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ABSTRACT
We consider the influence of potential quark matter existing at high densities in neutron star
(NS) interiors on gravitational waves (GWs) emitted in a binary NS merger event. Two types of
equations of state (EoSs) at zero temperature are used – one describing pure nuclear matter and
the other nuclear matter with a phase transition to quark matter at very high densities. Binary
equilibrium sequences close to the innermost stable circular orbit (ISCO) are calculated to
determine the GW frequencies just before the merger. It is found that the effects of the EoSs
begin to play a role when gravitational masses are larger than M ∞ � 1.5 M�. The difference
in the GW frequency at the ISCO increases by up to �10 per cent for the maximum mass
permitted by the EoSs. We then perform three-dimensional hydrodynamic simulations for
each EoS while varying the initial mass and determine the characteristic GW frequencies of
the merger remnant. The implications of the presence of quark matter show up mainly in the
collapse behaviour of the merger remnant. If the collapse does not take place immediately
after the merger, we find a phase difference between the two EoSs in the post-merger GW
signal. We also compare the GW frequencies emitted by the remnant of the merger to values
obtained from simulations using a polytropic EoS and find an imprint of the non-constant
adiabatic index of our EoSs. All calculations are based on the conformally flat approximation
to general relativity and the GW signal from the merger simulation is extracted up to quadrupole
order.
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1 I N T RO D U C T I O N

Binary neutron star (NS) mergers belong to the strongest grav-
itational wave (GW) sources for interferometer-type GW obser-
vatories, for example LIGO (Abramovici et al. 1992), VIRGO
(Bradaschia et al. 1990), GEO600 (Lück 1997) and TAMA (Ando
et al. 2001). After a long inspiral process which lasts millions of
years, the final merger phase takes place over a time-scale of just
milliseconds. The onset of the merger begins when the two compan-
ions become dynamically unstable near the innermost stable circular
orbit (ISCO) and mass transfer starts. As the process has no definite
symmetries, three-dimensional (3D) hydrodynamic simulations are
necessary. In addition, owing to the compactness of the system, the
effects of general relativity must be considered and dealt with as
accurately as possible.

It has been pointed out that the GW frequency, f GW, is related to
the compactness, (M/R)∞, of a NS by f GW ∼ (M/R)3/2

∞ near the
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ISCO, meaning that the GW frequency just before a merger carries
information to the radius of the NS. Hence, the GW signal may
constrain the equation of state (EoS) of high-density matter, (see
e.g. Lai & Wiseman 1996; Rasio & Shapiro 1999). It has also been
found recently that a NS formed after a merger may be supported by
rapid and differential rotation even if its mass exceeds 60 per cent
of the maximum mass of a single non-rotating NS, and GWs are
emitted due to non-axisymmetric and quasi-radial oscillations of the
remnant for longer than the dynamical time-scale (Shibata & Uryū
2000, 2002; Shibata, Taniguchi & Uryū 2003). If these oscillations
persist for a long time, an integrated GW may be detectable, carrying
information on the high-density matter.

In addition to general relativistic gravity, various types of physics
should be taken into account when dealing with the binary NS
merger problem, for example the nuclear forces summarized in the
EoS, neutrino physics and magnetic fields. So far, however, owing
to the complexities involved, investigations have concentrated on
either the relativistic aspects of the problem using a simple EoS or
the microphysical aspects of treating gravity in a Newtonian frame-
work. Pioneering work in this field has been carried out by Oohara
& Nakamura and is detailed in (Oohara & Nakamura 1999, and
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references therein). Relativistic aspects have been considered using
the post-Newtonian approximation (Ayal et al. 2001; Faber & Rasio
2002, and references therein), the conformally flat (CF) approxi-
mation (Mathews & Wilson 2000; Oechslin, Rosswog & Thiele-
mann 2002; Faber, Grandclément & Rasio 2003, and references
therein) and a fully general relativistic treatment (Shibata & Uryū
2000, 2002; Shibata et al. 2003, and references therein). Microphys-
ical improvements have been applied by (Ruffert & Janka 2001,
and references therein) and (Rosswog & Davies 2002, and refer-
ences therein) using different EoSs (Lattimer & Swesty 1991; Shen
et al. 1998) and a leakage scheme to account for neutrino emission
after the merger. For a review on the topic see Rasio & Shapiro
(1999).

