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ABSTRACT 

Pitting and localized corrosion of carbon steel is considered to be a complex process influenced by a 

wide range of parameters such as temperature, bulk solution pH and chloride ion concentration. 

Solution pH is known to influence corrosion product characteristics and morphology in CO2 and H2S-

containing corrosion systems. However, from the perspective of pitting corrosion in CO2-saturated 

environments, the extent to which bulk pH of solutions and the presence of corrosion products 

influence localized attack is still not clearly understood.  This paper presents an investigation into the 

role of pH on the characteristics of corrosion product and pitting corrosion behavior of X65 carbon 

steel in CO2-saturated brine. Pitting corrosion studies were conducted over 168 hours at 50°C in 3.5 

wt.% NaCl solutions at different bulk pH (buffered to pH values of 6.6 and 7.5 in some cases) in order 

to understand and correlate the role of pH on corrosion product morphology, chemistry, initiation 

and  propagation of pits within each distinct environment. Corrosion product composition and 

morphology are identified through a combination of electrochemical and surface analysis 

techniques, which include Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). The 

extent of corrosion damage of the carbon steel is evaluated through the implementation of surface 

interferometry to study discrete pit geometry; namely, the size, depth and aspect ratio. Results 

indicate that the process of pit initiation and propagation of carbon steel in CO2 corrosion 

environment is different depending upon bulk solution pH. At low pH (pH values starting at 3.8), 

pitting initiates faster and propagates steadily along with significant uniform corrosion due to the 

ĨŽƌŵĂƚŝŽŶ ŽĨ ͚ĂŵŽƌƉŚŽƵƐ͛ ĨŽƌŵ ŽĨ FĞCO3.  At higher pH, uniform corrosion is significant, while pitting 

initiates with increasing protection from crystalline FeCO3. At a pH value of 7.5, pitting corrosion 

initiation occurs after and/or during pseudo-passivation is achieved due to the formation of a 

͚ƉƌŽƚĞĐƚŝǀĞ and pseudo-passivating͛ FĞCO3 film. 

 

KEY WORDS: CO2 corrosion, corrosion products, uniform corrosion, pitting, pseudo-passivation, iron 

carbonate, iron carbide 

INTRODUCTION 

 

The mechanisms associated with the dissolution of carbon steel in CO2-containing environments 

have been debated for decades. Various models have been developed and published in the 

literature that attempt to take into account the number of parameters which influence corrosion 

rate [1, 2]. Regrettably, these models often appear contradictory to one another and can span over 

two orders of magnitude in the predicted corrosion rate for the same input parameters [2, 3]. This 

disparity lies in how the various parameters are treated and how much conservatism and sensitity to 

environmental parameters is integrated into each model. For example, the NORSOK standard M-506 

model is one of the open source models for corrosion rate prediction with a greater sensitivity to 

solution pH than the de Waard models [1]. 
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Dugstad [2]  ƐƚĂƚĞĚ ƚŚĂƚ ŝƚ ŝƐ ŝŵƉŽƌƚĂŶƚ ƚŽ ƵŶĚĞƌƐƚĂŶĚ ƚŚĂƚ ƚŚĞ ƚĞƌŵ ͞CO2 ĐŽƌƌŽƐŝŽŶ͟ ĂŶĚ ƚŚĞ ĞĨĨĞĐƚ ŽĨ 
CO2 is not related to solely one mechanism. A wide range of electrochemical, chemical and mass 

transport processes; such as H2CO3 reduction reaction, H2O reduction and hydrogen-evolution etc [4, 

5], are occurring simultaneously at the interface of the corroding steel and the electrolyte. The 

majority of these reactions are sensitive to changes in the fluid properties (temperature, pressure, 

brine chemistry) and the flow conditions (velocity, flow regime), making the process incredibly 

complex in some instances, especially when localized attack occurs. 

One of the key factors influencing both general and localized corrosion rates of carbon steel in CO2-

containing brines is the nature and morphology of surface corrosion products. These corrosion 

products can consist of undissolved portions of the steel surface (such as Fe3C), or they can form on 

the steel surface via precipitation reactions (such as FeCO3). In some instances, carbon steel has also 

been shown to enter a pseudo-passive regime at higher pH [6, 7]. 

Considering the fact that pH plays a critical role in influencing both the kinetics of corrosion 

reactions [4, 8] as well as the morphology and composition of corrosion products [8, 9], it is 

expected that the initiation and propagation of pitting corrosion is affected by bulk pH of corrosion 

environments. The present paper focuses on the effect of three different corrosion environments 

buffered using sodium bicarbonate (NaHCO3) to different levels of bulk pH but in the same 3.5 wt. % 

NaCl brine solution. Temperature and partial pressure of CO2 are kept constant at all times.  

Film morphologies on carbon steel observed in CO2 corrosion 

The rationale behind the selection of the three pH values (pH = 3.8 (unbuffered), 6.6 and 7.5) was to 

promote the evolution of three distinctly different corrosion environments, corrosion products and 

evaluate the role of these corrosion products and the respective environments on the localized and 

general corrosion behavior of carbon steel. The following literature review therefore highlights the 

various corrosion product morphologies that can exist on carbon steels in CO2-containing 

environments in order to justify the selection of pH values considered in this work. The three types 

of corrosion products sought were: 

(i) Non-protective iron carbide (Fe3C) corrosion product layer composed of little or no trace of 

crystalline FeCO3 corrosion products. 

