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ABSTRACT 

 

Discrete element method (DEM) simulations of planar wave propagation are used to examine the 

effect of particle surface roughness on the stiffness and dynamic response of granular materials.  A 

new contact model that considers particle surface roughness is implemented in the DEM simulations.  

Face-centred cubic lattice packings and random configurations are used; uniform spheres are 

considered in both cases to isolate fabric and contact model effects from inertia effects.  For the range 

of values considered here surface roughness caused a significant reduction in stiffness, particularly at 

lower confining stresses.  The simulations confirm that surface roughness effects can at least partially 

explain the value of the exponent in the relationship between stiffness and mean confining stress for 

an assembly of spherical particles.  Frequency domain analyses showed that the maximum frequency 

transmitted through the sample is reduced when surface roughness is considered. The assumption of 

homogeneity of stress and contacts in analytical micromechanical models is shown to lead to an 

overestimation of stiffness. 

 

  



INTRODUCTION 

 

The elastic (small-strain) shear stiffness (G0) of a granular material can be expressed as G0 ∝ ꞌ n, 

where ꞌ = effective confining stress, and n is a constant.  Hertzian contact theory combined with 

theoretical micromechanics gives n = 1/3 (e.g. Chang et al., 1991); however, experimental data for 

sands give n > 1/3.  Goddard (1990) and McDowell & Bolton (2001) acknowledged that the 

discrepancy between Hertzian theory and experimental observations of the stress-stiffness 

relationship may be partially due to the presence of conical asperities (surface roughness) of real sand 

particles at low or medium stresses.  While the G0-ꞌ relationship may be influenced by particle 

crushing at higher stress levels (Jovičić & Coop, 1997), crushing effects are neglected here. 

 

Experimental studies using wave propagation have consistently shown that assemblies of rougher 

spheres have a lower shear wave velocity (VS) and smaller G0 than smooth sphere assemblies 

(Santamarina & Cascante, 1998; Sharifipour & Dano, 2006; Otsubo et al., 2015).  However, it is 

difficult to systematically control roughness in experiments to develop an empirical relationship 

between roughness and the exponent n.  The analytical work of Yimsiri & Soga (2000) clearly 

indicated that n > 0.5 for rough materials; however the model used includes a number of simplifying 

assumptions.  Once an appropriate contact model is available, discrete element method (DEM) 

simulations provide an alternative means to explore this relationship, as demonstrated in a limited 

analysis of a single lattice assembly by O’Donovan et al. (2015).  This contribution extends the work 

of both O’Donovan et al. (2015) and Cavarretta et al. (2010) by proposing a new rough-surface 

contact model and implementing it in DEM.  This model is used in simulations of stress wave 

propagation tests on both lattice and random samples to establish the influence of surface roughness 

on the G0 - ꞌ
 relationship.  

 

 

ROUGH SURFACE CONTACT MODEL  

 

Hertzian contact mechanics gives the force-displacement relationship for the contact between two 

smooth spheres as (Johnson, 1985):  
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where N = normal contact force, Ep
* = [(1-νp1

2)/Ep1 + (1-νp2
2)/ Ep2]-1, R* = (1/R1 + 1/R2)-1, and δ = 

contact overlap.  The subscripts refer to the two contacting particles;  Ri = radius of particle i, Epi = 

Young’s modulus of particle i, and νpi = Poisson’s ratio of  particle i.  Differentiating N with respect 

to δ gives the normal contact stiffness (kN): 
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Asperities on real particle surfaces give a finite roughness; this can be quantified using  the root mean 

square of surface roughness (Sq) (e.g. Thomas, 1982).  Based on a theoretical study of rough contacts, 

Greenwood & Tripp (1967) noted that asperity deformation dominates the N – δ relationship when N 

< NT1; it is only when N ≧ NT2 that Hertzian contact mechanics becomes applicable, where  
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and Sq
* = (Sq1

2 + Sq2
2)0.5.  

Cavarretta et al. (2010 & 2012) used particle compression tests to confirm the applicability of 

Hertzian theory when N exceeds NT2 and proposed the Cavarretta contact model for rough surfaces.   

