reduced. In the first  two stages i t  is  possible to determine 

the stresses and displacements in the rθ -plane without consideration of the 

out-of plane stress .  In the third stage it is shown that an inner plastic 

zone develops in which

zσ

zσ=σθ ,  so that the stress states lie on a singularity 

of the plastic yield surface.  Using the correct flow rule for this situation, 

an analytic solution for the radial displacements is obtained. Numerical 

examples are given to demonstrate that a proper consideration of this third 

stage can have a significant effect on the cavity wall displacements. 
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1. Introduction

       Many situations in geotechnical engineering, such as dams, embankments 

and tunnels ,  can be t reated as  cases  of  plane s t ra in;  that  is ,  there  is  no 

displacement in the out-of-plane or z-direction, and the shear stresses xzτ  

and  are  zero .  I f  the  soi l  or  rock is  e las t ic ,  then τ 0z =ε  and the  s t ress                     

and displacement analysis may be carried out purely in the xy-plane, with the  
out-of-plane stress found subsequently as νσ+σν=σ ),yx(z ,denoting the 

poisson's ratio. 
 

Even is  the material  is  elastic-plastic,  i t  is  often possible to ignore                         

the influence of the out-of-plane stress. This is because the most commonly-                   

used plastic yield criterion, that of Mohr-Coulomb, is expressed in terms of 

the major and minor principal stresses 31σσ  only, and zσ  can often be shown 

to be the intermediate principal stress at yield.  However, this does not                                  

imply that a    remains intermediate throughout the deformation, and a complete       

analysis should evaluate throughout the yield zone to demonstrate the validity               

of this assumption. 

zσ

One of the most important plane strain problems in rock mechanics is to                  

predict the stresses and deformations induced in a pre-stressed rock continuum                  

of infinite extent by the excavation of an infinitely long tunnel or cavity of               

uniform cross-section.  An axisymmetric version of this situation, in which the            

tunnel has circular cross-section and the in situ stress field is of equal                        

magnitude in all  directions, is amenable to analytic solution, and it  is this         

axisymmetric tunnel problem that will  be considered in this paper.  

Many rock mechanics texts (e.g. Jaeger & Cook 1979) feature the solution                 

for the radial and tangetial stresses θσσ ,r  in the rock mass when an elastic-                 

brittle plastic material model is used with Mohr-Coulomb yield criterion, and                 

with the assumption that θσ≤σ≤σ zr  throughout.  (Because of the axisymmetry,           

and  aft are the principal stresses in the xy-plane.)  The zone of yielded                  

rock forms an annulus around the tunnel, with a discontinuity in  at the  

rσ θσ

θσ



-3- 

 
interface with the intact rock.  The author (Reed 1986) has given an analytic                       

solution for the displacement field assuming θσ<σ<σ zr  with a dilation flow                

rule derived from the Mohr-Coulomb yield function. A lower limit on the tunnel       

support pressure p was also derived, for which the above assumption on         

remains valid.  It is the purpose of this paper to analyse the problem when p                 

drops below this l imit.  

zσ

In the following section the problem and notation are defined. The com-              

plete solution to the problem is then shown to pass through three stages as the 

tunnel support pressure is gradually reduced.  The first stage is a standard  

result of elasticity theory.  In the second, a plastic zone develops in which

, and in the third an inner plastic zone forms in which 

 

θθσ<σ<σ zr σ<σ<σ zr . 

Stresses in this inner plastic zone lie on singular points of the Mohr-Coulomb 

yield surface.  The effect of this on the displacement solution is considered 
in sect ions 5  and 6,  and i l lus t ra ted by graphs in  sect ion 7.  

 

2.  Statement of the problem 

The axisymmetric tunnel problem may be described as follows:-  consider

a homogeneous isotropic rock mass, of infinite extent, with a uniform compressive 
in situ stress field of magnitude q in all  directions. A long tunnel of  

circular cross-section, radius r0, is now excavated in the rock mass; the 

excavation process is represented by a gradual reduction in the normal support 

pressure p on the tunnel wall from p = q to a final value p = p0 .   The 

problem is one of plane strain, and because of the axisymmetry it may be analysed  

in the radial dimension.  The unknowns are the stresses in the radial, tangential 

and out-of-plane directions ( zr σθσσ ) which form the principal stress directions, 

and the inward radial displacement u(r) at a radius r from the tunnel centre  

(see fig. 1 ).  