 

(ii) A protective and crystalline form of FeCO3 film capable of reducing the uniform corrosion 

rate to 0.1 mm/yr. 

 

(iii) A highly protective FeCO3 film with pseudo-passive characteristics believed to be attributed 

to magnetite (Fe3O4) [6]. 

In the experiments performed within this work, the goal was to maintain the partial pressure, 

temperature and chloride ion concentration in the bulk solution, varying only the bulk pH. This 

would enable identification of the role pH plays on surface corrosion product formation and the 

resulting effect this has on the general and localized corrosion behavior of the underlying substrate. 

The following review considers literature on the formation of Fe3C, FeCO3 and Fe3O4 corrosion 

products. 

Iron carbide (Fe3C) films  

Fe3C is commonly observed on the surfaces of carbon steel subjected to CO2 corrosion and the 

development of a porous network has been typically observed on steels with a carbon content in 

excess of 0.15% [10, 11]. An Fe3C network is revealed on steel surfaces as a result of the preferential 

ĚŝƐƐŽůƵƚŝŽŶ ŽĨ ƚŚĞ ɲ-ferrite phase within the steel microstructure. Fe3C is also believed to be able to 
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act as an electronic conductor which is capable of accelerating the corrosion rate of carbon steel by 

inducing a galvanic effect on the steel surface and acting as a favorable cathodic site for hydrogen 

evolution [12, 13]. Dugstad [14]  identified that ferritic-pearlitic microstructures can result in the 

evolution of a porous carbide layer, which remains uncorroded when exposed to CO2 environments. 

Farelas et al [10] attributed the significant increase in corrosion rate to the presence of Fe3C which 

generates cathodic sites with a lower overpotential for hydrogen evolution [12].  

For the experiments conducted in this work, to obtain a non-protective corrosion product layer 

consisting of mainly Fe3C on the carbon steel surface, whilst also ensuring minimal precipitation of 

FeCO3, a pH value of 3.8 (unbuffered) was chosen along with a temperature of 50°C. Such conditions 

would ensure that if supersaturation was indeed reached, the precipitation rate would be slow and 

theoretically not influence the corrosion rate of the underlying substrate significantly. 

Iron carbonate (FeCO3) corrosion products 

FeCO3 is capable of dramatically influencing the corrosion kinetics of the underlying steel via the 

precipitation of a crystalline layer on the steel surface and acting as a diffusion barrier to 

electrochemically active species involved in the charge-transfer process. The protectiveness of the 

film is influenced by several environmental factors such as temperature, pH, partial pressure and 

ferrous ion concentration. FeCO3 is able to precipitate via a one-stage reaction with carbonates, or 

via a two-stage reaction with bicarbonates: 

 Fe
2+ 

+ CO3
2- ї FĞCO3 (1) 

 Fe
2 

+ 2HCO3
- ї FĞ;HCO3)2 (2a) 

 Fe(HCO3)2 ї FĞCO3 + CO2 + H2O (2b) 

It is well known that pH has a strong influence on the solubility of FeCO3. Saturation of a saline 

solution with ferrous ions is achieved with 100 times less ferrous ions per unit increase in the  bulk 

pH  of the corrosion environment [2]. Therefore, based on these premise a pH of 6.6 was chosen at 

50°C in this study in order to form protective and crystalline FeCO3. 

 

Pseudo-passive film (iron carbonate (FeCO3) and magnetite (Fe3O4)) 

It has been demonstrated that in addition to the generation of FeCO3 corrosion product, the steel 

surface can enter into a pseudo-passive state, facilitating significant corrosion protection. The 

pseudo-passivation process results in a significant ennoblement of the carbon steel open circuit 

potential (by a magnitude ranging between 400 and 800 mV in some instances [7]). It was postulated 

by Han et al [7]  that the formation of the pseudo-passive corrosion products, could establish a 

galvanic cell on the carbon steel between the corrosion product covered pseudo-passive area and 

the actively corroding bare steel.  

In terms of selection of pH to achieve pseudo-passivation in this study, Han et al [7]  reviewed the 

passivation of X65 steel in 1 wt.% NaCl brine at 50°C and a pH of 7.5 in a static solution and observed 

that the steel entered a pseudo-passive state after 1 to 2 days of exposure. Consequently, the 

aforementioned conditions were chosen in the hope that passivation would occur early in the stages 

of the 7 day test to determine the influence of passivation on general and localized corrosion. 
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EXPERIMENTAL PROCEDURE 

 

Experimental setup: Figure 1 shows a schematic of the bubble cell apparatus used for the CO2 

corrosion experiments. Experiments were conducted in two vessels which were each filled with 2 

litres of 3.5 % NaCl brine.  

Materials and preparation: The steels specimens placed in the vessels consisted of 10 mm x 10 mm x 

5 mm X65 (UNS K03014) carbon steel samples. The steel was in a normalized form and consequently 

possessed a ferritic/pearlitic microstructure. The composition of X-65 steel is provided in Table 1. 