In this paper, we focus on two EoSs for high-density NS matter –
one describing pure nuclear matter and the other nuclear matter with
a transition to the quark phase at very high densities. The reason for
investigating these EoSs is that quark phase transition may be one
of the most dramatic phenomena that changes the compactness of
NSs, and therefore its influence may be clearly observed in the GW
spectrum of an inspiralling binary system. Following our previous
work (Oechslin et al. 2002), we consider the merger problem in the
CF approximation.

The paper is organized as follows. In Section 2, we summarize the
formalism to solve the Einstein and the relativistic hydrodynamic
equations, and describe the numerical implementation, the choice
of the EoS and the initial conditions. In Section 3, we present our
results and, finally, we draw our conclusions in Section 4.

2 F U N DA M E N TA L I N G R E D I E N T S

In this section we describe the numerical methods and the physics on
which our simulations are based. We consider a general relativis-
tic fluid whose internal properties are described by a given EoS.
Two sets of equations have to be solved simultaneously. On the one
hand, we consider the relativistic hydrodynamic equations govern-
ing fluid motion and on the other hand the Einstein equation of
general relativity determining the space–time metric and therefore
the gravitational interaction. On top of this, an EoS, which closes
the system of hydrodynamic equations, has to be given as the input.

2.1 Relativistic hydrodynamics and an approximation for
general relativistic gravity

In the 3 + 1 decomposition of space–time, the metric ds2 = gµν

dxµ dxν can be written as

ds2 = (−α2 + βiβ
i
)

dt2 + 2βi dxi dt + γi j dxi dx j , (1)

where α is the lapse function, β i is the shift vector and γ i j is
the spatial metric. Space–time quantities are decomposed with re-
spect to foliation using the hypersurface normal defined as nµ =
− α∂µ t with nµnµ = −1 and a projection tensor defined as γ µν

= gµν + nµnν , whose spatial component agrees with the spatial
metric.

The Einstein field equations can be written as a set of two evolu-
tion equations, i.e.

∂tγi j = −2αKi j + ∇iβ j + ∇ jβi (2)

and

∂t Ki j = α
[

Ri j − 2Kil K l
j + K Ki j − 8πSi j + 4πγi j (S − ρE)

]
−∇i∇ jα + β l∇l Ki j + Kil∇ jβ

l + K jl∇iβ
l , (3)

and two constraint equations,

R + K 2 − Ki j K i j = 16πρE (4)

and

∇ j (K i j − γ i j K ) = 8π j I , (5)

for the dynamic variables γ i j and Kij, the extrinsic curvature of the
hypersurface (see e.g. Baumgarte & Shapiro 2003). Here, Rij is the
Ricci tensor and ∇ the covariant derivative associated with γ i j .
The stress energy tensor T µν is decomposed into ρE = nµnν T µν ,
the matter energy density, j i = γ i

µnν T µν , the matter momentum
density and Sij = γ iµγ jν T µν , the spatial projection of the stress
energy tensor. Finally, R, S and K denote the traces of Rij, Sij and
Kij, respectively.