 

Tunnel wall  
     Fig. 1 

The rock is taken as a linear elastic-britt le plastic Mohr-Coulomb 

material.   That is,  i t  deforms elastically until  the yield criterion 

 c31 k σ+σ=σ             (1) 

is satisfied.  Here,  and  are the major and minor principal stresses,  1σ 3σ

k   is the triaxial stress factor and cσ the unconfined compressive strength. 

The last two parameters are related to the cohesion c and angle of internal 

friction  by φ

φ−
φ

=σ
φ−
φ+

=
sin1
cosc2,

sin1
sin1k c                                         (2) 

After yield, the stress state is constrained to lie on the residual yield 
surface F  = 0, where ~)(σ

.1
c3

1k1)(F σ−σ−σ=σ           (3) 

Note that F is defined using the residual strength  which is strictly less 

than for a britt le rock, and residual triaxial stress parameter k ′ .  

~ )(σ 1
cσ

cσ
     After initial yield, the process of stress reduction is described by a  
flow ru le  def ined  in  te rms  of  a  p las t ic  po ten t ia l  Q )~(σ . I f  s t ra ins  a re  sp l i t  
into elastic and plastic components,  then the plastic strain increment is given  
by the flow rule 

         ,
~

Qd~
p.

σ∂
∂

λ=ε          (4) 

where  is a constant multiplier.  The flow rule is termed associated if Q = F; 

we shall  for generality consider a dilation flow rule defined by 

λd
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31)~(Q σ−σ=σ l      (5) 

where 

 ,
sin1
sin1

ψ−
ψ+

=l     with   ψ     being an angle of dilation,  0 φ≤ψ≤    . 

 
Note that the stress state must everywhere satisfy the equilibrium equation 

r
rd

rdr σ+σ=θσ               (6) 

and that the boundary conditions are 

orratpr ==σ               (7) 

and .rasqz,,r ∞→→σθσσ                  (8) 

 
3.  Solution:  first stage

As the tunnel support pressure p is gradually reduced, the stress solution 

passes through three distinct stages.  In the first  stage, there is no plastic 

yield in the rock, and standard elasticity theory (Timoshenko & Goodier 1951)                      

gives 

qz

)
r

2
0r()pq(q

)
r

2
0r()pq(qr

=σ

−+=θσ

−−=σ

            (9) 

and radial displacement 

  .r/0
2r)pq(

E
v1)r(u −

+
=                                            (10) 

This will continue until the stresses at the tunnel wall satisfy the yield 

criterion (1),  that is,  when 

        .
1k

q2pp c

+
σ−

≡=                (11) 

4.  Solution:  second stage 

   From this point on, an annular zone of failed rock will grow outwards around 

the tunnel.  Let r  denote the radius of the interface between the plastic zone                 

of failed rock and the surrounding mass of intact,  elastic rock; the situation 
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i s  i l lus t ra ted  in  f ig .  2 .   A t  l eas t  in i t i a l ly ,  θσ<σ<σ zr  a t  a l l  po in t s 
within the plastic zone. 

 
 

Fig. 2 
 
T h e  s t r e s s  s o l u t i o n  m a y  b e  f o u n d  ( F e n n e r  1 9 3 8 )  a s :   

I n  t h e  e l a s t i c  z o n e  r  > r :  

,qz

2)r
r()pq(q

2)r
r()pq(qr

=σ

−+=θσ

−−=σ

       (12) 

Where p  is defined in (11), and is the value of  rσ  at  the interface. 
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In the plastic zone :rrr0 <≤  

    

q)v21()r(vz

'p
1'k)

0r
r()'pp('k

'p
1'k)

0r
r()'pp(r

−θσ+σ=σ

−
−

+=θσ

−
−

+=σ

              (13) 

where .
1'k

''p c

−
σ

=  

As the radial stress must be continuous at the interface, the radius r  is 

obtained as 

.
'pp
'pprr 1'k

1

0
−⎥

⎦

⎤
⎢
⎣

⎡
+
+

=              (14) 

As mentioned previously, strains may be decomposed into elastic and (in                          

the plastic zone) plastic components: 

.p
~

e
~~ ε+ε=ε                (15) 

Elastic strains are related to stresses by 

]q)v21(vrvz[
E
1e

zε

]q)v21(zvrv[
E
1eε

]q)v21(zvvr[
E
1e

rε

−−θσ−σ−σ=

−−σ−σ−θσ=θ

−−σ−θσ−σ=

             (16) 

and at equilibrium 

.r
uθεand

dr
du

rε ==               (17) 

The radial displacement u(r) in the elastic zone is thus (since  = 0) zε

( ) .
2

rr)pq(r
E

1)r(u −
ν+

=                (18) 