Table 1: X65 Carbon steel composition (wt. %) 

C Si P S Mo Mn Ni Nb V Fe 

0.15 0.22 0.025 0.002 0.17 1.422 0.09 0.054 0.057 97.81 

Wires were soldered to the back of all the test specimens before embedding them in a non-

conducting resin. Prior to the start of each experiment, all test samples were wet ground with 1200 

silicon carbide grit paper, degreased with acetone, rinsed with distilled water and dried with 

compressed air before immersion into the test solution. A sample surface area of 1 cm
2
 was exposed 

to the electrolyte per sample and 10 samples were immersed in each 2 litre vessel. Each experiment 

was conducted for 168 hours and two samples were removed from each solution after 7, 36, 72, 120 

and 168 hours for scanning electron microscopy (SEM)/X-ray diffraction (XRD) analysis to assist in 

observing the evolution of the surface corrosion products and pitting corrosion characterization.  

 
Figure 1: Schematic of the test cells for CO2 corrosion testing  

Brine preparation and test conditions: The test solution (3.5 wt. % NaCl solution) was completely 

saturated with CO2 for a minimum of 12 hours prior to starting each experiment to reduce oxygen 

concentration down to 20 ppb, simulating oilfield environments. CO2 was also bubbled into the 

system throughout the duration of every experiment and all tests were conducted at atmospheric 

pressure. The temperature in all experiments was kept constant at 50 ± 1°C whilst solution pH was 
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varied for each experiment and controlled through the addition of sodium bicarbonate (see Table 2 

for approximate quantities of Sodium bicarbonate used to achieve each pH levels).  

Based on the literature review performed, three pH values; unbuffered test environment with pH 

starting at 3.8, pH of 6.6 and pH of 7.5 were evaluated in an effort to create three distinctly different 

corrosion films; an Fe3C network with non-crystalline form of FeCO3, crystalline and protective form 

of FeCO3 and protective form of FeCO3 with pseudo-passivating properties respectively and which 

would all theoretically offer varying levels of general corrosion protection to the substrate. 

Table 2: NaHCO3 required for different levels of pH for in a 3.5 wt. % solution at 50°C 

pH Amount of NaHCO3 used as buffer (g) per 2L solution  

3.8 Nil 

6.6  у10 

7.5 у250 

In-situ electrochemical measurements: All experiments were conducted in a twin vessel as shown in 

Figure 1 to ensure repeatability of electrochemical and pitting corrosion data. Electrochemical 

measurements were conducted on two samples out of the 10 samples per test cell and these 

samples remained within the vessels until the end of the experiment to allow full collection of 

electrochemical data over the entire 168 hours. The average of four in-situ linear polarization 

measurements from a minimum of three repeatable experiments is presented in the discussion 

section. It is important to note that experiments were also repeated up to four times in some 

instances in order to obtain four repeatable LPR measurements. Each sample formed the working 

electrodes in a three-electrode cell which also comprised of an Ag/AgCl reference electrode and a 

platinum auxiliary electrode. Corrosion rate measurements were conducted using both DC and AC 

measurements with a potentiostat. For each long term experiment, two samples were subsequently 

removed from each test cell at sampling times of 7, 36, 72, 120 and 168 hours to enable the 

evolution of corrosion products and the growth of surface pits to be examined. 

In terms of DC techniques, linear polarization resistance (LPR) measurements were performed by 

polarizing the working electrode from 15 mV below the open circuit potential (OCP) to 15 mV more 

positive than the open circuit potential (OCP) at a scan rate of 0.25 mV/s to obtain a polarization 

resistance (Rp). Tafel polarization curves were generated based on poteniodynamic measurements 

performed on freshly polished samples in separate tests at each solution pH to determine anodic 

and cathodic Tafel constants and ultimately the Stern-Geary coefficient, which was subsequently 

ƵƐĞĚ ŝŶ ĐŽŶũƵŶĐƚŝŽŶ ǁŝƚŚ FĂƌĂĚĂǇ͛Ɛ Law and the measured values of Rp to estimate general corrosion 

rates. Tafel plots were obtained by performing anodic and cathodic polarization sweeps on two 

different samples in the same test cell. Scans always started at the OCP and extended ±250 mV at a 

scan rate of 0.25 mV/s. Both anodic and cathodic sweeps were performed on separate samples to 

ensure reliable measurements. Tafel polarization measurements were performed at varying times 

prior to film formation at stable corrosion potentials; usually after LPR measurements up to 7 hours.  

Characterization of pitting corrosion damage: Corrosion tests were conducted for 168 hours with the 

aim of monitoring the growth of different morphologies of corrosion products and assessing the 

impact these had on the initiation and propagation of surface pitting. Pit depth measurements were 

conducted in alignment with ASTM G46-94 [15]. A 3D interferometer was used in this study for 

defining the discrete geometry of pits on almost the entire steel sample surface area (у 81% of 1cm
2
 

sample). Pits were identified based on carefully chosen thresholds with distinct pit depths, 

diameters, and areas being quantified. ASTM G46-94 stipulates that an average of the 10 deepest 

pits and the maximum pit depth (based on relative pit depth measurement after removal of 

corrosion products) should be used for the characterization of pitting corrosion damage. A sample 

surface area of 9 x 9 mm
2
 was analyzed for pits from the 10 x 10 mm

2
 sample and a systematic 
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stitching approach was adopted whereby 9 different 3 x 3 mm
2
 areas were stitched together. 