 

Referring to Fig. 1, the N – δ relationship for rough surfaces proposed here considers three stages: 

asperity-dominated (Eq. 5), transitional (Eq. 6), and Hertzian (Eq. 7): 
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where δT1 & δT2 = threshold contact displacements at N = NT1 & NT2, and b & c are constants.  The 

dimensional constants δ1 and δ2 control the overall N – δ relationship.  In principle, δ1 can be obtained 

from experimental data by unloading from a point in the transition zone (i.e. after the asperity-



dominated regime and prior to the transition to Hertzian behaviour). Similarly δ2 can be obtained by 

unloading once the response becomes purely Hertzian.  The Cavarretta model relates δ2 to the surface 

hardness (H) based on their experimental data as: 

 

2

*

var

2
4

3
















p

rettaCa

E

H
r


  (8) 

 

where r is a function of the particle radius, roundness and shape.  The surface hardness may be 

influenced by surface roughness, making it difficult to isolate the influence of surface roughness.  In 

the new model the threshold displacements are given by: 
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The constants b and c in Eqs. 5 to 7 can be obtained by imposing a constraint that the three curves of 

the N – δ relationship (Eqs. 5 to 7) connect smoothly, i.e. values of dN/dδ are equal at the two 

boundaries, giving: 
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This N – δ relationship still depends on δ1 and δ2, and they are related to Sq.  Greenwood et al. (1984) 

introduced a roughness index (α): 
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where the overlap for a smooth contact (δsmooth) at a given N is obtained using Eq. 1.  The smooth and 

rough contact radii can be calculated as asmooth = (R* δsmooth)0.5 and arough = (R* δrough)0.5, respectively, 

at a given N (Eqs. 5 to 7).  Yimsiri & Soga (2000) related α to the ratio of the radius of a smooth 

contact to a rough contact: 
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Considering the ratio arough/asmooth, Fig. 2 compares the proposed contact model with the experimental 

data of Greenwood et al. (1984) and the Yimsiri & Soga model, where values of δ1=0.82Sq and 

δ2=1.24Sq were obtained by iterative curve fitting to Eq. 14.  A good agreement is observed.  Taking 

δ2 = δ2
Cavarretta (Eq. 8) and δ1 = 0 (also NT1 = 0 & δT1 = 0) reduces the proposed model to the Cavarretta 

model and when Sq = 0, the model is identical to Hertzian theory.  The model idealises the real 

physical system: it does not consider yielding, squashing or vibration of asperities or the change in 

the inter-particle friction due to the plastic compression of asperities (Hanaor et al., 2013).   

 

The proposed N – δ relationship is shown in Fig. 3a & 3b for Sq values that cover a realistic range of 

roughness values based on optical interferometry (Otsubo et al., 2015).  It is clear that kN decreases 

with increasing Sq especially at lower N values.  The power coefficients relating kN and N for rough 

contact can be obtained by differentiating Eqs. 5 to 7 with respect to δ, giving 0.614 (N < NT1), 0.368 

(NT1 ≤ N < NT2), and 1/3 (NT2 ≤ N).  For a perfectly smooth contact (Sq = 0), the power coefficient is 

1/3 as expressed in Eq. 2.  The approximately bi-linear trend can be seen in Fig. 3b with the model 

converging to the Hertzian curve at N = NT2; it differs from the smooth kN – N relationship proposed 

by Yimsiri & Soga (2000).   

 

 

Yimsiri & Soga (2000) considered the tangential contact stiffness to be the same as that of smooth 

contact based on experimental data by O’Connor & Johnson (1963).  However, recent fundamental 

tribology research has found that surface roughness reduces the tangential contact stiffness (e.g. 

Gonzalez-Valadez et al., 2010; Medina et al., 2013).  Referring to Otsubo et al. (2015), here kT is 

taken as: 
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and partial slip prior to contact sliding is not considered.  This expression is adopted in the Yimsiri & 

Soga (2000) analytical model below. 