To find the displacements in the plastic zone the flow rule (4) is needed.  Since 

1σ≡θσ and 3r σ≡σ , inserting (5) in (4) and eliminating d   yields λ

                                               (19) 0p
zεand0p

θε
p
rε

. ==+ &&l

and by summing the increments 

                        (20) 0
p
zεand0

p
θε

p
rε ==+ l

Combining (13), (15), (16), (17), (20) gives a differential equation for u :  
 ( ) ⎥⎦

⎤
⎢⎣
⎡ +

−+
=+ B1'kr

r
A

E
v1

r
u

dr
du

l               (21) 
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Where 

.)'pq()1()v21(B),'pp(]v)'k()v1()'k1[(A ++−−=++−−+= lll  
 
The solution, using the continuity of u at r  = r  from (18), is 
 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

+
+

−
⎟
⎠
⎞⎜

⎝
⎛+

= 3k
1

r
r2k

1'k
r

r
2kr

E
v1)r(u

l
   (22) 

where 

  B
1

1
3k,A

'k
1

1k
+

=
+

=
ll

 

 
and     .kkpqk 312 −−−=  
 
5.  Solution :  third stage

The author (Reed 1986) has shown that the second stage will continue until                  

the tunnel support pressure p reaches the value P where 

.'p)'pq(
vv'k'k

v21p −+
−−

−
=                (23) 

 
At this point at the tunnel wall.  If  p drops further,  an inner plastic 

zone develops in which 

zσ=θσ

.zr σ≤θσ<σ   Let R denote the outer radius of this inner 

plastic zone.  To analyse this situation, we will consider the two cases (i)  zσ=θσ  

and (ii)   in this zone separately, and show that (ii) is impossible. The 

resultant situation is shown in fig. 3. 

zσ<θσ

5.1 zr σ=θσ<σ in inner plastic zone. 

In this case the stress solution for a and a. in the inner zone is still  
given by (13), since the relation c'r'k σ+σ=θσ  still holds there.  The interface 

radius −r is also stil l  given by (14), and zσ  is given by (13) in the outer,  and 

 in the inner zone.  By equating θσ=σz zσ  and θσ   from (13), the boundary between                  

the inner and outer plastic zones is at 

2'k
1

'pp
'pp

0rR −
⎥
⎦

⎤
⎢
⎣

⎡
+
+

=       (24) 
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Fig. 3 

 
The analysis of the previous section for the radial displacement u(r) also                         

still holds in the outer plastic zone. The displacements in the inner plastic                         

zone will now be derived. 

In the inner zone r0 < r < R the stress states lie on the intersection of 

t h e  t w o  y i e l d  s u r f a c e s  'cσrσk'θσ += a n d  ,'cσrσk'zσ += t h a t  i s  o n  o n e  o f  

the singularities of the yield surface generated by the Mohr-Coulomb condition 
in three-dimensional principal stress space.  In these circumstances, Koiter (1953) 

showed that the correct flow rule is obtained by summing the contributions from  

the two plastic potentials 
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rz)
~

(2Q

r)
~

(1Q

σ−σ=σ

σ−θσ=σ

l

l
              (25) 

to  give 

~

2Q
2d

~

1Q
1d~

p
σ∂

∂
λ+

σ∂
∂

λ=ε&          (26) 

Eliminating and from the resulting three equations, gives 1dλ 2dλ

0.p
zε

p
θε

p
rε =++ &l&l&           (27) 

While the rock was in the outer plastic zone at earlier stages of the 

deformation, the plastic strains satisfied (20), so that (27) may be integrated 

to give 

0.p
zε

p
θε

p
rε =++ l                  (28) 

Using (13), (15), (16), (17) and with θσ=σz  and ,0z =ε  the differential 

equation for the displacements in the inner plastic zone is 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

−
=+ D

1'k
f

rc
E
1

r
u

dr
du

l                (29) 

where 

    
.)'pq()v21()12(D

)'pp(]v)'k'k(2'k21[C
+−+=

+++−+=
l

lll  

The solution for u(r) is 

( ) ( ) ⎥⎦

⎤
⎢⎣

⎡ +
+

+
−

= 3L
1

r
r2L

1'k
r

r1Lr
E
1)r(u

l
       (30) 

where 

l+
= |1 k

1L C  and 
1

1L3 +
=
l

D.  The coefficient L2   is found from the continuity 

of u at r = R, using (22). 
 