Consequently, 3D images of regions where the deepest pits exist are identified on the sample 

surface with a high degree of accuracy and resolution.  

It is very important to note here that there is no generally accepted consensus on the minimum 

dimensions a pit can take in terms of depth and diameter, especially in non-passivating alloys like 

carbon steels. However, there are various suggestions of the different possible shapes, orientations 

and sizes of pits in ASTM G46-94 [15]. Nonetheless, attempts have been made in this work to 

provide visual evidence of pits/cavities in terms of the maximum pits identified by the techniques 

implemented in this work. Such examples are provided later in this paper. 

RESULTS 

Tafel plot, corrosion rate and open circuit potential observations: Figure 2 shows the Tafel plots 

obtained by performing separate anodic and cathodic polarization sweeps about the OCP of X65 

steel after 7 hours of immersion in the test solution. The graphs correspond to solutions of pH 

starting at 3.8 (unbuffered), 6.6 and 7.5. Table 3 indicates the measured Tafel constants and the 

resulting Stern-Geary coefficient which was used with the polarization resistance (RpͿ ĂŶĚ FĂƌĂĚĂǇ͛Ɛ 
Law to determine corrosion rate as a function of time, after taking into account solution resistance 

(which ranged between 4-7 Ohm.cm
2
).  Figure 2 indicates signs of pseudo-passivation occurring on 

the steel surface exposed to the solution at pH 7.5 at higher anodic potentials; the current reaches a 

ŵĂǆŝŵƵŵ Ăƚ у -540 mV and is shown to decrease as the potential is further increased. The cathodic 

reaction lines shows a diffusion limiting cathodic current contributed to by the reduction of H
+
 and 

potentially H2CO3 as expected at lower pH, while at higher pH values the cathodic reaction is 

influenced more by water reduction with less H
+ 

in the corrosive media. These results show good 

consistency with results by several authors [4, 16]. 

 
Figure 2: Tafel plots for X65 carbon steel in 3.5 wt.% NaCl solutions at 50°C and pH values of 3.8, 

6.6 and 7.5 

 

Table 3: Tafel constants at different levels of pH for X65 in a 3.5 wt.% solution at 50°C 

pH ࢇࢼ  

(mV/decade) 

ࢉࢼ  

(mV/decade) 

B (Stern-Geary Coefficient) 

(mV/decade) 

3.8 (unbuffered) 40 168 14 

6.6  80 95 19 

7.5 95 100 21 
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Referring to Figure 3(a), at a starting pH of 3.8 the corrosion rate increases with time, before 

reducing slowly and stabilizing at 2.8 mm/year between 72 and 168 hours. At pH 6.6, the corrosion 

rate reduces continuously over the test duration, reaching a final corrosion rate of 0.09 mm/year 

after 168 hours. At pH 7.5, the initial corrosion rate is in excess of 3.5 mm/year but reduces rapidly 

to values of approximately 0.02 mm/year after 20 hours. Referring to Figure 3(b), the point where 

the lowest corrosion rate is reached coincides with the passivation of the steel surface at pH 7.5, 

which is indicated by the increase in potential of the steel surface from -770 to in excess of у -250 

mV. The corrosion environment at pH of 7.5 at the start of experiment was initially higher than at 

lower pH. The reason for the higher initial corrosion rate at this pH value is still not clear, but there is 

evidence in the literature [7] that suggests the idea of a certain pH threshold above which the 

corrosion rate of carbon steel may become high again potentially due to the direct reduction of 

carbonate and bicarbonate ions. As stated previously, the passivation after 1-2 days was expected 

given the similarity between these conditions and those investigated by Han et al [7]. 

 
(a)  

 
(b)  

Figure 3: (a) LPR corrosion rate and (b) OCP over 168 hours for X65 carbon steel in a 3.5 wt.% NaCl 

solution at 50°C and solution pH values of 3.8 (unbuffered), 6.6 and 7.5. All graphs represent 

averages of four data points from repeatable experiments except the OCP reading for pH 7.5, 

where repeats are shown individually for clarity due to the passivation process. 
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Linking corrosion behavior to corrosion product surface morphology: For each experiment 

conducted at a starting pH of 3.8 (unbuffered), 6.6 and 7.5, the samples were removed from the 

brine after 7, 36, 72, 120 and 168 hours. Each sample was analyzed using the SEM to track the 

growth of surface corrosion products and correlate such to the electrochemical response.  