 

 

WAVE PROPAGATION SIMULATIONS 

 

The new contact model was implemented in a modified version of the LAMMPS molecular dynamics 

code (Plimpton, 1995).  Referring to Fig. 4, the lateral boundaries were periodic, while wall 

boundaries were placed at the bottom and top of the samples.  Three types of packing were considered: 

face-centred cubic (FCC), random dense packing (RDP) and random loose packing (RLP).  In all 

cases, uniform spheres with a diameter (D) of 2.54 mm were used with a particle shear modulus Gp 

= 25 GPa, particle Poisson’s ratio νp = 0.2, and particle density ρp = 2230 kg/m3.  The surface 

roughness values given in Fig. 3 were used (Sq = 0, 0.5 and 1.0 μm).  The same material properties 

and contact models were also used for wall boundaries with R = ∞.  The time step (t) for the wave 

propagation simulations (1×10-9 s) was smaller than the critical time step for the Verlet time 

integration of 7×10-7 s determined via eigenmode analysis using extracted global mass and stiffness 

matrices. It was also significantly smaller than the period associated with the nominal input signal 

frequency (i.e. 1/20,000Hz = 5×10-5 s).  A parametric study in which t was varied confirmed that 

this time step was sufficiently small for the nonlinear contact model used.  

 

The FCC sample consisted of 3,200 particles (4×4×200 layers) and is equivalent to that considered 

by Mouraille et al. (2006).  Both the RDP and RLP samples consisted of 35,201 particles and were 

initially created as clouds of non-contacting spheres with μ = 0 and 0.15, respectively. The sample 

lengths (L) were 141D to 144D with aspect ratios ≈10.  Using uniform spheres in the random samples 

enabled the effects of fabric and contact model to be isolated from any particle inertia effects; local 

crystallisation (i.e. a coordination number of 12) was rare, observed in less than 0.5% of particles for 

the RDP sample at the maximum pressure of 10 MPa.  A servo-controlled compression process was 

applied to achieve an initial isotropic confining stress, σꞌ = 1 kPa.  For the RDP samples, once σʹ 

reached 1 kPa, μ was increased to 0.15 prior to subsequent additional isotropic compression.  For 



each packing, σꞌ = 0.1 0.2, 0.3, 0.5, 1 and 10 MPa were considered; void ratio (e) and mean 

coordination number (CN, mean) data are tabulated in Tables 1 & 2.  Following the approach of 

Magnanimo et al. (2008), μ was increased to 0.2 for all the samples before applying the input motion 

to avoid particle sliding and ensure the elastic response of the samples.  No damping was applied to 

the particles during wave propagation. Referring to Fig. 4c, S-waves were generated by moving the 

lower transmitter boundary (at z=0) in a transverse (X) direction.  A single period, phase shifted 

sinusoidal pulse, frequency (f) of 20 kHz, and double amplitude (2A) of 20 nm was used where 2A/L 

≃ 5.5 × 10-8 and 2A/D ≃ 7.9 × 10-6.  The wave propagated in the Z-direction and the stress response 

was recorded at the opposite boundary (z=L).  

 

SYSTEM RESPONSE TO WAVE PROPAGATION 

 

The particle displacements in the X-direction along a straight line extending in the Z-direction from 

the transmitter wall are plotted in Fig. 5 and the mean slope of the maximum points gives the S-wave 

velocity (VS,dL/dt).  In comparison with the smooth sample at 100 kPa, the VS,dL/dt for the rough sample 

is clearly reduced for RDP samples.  Fig. 6a and 6b present the stress responses at the receiver wall 

(∆σX) for the FCC and RDP samples, respectively, for Sq = 0 and 1.0 μm at σꞌ = 0.1, 0.3 and 1 MPa.  

The shear wave velocity based on the peak-to-peak method (VS,P-P) clearly decreases with increasing 

roughness for both the FCC and the RDP samples and the difference is more marked at lower σꞌ.  The 

VS,P-P and VS,dL/dt values are summarised in Tables 1 & 2 and the VS,P-P data are within 3% of VS,dL/dt. 