A more complicated, coupled analysis for stresses and displacements is 

necessary with assumption (ii) .   It  will  finally be shown, however, that the 

resulting solution is inconsistent,  

5.2  in inner plastic zone  zr σ<θσ<σ

In  th i s  case ,  the  s t r esses  in  the  e las t i c  zone  rr >  a re  s t i l l  g iven  by  (12) ;  

in the outer plastic zone R rr <<  the equilibrium equation (6),  yield surface (3) 

and continuity of rσ  give 
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q)v21()r(vz

'p1'k)rr()'pp(k

'p1'k)rr()'pp(r

−+θσ+σ=σ
−−+=θσ

−−+=σ

                          (31) 

although r     is as yet undetermined.  By equating zσ  and  at r  = R, R is 
related to

θσ
r  by 

r1'k
1

R −α=                             (32) 
 
where .

)'pp()'k'k(
)'pq()21(

+υ−υ−
+υ−

=α The displacements in the outer plastic zone are 

stil l  given in terms of r  by (22). 

From (16), (31), (32), with = 0, the elastic strains at r = R can be deter-

mined, and it  is found that  = 0 on the outer-zone side of this boundary.                 

The plastic tangential strain is thus equal to the total tangential strain, which                 
using (17) and (22) gives 

e
xε

e
θε

.3k1k
1)(

α2kα1k
E

1(R)θε
p
θ

~ε
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−
+

−
+

υ+
=≡

l

                       (33) 

In the inner plastic zone, the failure surface 
|
crkz σ+σ=σ                            (34) 

gives rise to a flow rule which produces the relations 

0p,0p
z

p
r =θε=ε+ε &&l&                (35) 

As  in (33) is independent of the tunnel support pressure p and the 
boundary radius R ,  i t  follows that this was the plastic tangential strain at 

p
θ~ε

each rock element when it passed into the inner plastic zone during the excavation 
process.  By (20) the other plastic strains at this point are 

0.
p

z
~εand

p
θ

~
ε

p
r

~ε =−= l                            (3.6) 

Summing the plastic strain increments once in the inner plastic zone, 
from (35), 

.
p
θ

~εp
θεand

p
z

~ε
p
θ

~ε
p
z

~εp
xε

p
rε ==+=+ l                         (37) 

By (15) and the plane strain condition, 

.
p
θ

~εe
θεθεand

p
θ

~εe
zε

e
rεrε +=−+= ll              (38) 
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Combining (6),  (15), (16), (34), (38), 

'c)v(
dr

rdvr)1(r)]v2'k(v'kv1{[1
dr
du

σ−+
σ

+−σ−+−−
Ε

= lll

                  (39) ρ
θε−−+− ~}q)v21)(1( ll

and 

  .~r}q)v21('cv
dr

rdrr)v'kv1{r1u Ρ
θε+−−σ−

σ
+σ−−

Ε
=               (40) 

Differentiating (40) and equating with (39) produces a second-order differential 

equation in rσ , with general solution 

    Η++=σ 2n)R/r(G1n)R/r(Fr               (41) 
where n1,n2 are the roots of 

                (42) 0)v2'k(n)vv'k2(2n =−−+−+ ll

and 

  H = .~1q)v21('cv2'k
1

⎥⎦
⎤

⎢⎣
⎡ Ρ

θεΕ
+

−−−σ
−
−

l

l               (43) 

F and G are determined from the boundary conditions at r = R, namely continuity  

with the outer zone stresses (31): 

   
]1n'p1n)'pp()1n1'k[(

2n1n
1G

]2n'p2n)'pp~()2n1'k[(
2n1n

1F

Η+++α−−
−
−

=

Η+++α−−
−

=
           (44) 

 
and R (and hence r  by (32)) is expressed in terms of the tunnel support pressure  

p by  se t t ing  .0rratpr ==σ  F ina l ly ,  by  subs t i tu t ing  in to  (40)  the  d i s -

placements u(r) are found.  Note however that the nonlinear equation defining R 

cannot be solved explicitly, and a numerical method such as Newton-Raphson must 

be used. 

When this analysis is applied to specific problems, and the resulting stresses 

evaluated at points within the inner plastic zone (e.g. at the tunnel wall), it is 

found that they violate the original assumption that θσ>σz  .  It will now be 

shown that this is the case in general. This is done by proving that 

     
dr

d
dr

zd θσ>
σ   at    r = R. 
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Using  (6),  (34) and  (41), at r  = R 

    )G'k2nF'k1n(
R
1

dr
zd

+=
σ  

and     .]G)2n1(2nF)1n1(1n[
R
1

dr
d

+++=θσ                  (45) 

So using (44) 

  R .)H'p(2n1n)'pp()2n1'k)(1n1'k(
dr

d
dr

zd
+−+α−−−−=⎟

⎠
⎞

⎜
⎝
⎛ θσ−
σ       (46) 

By   (42), 
   )v2'k(2n1nandv)'k(22n1n −−=−−=+ ll  

so that by expanding  (46)  and using  (32)  and  (43), 
 

 ⎥⎦
⎤

⎢⎣
⎡

θεΕ++
−−

+−++−−
=θσ−

σ p~)1(
vv'k'k

)'pq)(v21)(v1v'k2'k)(1'k(
R
1

dr
d

dr
zd

l
l         (47)                         

at r = R. 
 