Starting pH of 3.8 (unbuffered) 

SEM images of the X65 surface when exposed to the solution at a starting pH 3.8 are provided in 

Figure 4. From Figure 3, over the first 7 hours the corrosion rate rises in conjunction with a slight 

initial increase in OCP. Figure 4(a) indicates the presence of Fe3C on the entire steel surface after 7 

hours which is believed to be predominantly responsible for the change in corrosion rate and 

corrosion potential by promoting the cathodic reaction on the steel surface [11, 12, 17]. After 36 

hours, corrosion rates reach a maximum and begin to reduce in conjunction with the evidence of the 

formation of a ͚ƐŵƵĚŐĞ-ůŝŬĞ ƚĞǆƚƵƌĞĚ͛ ĐŽƌƌŽƐŝŽŶ ƉƌŽĚƵĐƚ ŽŶ ƚŚĞ ƐƚĞĞů ƐƵƌĨĂĐĞ ;ƐŚŽǁŶ ŝŶ FŝŐƵƌĞƐ ϰ;ďͿ 
to (d)). The development of this surface film has been identified in a previous publication [18] and 

was found to consist of nano-crystalline or an amorphous like form of FeCO3 through the 

implementation of selected area electron diffraction and energy dispersive X-ray analysis using a 

transmission electron microscope. The evidence of the presence of an amorphous form of FeCO3 

during this period also coincided with an increase in bulk pH from 3.8 at the start of experiment to 

4.6 after 36 hours. According to Guo et al [19], the increase in bulk pH is due to the buffering effect 

from the ferrite dissolution process, which is expected to exceed the rate of FeCO3 formation in the 

initial stages of the corrosion process. The buffering effect continued until after 72 hours after which 

ƚŚĞ ƉH ƐƚĂďŝůŝǌĞƐ Ăƚ у ϱ͘Ϭ ƵƉ ƚŽ ƚŚĞ ĞŶĚ ŽĨ ƚŚĞ test. The amorphous layer is shown to build up over 

time along with some localized crystals of FeCO3 up to 168 hours, after which the corrosion rate 

stabilizes at approximately 2.8 mm/year. It appears that the amorphous film is capable of offering 

slight protection to the steel surface. 

   
(a) After 7 hours exposure  

 



9 

 

(b) After 36 hours exposure 

  
(c) After 72 hours exposure 

  
(d) After 168 hours exposure 

Figure 4: SEM images of surface films present on X65 carbon steel after exposure to 3.5 wt.% NaCl 

solution at 50°C and pH of 3.8 for a period of (a) 7 hours, (b) 36 hours, (c) 72 hours and (d) 168 

hours  

pH 6.6 

SEM images of the X65 steel surface after exposure to the solution at pH 6.6 for 7, 36, 72 and 168 

hours are provided in Figure 5. Increased bulk solution pH has resulted in the formation of FeCO3 

crystals which have already nucleated on the steel surface after 7 hours (Figure 5(a)). The increase in 

bulk pH significantly decreases the solubility of FeCO3, resulting in its precipitation. In these 

particular conditions, Dugstad [2] determined that the solubility of ferrous ions required is only a 

fraction of a ppm, as opposed to over 100 ppm in the bulk solution at pH 3.8. Consequently, FeCO3 

precipitation is far more favorable at the higher pH and has resulted in the formation of a crystalline 

corrosion product layer.  

After 36 hours of exposure, discrete crystals of FeCO3 are evident on the steel surface from 1-2 µm 

to over 10 µm in width (Figure 5(b)). In conjunction with this behavior, the corrosion rate is also 

declining over this period as a result of the FeCO3 crystals blocking some active sites on the steel 

surface. From 36 hours onwards, there is continued nucleation and growth of the FeCO3 crystals 

which resulted in a substantial corrosion product layer being formed. From this point onwards, the 

FeCO3 film has the ability to also act as a diffusion barrier to electrochemically-active species 

involved in the charge-transfer reaction through the generation of a protective corrosion product on 

the steel surface. By considering Figures 5(c) and (d), it is evident that areas still exist on the steel 

surface through which the electrolyte could have a direct pathway to the steel surface (see Figure 
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5(d) in particular). However, extensive SEM analysis indicated that the number and size of these 

localized regions did reduce significantly from 72 to 168 hours as crystals continued to grow. 

      
(a) After 7 hours exposure 

    
(b) After 36 hours exposure 

    
(c) After 72 hours exposure 
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(d) After 168 hours exposure 

Figure 5: SEM images of surface films present on X65 carbon steel after exposure to 3.5 wt.% NaCl 

solution at 50°C and pH of 6.6 for a period of (a) 7 hours, (b) 36 hours, (c) 72 hours (d) 168 hours 

pH 7.5 

SEM images of the X65 steel surface exposed to the solution at a pH of 7.5 after 7, 36, 72 and 168 

hours are provided in Figure 6. A further increase in system pH resulted in even more substantial 

levels of FeCO3 precipitation occurring earlier in the experiment. This was attributed to a further 

reduction in the solubility of FeCO3 in the bulk solution as a result of the increase in pH. 

Pseudo-passivation is observed to have occurred between 20 and 40 hours as shown by a shift in the 

ĐŽƌƌŽƐŝŽŶ ƉŽƚĞŶƚŝĂů ĨƌŽŵ у -ϳϳϬ ŵV ƚŽ у -250 mV in Figure 3(b). No significant change in the top view 

morphology of the film was observed between 36 and 72 hours, other than the size of FeCO3 crystals 

becoming larger. It has been suggested that the pseudo-passivation effect occurs underneath the 

corrosion product [20]. Regrettably, the nature of this layer responsible for the pseudoʹpassivation 

effect according to Han et al [20] could not be identified using XRD in this study and is the subject of 