 

The frequency components of the inserted and received stress responses at σʹ = 0.1 and 1 MPa for the 

RDP sample are compared using the gain factor (the ratio of the fast Fourier transforms of the received 

and transmitted signals) in Fig. 7.  The cut-off frequency (maximum transmitted frequency) reduces 

with increasing roughness. However, as σʹ increases, the difference becomes less marked. No other 

sensitivity to contact model was observed in the frequency domain response. 

 

Noting that 
2

0 Sd VG   where ρd = bulk density of sample, the G0 – σʹ relationship for the three 

sample types and for three roughness values are presented in Fig. 8 for the VS,P-P data along with the 

results of the analytical model (Yimsiri & Soga, 2000) as discussed in earlier section.  Referring to 

Tables 1 and 2, the variation in void ratio due to the surface roughness for a given stress and packing 

type is not significant; thus a void ratio correction (e.g. Iwasaki & Tatsuoka, 1977) was not considered 



in this study.  For the FCC samples a good match was observed between the DEM and analytical 

results.  The higher G0 values predicted by the analytical model for the random packings are due to 

the simplifying assumption of contact homogeneity in the model’s derivation; the heterogeneity of 

stress distribution in granular materials is well known from photoelastic experiments (Drescher & De 

Josselin de Jong, 1972) and DEM simulations (Rothenburg & Bathurst, 1989).  However, the trend 

of the analytical results was captured by the DEM simulations.  

 

The cumulative distributions of N at σʹ = 100 kPa are compared in Fig. 9 for the three packings 

considered along with the values of NT1 (Eq. 3) for Sq=0.5 and 1.0 m.  It is clear N<NT1 for all the 

contacts in the FCC sample; however for both random samples N>NT1 for a significant proportion of 

the contacts at Sq=0.5 m.  This explains the more gradual change in the slope for the random samples.  

The proportion of contacts with N>NT1, is higher for the RLP sample than the RDP sample as the 

lower coordination numbers for the RLP samples results in larger N at each contact.  This may explain 

why the influence of surface roughness is less significant for the RLP samples (Figs. 8b and 8c).  

 

CONCLUSIONS 

 

This contribution has assessed the influence of surface roughness on the small-strain shear modulus 

(G0) and dynamic response of granular materials using DEM simulations.  A new rough-surface 

contact model was introduced.  Planar wave propagation simulations were performed using a face-

centred cubic sample and dense and loose samples of uniform spheres. 

 

The detailed particle scale data available in the DEM simulation provided a direct measurement of 

the shear wave velocity (VS,dL/dt).  The VS,dL/dt values were within 3% of those obtained by applying 

the conventional peak-to-peak interpretative approach.   

 

The shear wave velocity decreased with increasing surface roughness, with consequent reductions in 

G0.  The reduction in G0 due to surface roughness was substantial at a low confining stress (σʹ), 

whereas it gradually disappeared as σʹ increased.  In the frequency domain, a reduction in the 

maximum transmitted frequency due to increasing roughness was noted at low σʹ.  The surface 

roughness increased the power coefficient (n) in the G0 – σʹ relationship; however as σʹ increased, n 

approached the value for smooth contacts.  This finding qualitatively agrees with prior analytical 



modelling by Yimsiri & Soga (2000) and Otsubo et al. (2015); the quantitative differences with the 

analytical model can largely be attributed to the assumption of homogeneity in the analytical model.   

 

 

ACKNOWLEDGEMENTS 

 

The first author is supported by JASSO (Japan Student Services Organization) and an Imperial 

College Dixon Scholarship.  This research builds upon ideas developed in the joint EPSRC funded 

projects EP/G064954/1 and EP/G064180/1. 

 

 

 

References 

Cavarretta, I., Coop, M. & O’Sullivan, C. (2010). The influence of particle characteristics on the 

behaviour of coarse grained soils. Géotechnique 60, No. 6, 413–423. 

Cavarretta, I., O’Sullivan, C., Ibraim, E., Lings, M., Hamlin, S. & Muir Wood, D. (2012). 

Characterization of artificial spherical particles for DEM validation studies. Particuology 10, 

No. 2, 209–220. 