But the right-hand-side of (47) is the sum of two positive terms, if k' > 1, 

l  > 1 and 0 
2
1v ≤≤ , so 

    .Rrat
dr

d
dr

zd
=θσ>

σ  

Since θσ=σz  at this point, and the derivatives are both positive at r = R 
since rσ  is monotone increasing, it follows that there is a region on the inner-
zone side of r = R in which on zσ>θσ . 

The assumption zr σ<θσ<σ  thus leads to a solution which is inconsistent, 
and the conclusion is zr σ=θσ<σ  that  in the inner plastic zone. 
 
6.  Problems with large drop in strength 

From (14) and (24) it  is seen that the ratio r/R  is independent of the 

tunnel  support  pressure  p ,  so  that  once the inner  zone is  formed the inter-  

zone  boundar ies  a t  r  and  R wi l l  move  out  toge ther .  The  outer  p las t ic  zone  

wi l l  only  exis t  i f  r <  R,  and th is  holds  i f  P  < p  ;  subs t i tu t ing  the  def in i t ions  

in (11) and (23) leads to 

                                       .p)'kk()pq(
v1

1'cc −−−
−

<σ−σ                       (48) 
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Thus, if  the drop in strength upon yield is sufficiently large, this 

condition may not be satisfied. In this case the whole plastic zone will have 

;  the other stresses are given by (13), the interface radius by (14  
the displacements are given by (30) but with the coefficient L

θσ=σz ),

m 2 determined fro

the continuity of u at r  using (10). 

7. Numerical results 

For problems involving only a small relative drop in strength upon yield, 
the influence of the out-of-plane stress upon the wall displacement will be minor. 

For example, consider the data: 

    .3'kk,1.0;20'
c,40c30,  q ====υ=σ=σ= l

 
For this problem yield will first occur when p drops to p  = 5. The inner 

plastic zone will arise when p drops to P = 2.308, In Fig.4 a graph is plotted

of relative wall displacement  against pressure difference q-p, as p drops 00 r/Eu

from 10 (when the rock is still elastic) to zero. The relative displacement ignoring 

the effect of the out-of-plane stress (that is, using (22) throughout) is also  

plotted in broken line, for comparison. When p = 0, the relative displacement is 

70.269 using (30), compared with 69.300 using (22). 

When the relative drop in strength is greater, the difference between the             

true solution (30) and the two-dimensional solution (22) is more significant. For     

the data: 

  5'kk,1.0,50'c,150c100,q ====υ=σ=σ= l  
 
the outer plastic zone starts when p = p  - 8.333, and the inner plastic zone when  

p = P = 7.955. The relative wall displacements at p = 0 are 264.78 using (30), 

compared with 251.32 using (22). The corresponding graph is shown in Fig.5. 

If the residual strength in the previous example is now reduced to 20, 

then inequality (48) is no longer satisfied and the whole plastic zone has 

. Now the relative wall displacements at p = 0 are 722.24 using (30), θσ=σz

and 618.32 using (22). The graph is given in Fig.6. 
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8.  Conclusions

This paper has presented a complete analysis for the stresses and displace-

ments in the axisymmetric tunnel problem using a Mohr-Coulomb yield surface.

The deformation is shown to occur in three stages, in the last of which the out-  

,  
the tunnel wall displacements can be significantly greater than those predicted  of-plane stress influences the displacements in an inner plastic zone. For 

materials with a large drop in strength at yield, or with a low Poisson's ratio

by an analysis which ignores this influence. 

For more complex (and more realistic) situations involving material aniso-

tropy or non-circular tunnel profile, a numerical model is commonly produced by 
the finite element method. In this case the singularities of the yield surface, 
at which the flow vector would be indeterminate, are removed by 'rounding off the 

corners'.  Given the tendency of stress states in the plastic region to approach 
these corners, it is essential to evaluate the out-of-plane stress and plastic 
strain throughout the deformation when using the flow rule (4), if the numerical 

solution is to converge to the correct displacement field. 
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