ĐŽŶƚŝŶƵŝŶŐ ƌĞƐĞĂƌĐŚ͘ HŽǁĞǀĞƌ͕ ŝƚ ŝƐ ĐůĞĂƌ ƚŚĂƚ ͚pseudo-ƉĂƐƐŝǀĂƚŝŽŶ͛ ŚĂĚ ŽĐcurred based on the 

significant change in corrosion potential. As mentioned previously, it has been suggested by Han et 

al [20] that the pseudo-passive layer could comprise of magnetite (Fe3O4). According to Han et al 

[20], The formation of Fe3O4 in CO2 corrosion environment was thought to be favored by the 

reactions; 

3Fe + 4H2O ї Fe3O4 + 8H
+ 

+ 8e
-
    3(a) 

3FeCO3 + 4H2O ї Fe3O4 +3HCO3
-
 + 5H

+ 
+ 2e

-
     3(b) 

According to Han et al [20], the tendency for formation of magnetite via Eq.3(a) is influenced by a 

critical pH. Han et al [7] also demonstrated that the pH value at the surface of the steel can be 

significantly higher than that in the bulk solution, making pseudo-passivation (potentially by the 

presence of Fe3O4) more favorable. 

After 7 hours of exposure (Figure 6(a)), a significant proportion of the surface was covered in FeCO3 

crystals which possessed a very different structure to those observed at pH 6.6. The crystals formed 

at pH 7.5 consist of a platelet structure with sharper, more defined edges and corners as opposed to 

the rounded crystals observed in at pH 6.6. 

After 36 hours of exposure, the entire surface was almost entirely covered by FeCO3 crystals. Very 

little changes were observed from the top view SEM images from 36 hours onwards. The only 

noticeable change was an increase in crystal size. 
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(a) After 7 hours exposure 

   
(b) After 36 hours exposure 

   
(c) After 72 hours exposure 
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(d) After 168 hours exposure 

Figure 6: SEM images of surface films present on X65 carbon steel after exposure to 3.5 wt.% NaCl 

solution at 50°C and pH of 7.5 for a period of (a) 7 hours, (b) 36 hours,(c) 72 hours and (d) 168 

hours 

 

Figure 7 shows the reference XRD patterns for Fe, Fe3C and FeCO3, while Figure 8 shows the XRD 

pattern [21-23] for the corrosion product layer for carbon steel in 3.5 wt. % NaCl solutions Ăƚ ϱϬȗC 
after 168 hours at pH 3.8 (unbuffered), 6.6 and 7.5. The XRD patterns in Figure 8 confirm the 

formation of an extensive layer of crystalline FeCO3 at pH 6.6 and 7.5, while at pH of 3.8; the 

corrosion product layer is dominated by a non-crystalline form of FeCO3.  
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Figure 7: Reference XRD patterns for Fe, Fe3C and FeCO3 [21-23] 
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Figure 8: XRD pattern of corrosion product film on carbon steel samples in a 3.5 wt.% NaCl brine 

after 168 hours at different pH. 

 

Linking pitting behavior to surface morphology, corrosion rate and corrosion potential: The main 

focus of this research is to understand and establish the correlation between the pitting corrosion 

behavior of carbon steel pipeline material with the corrosion product morphology and 

electrochemical responses as influenced by the bulk pH of the solution. Figure 9 shows the 

maximum and average pit depths measured on the sample surface in relation to the LPR corrosion 

rate and OCP measurements for each test performed at pH values of 3.8 (unbuffered), 6.6 and 7.5. 

Referring to the tests at pH 3.8 (Figures 9(a) and (b)); pit growth is continuous and relatively linear 

throughout the entire experiment. The formation of the non-protective and amorphous-like FeCO3 

appears to have little or no influence on reducing pit growth. Similar trends has been observed in a 

previous publication [18]. This behavior is logical given that the film has had little impact on reducing 

the general corrosion rate on the steel surface. A maximum pit depth of 50 µm was recorded by the 

end of the experiment. 

Experiments performed at pH 6.6 (Figures 9(c) and (d)) show a marked difference in comparison to 

those at pH 3.8. Pit growth over the first 72 hours is very slow, where only a depth of 13 µm is 

reached (half that at pH 3.8 after the same exposure time). Interestingly, between 72 and 120 hours, 

there is a significant increase in pit depth. The observed pit growth occurs in conjunction with the 

high degree of surface coverage of the FeCO3 corrosion products, as shown in the SEM images in 

Figure 5. It is suggested that the small cavities in the FeCO3 corrosion products have resulted in the 

increase in regions of localized attack and the accelerated growth in pit depth. Once these voids 

become filled through further precipitation, the pit growth is likely to be retarded as shown in the pit 

depth values at 168 hours. The formation of the extensive FeCO3 corrosion product layer appears to 

be reducing the pit propagation.  
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(a) At a starting pH of 3.8 (unbuffered)  

 
(b) At a starting pH of 3.8 (unbuffered) 

 

 
(c) At pH of 6.6 (buffered) 
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(d) At pH of 6.6 (buffered) 

 
(e) At pH of 7.5 (buffered) 

 
(f) At pH of 7.5 (buffered) 

Figure 9: Pit growth in conjunction with LPR corrosion rate and OCP measurements for (a) and (b) 

pH 3.8; (c) and (d) pH 6.6; (e) and (f) pH 7.5. 
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At pH 7.5, the average of the 10 deepest pits presented in Figures 9(e) and (f) is significantly lower 

than the maximum pits due to the limited number of pits identified on the steel surface above 