Chang, C.S., Misra, A. & Sundaram, S.S. (1991). Properties of granular packings under low 

amplitude cyclic loading. Soil Dynamics and Earthquake Engineering 10, No. 4, 201–211. 

Drescher, A. & De Josselin de Jong, G. (1972). Photoelastic verification of a mechanical model for 

the flow of a granular material. Journal of the Mechanics and Physics of Solids 20, No. 5, 337–

351. 

Goddard, J.D. (1990). Nonlinear elasticity and pressure-dependent wave speeds in granular media. 

Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 430, No. 

1878, 105–131. 

Gonzalez-Valadez, M., Baltazar, A. & Dwyer-Joyce, R.S. (2010). Study of interfacial stiffness ratio 

of a rough surface in contact using a spring model. Wear 268, No. 3-4, 373–379. 

Greenwood, J.A. & Tripp, J.H. (1967). The elastic contact of rough spheres. Journal of Applied 

Mechanics 34, No. 1, 153–159. 

Greenwood, J.A, Johnson, K.L. & Matsubara, E. (1984). A surface roughness parameter in hertz 

contact. Wear 100, 47–57. 

Hanaor, D.A.H., Gan, Y. & Einav, I. (2013). Effects of surface structure deformation on static friction 

at fractal interfaces. Géotechnique Letters 3, No. 2, 52–58. 

Iwasaki, T. & Tatsuoka, F. (1977). Effects of grain size and grading on dynamic shear moduli of 

sands. Soils and Foundations 17, No. 3, 19-34. 

Johnson, K.L. (1985). Contact mechanics, Cambridge University Press. 

Jovičić, V. & Coop, M.R. (1997). Stiffness of coarse-grained soils at small strains, Géotechnique 47 



No. 3, 545-561. 

Magnanimo, V., La Ragione, L., Jenkins, J.T., Wand, P. & Makse, H.A. (2008). Characterizing the 

shear and bulk moduli of an idealized granular material. Europhysics Letters 81, No. 3, 34006. 

McDowell, G. & Bolton, M. (2001). Micro mechanics of elastic soil. Soils and foundations 41, No. 

6, 147–152. 

Medina, S., Nowell, D. & Dini, D. (2013). Analytical and numerical models for tangential stiffness 

of rough elastic contacts. Tribology Letters 49, No. 1, 103–115. 

Mouraille, O., Mulder, W.A. & Luding, S. (2006). Sound wave acceleration in granular materials. 

Journal of Statistical Mechanics: Theory and Experiment 07, No. 23, 1–15. 

O’Connor, J.J. & Johnson, K.L. (1963). The role of surface asperities in transmitting tangential forces 

between metals. Wear 6, No. 2, 118–139. 

O’Donovan, J., O'Sullivan, C., Marketos, G. & Muir Wood, D. (2015). Analysis of bender element 

test interpretation using the discrete element method. Granular Matter 17, No. 2, 197–216. 

Otsubo, M., O’Sullivan, C., Sim, W.W. & Ibraim, E. (2015). Quantitative assessment of the influence 

of surface roughness on soil stiffness. Géotechnique 65, No. 8, 694–700. 

Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. Journal of 

Computational Physics 117, No. 1, 1-19. 

Rothenburg, L. & Bathurst, R.J. (1989). Analytical study of induced anisotropy in idealized granular 

materials. Géotechnique 39, No. 4, 601–614. 

Santamarina, J.C. & Cascante, G. (1998). Effect of surface roughness on wave propagation 

parameters. Géotechnique 48, No. 1, 129–136. 

Sharifipour, M. & Dano, C. (2006). Effect of grains roughness on waves velocities in granular 

packings. In First Euro Mediterranean in Advances on Geomaterials and Structure-Hammamet 

3-5 May Tunisia. 

Thomas, T.R. (1982). Rough surfaces, London: Imperial College Press. 

Yimsiri, S. & Soga, K. (2000). Micromechanics-based stress–strain behaviour of soils at small strains. 

Géotechnique 50, No. 5, 559–571. 

 

 