In the following discussion, we consider a perfect fluid with a
matter stress energy tensor

Tµν = ρhuµuν + pgµν. (6)

Here, ρ refers to the rest-mass density, h = 1 + p/ρ + ε to the
specific relativistic enthalpy, ε to the specific internal energy, uµ to
the four velocity and p to the fluid pressure. Then,

ρE = ρh(αu0)2 − p (7)

and

j i = ρhαu0uµγ i
µ. (8)

The Lorentz factor W = αu0 can be calculated using the normal-
ization condition uµuµ = −1 and so

αu0 = (
1 + γ i j ui u j

)1/2
. (9)

Isenberg proposed a waveless approximation to general relativity,
in which he truncates some terms in the Einstein equation written
in the Arnowitt, Deser and Misner (ADH) formalism to deduce an
elliptic-type formalism (Isenberg 1978). Later, the same set of equa-
tions were rediscovered by (Wilson, Mathews & Marronetti 1996)
and widely used to solve single or binary NSs problems (e.g. Oech-
slin et al. 2002) as well as binary black hole (BH) systems (Grand-
clement, Gourgoulhon & Bonazzola 2002). The Isenberg–Wilson–
Mathews theory has its own Hamiltonian as pointed out by Isenberg
himself (also discussed in Friedman, Uryū & Shibata 2002).

In this approximation, the CF condition γ i j = ψ4δ i j for the spa-
tial geometry and K = ∂ t K = 0 are imposed, where δ i j is the flat
three-metric. It may be viewed that the second condition is a choice
between a temporal gauge condition and the maximal slicing condi-
tion, while the first condition is an approximation and partly a spatial
gauge choice (details can be found in Baumgarte et al. 1998). The
remaining metric variables (ψ , α, β i ) do not satisfy all components
of the Einstein field equation consistently. We pick the constraints
and the trace of the evolution equation for Kij as equations for these
five variables, which leads to the same set of equations derived from
Isenberg’s Hamiltonian mentioned already.

The approximation leads to a considerable simplification of the
Einstein equations, since all metric equations can be written in el-
liptic form.

The trace of the evolution equation for Kij together with the max-
imal slicing condition, K = 0, leads to the following equation for
the lapse:

�(αψ) = 2παψ5(ρE + 2S) + 7

8
αψ5 Ki j K i j . (10)

The trace-free part of the evolution equation for γ i j together with
the CF condition, γ i j = ψ4δ i j , gives

2αψ−4 Ki j = ∂ j β̃i + ∂i β̃ j − 2

3
δi j∂kβ

k, (11)
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where ∂ i is a derivative with respect to the coordinate associated with
δ i j and β̃i relate to the shift β i through the flat metric as β̃i = δi jβ

j .
The Hamiltonian constraint provides an equation for the conformal
factor, i.e.

�ψ = −2πψ5ρE − 1

8
ψ5 Ki j K i j ≡ 4πSψ . (12)

Finally, with the momentum constraint we obtain an equation for
the shift vector

�β i + 1

3
∂i∂ jβ

j = ∂ j ln

(
α

ψ6

)(
∂ jβ i + ∂iβ j − 2

3
δi j∂lβ

l

)

+ 16παψ4 j i ,

(13)

where ∂ i = δi j∂ j . Using the definition

β i = Bi − 1

4
∂iχ, (14)

equation (13) splits into two simpler parts

�Bi = ∂ j ln

(
α

ψ6

)(
∂ jβ i + ∂iβ j − 2

3
δi j∂lβ

l

)

+16παψ4 j i (15)

and

�χ = ∂ j B j . (16)

While the trace-free components of the evolution equation for γ i j

(2) are used to relate Kij and the metric variables as in equation
(11), its trace part and the trace-free components of the evolution
equation for Kij (3) are dropped by the CF approximation. The trace
of equation (2) can be used to check the accuracy and reliability of
the CF approximation (Dimmelmeier, Font & Müller 2002; Oechslin
2003)

The relativistic hydrodynamic equations can be written as

∂tρ
∗ + ∂i (ρ

∗vi ) = 0, (17)

∂t (ρ
∗ε) + ∂i (ρ

∗εvi ) = −p
[
∂t (αu0γ 1/2) + ∂i (αu0γ 1/2vi )

]
, (18)