10µm. The results also indicate that the size distribution of pits varies with changing pH. This is 

evident from the standard deviation plotted as error bars. After 7 hours, no pits were identified on 

the entire steel surface. However, after the pseudo-passivation process, pits in excess of 30 µm deep 

were clearly recorded. By considering the maximum pit depths, it appears that pit growth continues 

under the pseudo-passive regime, but at a much slower rate than that recorded at pH 3.8, although 

this requires further research to come to a firm conclusion. The results suggest in this instance, that 

the pseudo-passivation process results in the initiation and propagation of pits on the steel surface, 

but once OCP stabilizes, the rate of pit growth is not as fast as the test at pH 3.8. Further research is 

required to explore the relationship between OCP and pit growth when pseudo-passivation of steel 

occurs.  

Concept of total pit penetration rate and pitting factor: When considering the threat posed to 

carbon steel pipework subject to pitting corrosion, the potential failure mechanism of a pipeline that 

is suceptible to pitting will not only depend upon the rate at which pits propagate relative to the 

corroding surface, but also on the uniform corrosion rate of the surrounding area. Total metal 

penetration (Pd), also refereed to as 'absolute' pit depth is defined as the sum of the pit depth   

relative to the corroded surface (dmax), plus the average metal loss from general corrosion rate 

measurements (termed Pu), i.e. Pd = Pu + dmax. Figure 10 shows this theory in more detail and 

introduces the concept of total depth of metal penetration, which is essentially the correlation and 

approximate contribution of the average thickness loss determined from LPR corrosion 

measurements in addition to the pit depth relative to the corroding surface from profilometry 

measurements. The notion of the total pit penetration depth or metal penetration is effectively 

what should be used to determine a total pit penetration rate which can then be used to estimate 

pipeline lifetime. Referring to Figure 10, the change in total penetration depth (i.e. uniform thickness 

plus pit depth relative to the corroded surface) as a function of time can be observed for each 

solution pH.  

 
 

Figure 10: Total pit penetration on steel surface for each system pH as a fuunction of time 

indicating the contribution of general thickness loss (from LPR) and pit depth relative to corroded 

surface (determined from surface profilometry)  
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The results indicate that due to the substantial general corrosion rate of the sample exposed to the 

pH 3.8 solution, the total penetration depth far exceeds that of the samples exposed to the higher 

pH solutions, where the uniform thickness loss is negligible in comaprison to the pit depth. It could 

be considered that the high general corrosion rate observed at pH 3.8 has the ability to essentially 

mask pit growth. It is therefore logical to conclude that metal penetration is occuring at a faster rate 

than that identified from purely the profilometry depth measurements relative to the corroding 

surface. 

Therefore affording consideration to the uniform corrosion rate of the surrounding area is a 

fundamental consideration when reviewing the susceptibility of the carbon steel to pitting corrosion 

when the general corrosion rate is appreciable. For tests performed at pH 6.6 and 7.5, the growth of 

the pit is not significantly masked by the general corrosion rate. The results shown in Figure 10 also 

suggest that in these particular tests, increasing solution pH may not necessarily reduce the risk of 

pitting of carbon steel materials.   

In order to emphasize the importance of this approach, Figure 11 presents a comparison between 

corrosion rate from experiments in this work at pH of 3.8 and 6.6 with those from the NORSOK 

standard M-506 open model. For the application of the model in the case of experiments at pH 3.8 

(unbuffered), the average pH for the whole duratioŶ ŽĨ ƚŚĞ ƚĞƐƚ ǁĂƐ ƵƐĞĚ ĂŶĚ ǁĂƐ у ϰ͘ϴ͘ TŚĞ ƌĞƐƵůƚƐ 
in Figure 11 shows that the NORSOK standard M-506 model predicted a higher thickness loss due to 

uniform corrosion than from experiment at starting pH values of 3.8, while on the other hand, the 

NORSOK standard M-506 model predicted a similar thickness loss due to uniform corrosion at pH 6.6 

with estimated thickness loss from experiments. The results in Figure 11 indicate that (in comparison 

to the pitting and uniform corrosion data provided in Figure 10) although the NORSOK standard M-

506 model may not have been developed to predict pitting corrosion, prediction of thickness loss of 

pipeline steels based on this model in conditions where pitting is likely to occur may be 

underestimated especially at higher pH values given the strong sensitivity of this model to pH. 

 

Figure 11: Comparison between the thickness loss due to unform corrosion from experiment and 

those predicted using the NORSOK standard M-506 model 

Pitting Factor: The concept of pitting factorሺP୤) has been introduced as a tool for characterization of 

the nature of corrosion damage in this work. The pitting factor is used to reflect the relative 

contribution of corrosion damage mechanism (between uniform and pitting corrosion) at each 

experimental sampling time and is defined in ASTM G46-94[15] as: 
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Where Pୢ is the deepest metal penetration (µm) for the whole exposed surface area (sum of 

maximum pit depth (dmax), (after removal of corrosion products) plus the average metal penetration 

(µm) from general corrosion rate measurement (termed Pu), i.e; Pd = Pu + dmax. 

The deepest metal penetration is the deepest pit (dmax) after removal of corrosion products on an 

entire sample surface while average metal penetration (Pu) is the average of thickness loss due to 

uniform corrosion as estimated from four repeatable LPR measurements. Hence, the plot of pitting 

factor in Figure 12 has already taken into consideration the repeatability and variability in the 

corrosion rate data presented in Figure 3. 

As shown in Equation 6, a pitting factor of 1 represents uniform corrosion. The greater the (dmax), the 

greater the pitting factor.  

The pitting factor analysis presented in Figure 12 is a clear indication that the corrosion damage 

mechanism observed at pH 3.8 conditions is actually pitting even while there is still substantial 

uniform corrosion taking place. At pH 6.6, the pitting factor was higher after 36 hours once 

significant protection was achieved from precipitated FeCO3 corrosion products. This suggests that 

pitting corrosion dominated the corrosion damage mechanism in this situation once the corrosion 

product become significantly protective. This is likely due to the galvanic action that exists [24] 

between protected and unprotected areas of the corroding surface. The pitting factor at pH of 7.5 

was higher after just 7 hours. Thus, at pH 7.5 there was very minimal uniform corrosion.  

 
Figure 12: Variation of pitting factor for steel surface exposed to each system pH as a function of 

time. 

Pit count and morphology: Figure 13 provides examples of pit morphologies for the tests conducted 

at each solution pH. Although no quantative pit count was conducted, the number of pits on the 

surface were observed to significantly reduce with an increase in solution pH. 

At pH 7.5, only 4-5 pits above a depth of 10 µm were observed on the entire steel surface. The 

difficulty in locating pits under these conditions highlights the importance of ensuring that the entire 

steel surface is scanned in order to accurately determine the susceptibility of the surface to pitting 

corrosion, particularly at high pH when the steel enters a pseudo-passive regime. 
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(a) At a starting pH of 3.8 (unbuffered) 

 

 
(b) At pH of 6.6 (buffered) 



21 

 

 
(c) At pH of 7.5 (buffered) 

(d) At pH of 7.5 (buffered) 

Figure 13: 2D and 3D profilometry images to indicate the morphology and quantity of pits 

observed on the steel surface after 168 hours exposure to CO2-saturated brine at a pH of (a) 3.8, 

(b) 6.6 (c) 7.5 from test-1 and (d) 7.5 from test-2 
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Influence of pseudo-passivation on pit initiation and propagation 

The formation of a passivating oxide layer in passive materials is fundamental to the occurence of pit 

initiation and propagation. However, similar circumstances have been shown in this work at pH of 

7.5 where a pseudo-passivating effect is obserevd on carbon steels. A pseudo-passivated steel 

surface can therefore act as a large cathode relative to the small anodic pits. However, if already 

initiated pits are covered by precipitated FeCO3 corrosion products, pit propagation is likely to be 

inhibited [24]. 

Figure 10 indicates the change in pit depth as a function of time. By considering the change in total 

penetration depth (the sum of maximum pit depth relative to corroded surface and the average of 

thickness loss due to uniform corrosion from four repeatable measurements) between each 

measurement along with the time interval between the removal of each sample, it is possible to 

determine the total pit penetration rate as a function of time. This information has been extracted 

from Figure 10 and the pit penetration rate as a function of time but limited to a 168 hours time 

frame is provided in Figure 14 in conjunction with the OCP measurements for pH 7.5 also as a 

function of time. The results confirm the previous statement that pit growth is exceptionally high (in 

excess of 10 mm/year) during the pseudo-passivation process, but after passivation is complete and 

the potential stabilizes, the pit growth is reduced dramatically to у 0.06 mm/. 

 

Figure 14: Total metal penetration rate and open circuit potential for X65 steel at pH 7.5 as a 

function of time. (Error bars are based on variability in pit depth and corosion rate measurements)  
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CONCLUSIONS 
 

Three different combinations of corrosion products were produced on the surface of X65 carbon 

steel in 3.5 wt. % NaCl at 50°C and different pH values at 3.8, 6.6 and 7.5. At a starting pH of 3.8 

(unbuffered), a non-protective porous Fe3C film was produced with traces of an amorphous-like 

product (determined to be FeCO3). At pH 6.6, a protective iron carbonate film was produced and at 

pH 7.5, an iron carbonate film was formed with a pseudo-passivating effect. From the work 

performed, the following conclusions can be made. Over a 168 hours exposure period, 

 

 Changing bulk pH influences the kinetics of corrosion and formation of different forms of FeCO3 

corrosion product by; 

 Influencing the uniform corrosion rate of steel surface such that the general corrosion 

rate is reduced with decrease in H+ concentration as the bulk pH increases. 

 Controlling the process of evolution of different forms of FeCO3 corrosion products as 

the pH changes.  

 A correlation between the evolution of different forms of corrosion products at different bulk 

pH and pitting corrosion has also been established from this study in terms of the pitting 

corrosion pathways; 

 At pH 3.8 (unbuffered), pitting corrosion (relative to corroded surface) occurs steadily.  

 

 At pH 6.6 pitting corrosion also progresses substantially with FeCO3 formation. 

 

 At pH 7.5 pitting corrosion still occurs once pseudo-passivation effect is achieved 
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