∂t (ρ
∗huk) + ∂i (ρ

∗hukv
i ) = −αγ 1/2∂k p

+ ρ∗h

(
−αu0∂kα + u j∂kβ

j − ui u j

2u0
∂kγ

i j

)
, (19)

where

ρ∗ = ραu0 det(γi j ) (20)

and

vi = −β i + γ i j u j

u0
. (21)

In the case of conformal flatness, the system reduces to

d

dt
ρ∗ = −ρ∗∂iv

I , (22)

d

dt
ũi = − 1

ρ∗ αψ6∂i p − αũ0∂iα + ũ j∂iβ
j

+2ũk ũk

ψ5ũ0
∂iψ (23)

and

d

dt
ε = − p

ρ
∂iv

i − p

ρ

d

dt
ln(αu0ψ6), (24)

with

ũi = hui , (25)

ρ∗ = ραu0ψ6 (26)

and

vi = −β i + δi j u j

ψ4u0
. (27)

Here, we have cast the system into a Lagrangian formulation which
is better suited for an implementation on a computer using a La-
grangian scheme like the smoothed particle hydrodynamics (SPH)
method (cf. Section 2.2). The conserved hydrodynamic variables
are (ρ∗, ũi , ε) whereas the primitive variables are (ρ, vi, ε).

2.2 Numerical implementation

To solve the system of hydrodynamic equations (22)–(24) we use
the SPH method (Monaghan, & Gingold 1983; Benz 1990), which
is widely used in astronomical and astrophysical simulations. The
original form of SPH that solves the Newtonian hydrodynamic equa-
tions is presented in Benz (1990). We list here the generalized ver-
sion which is appropriate for the already mentioned relativistic hy-
drodynamic equations. For details, see Oechslin et al. (2002). The
continuity equation turns into a relationship between ρ∗ and the rest
masses of the individual particles

ρ∗
a =

∑
b

mbWab, (28)

where mb is the rest mass of particle b and Wab = W (| r a − r b|,
hSPH) denotes the weight given by the standard spherical spline
Kernel function W (r , hSPH). The rest masses mb and the smoothing
length hSPH are initially chosen to fit an initial spatial distribution
of ρ∗. The pressure gradient contained in the momentum equation
(24) is calculated as in standard SPH but replacing ρ by ρ∗, i.e.

1

ρ∗
a

∂i pa = −
∑

b

mb

(
pb

ρ∗2
b

+ pa

ρ∗2
a

)
∂i Wab. (29)

The energy equation (25) contains a velocity divergence term similar
to Newtonian SPH, i.e.

− p

ρ
∂iv

i

∣∣∣∣
a

= 1

2

∑
b

mb

(
pa

ρ∗
a ρa

+ pb

ρ∗
b ρb

)(
vi

a − vi
b

)
∂i Wab. (30)

The additional terms in the momentum and energy equation that
arise from the gravitational interaction are evaluated by first solving
the equations for the metric variables α, ψ and β i on a overlaid
grid (see discussion below) and by mapping back those quantities
on to the particles by second-order interpolation. The total time
derivative of ln (α u0ψ6)a in the energy equation is evaluated using
second-order finite differencing in time.

On top of these equations, an artificial viscosity (AV) scheme is
implemented with time-dependent viscosity parameters (Morris &
Monaghan 1997) which have only significant values in the presence
of shocks. The AV produces an additional viscous pressure which
is added to the physical fluid pressure (Siegler & Riffert 2000).

The field equations (10), (12), (15) and (16) are discretized on a
grid which covers the matter distribution. The evaluation proceeds
generally in three steps as follows.

(i) First, we calculate the source corresponding to the poten-
tial. The hydrodynamic quantities involved and defined on the SPH
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particles are transferred on to the grid by assigning SPH-interpolated
values to the grid points, i.e.

〈 f (x)〉SPH =
∑

j

f j
m j

ρ∗
j

W (|r − r j |, h j ). (31)

(ii) The potential is then obtained by solving the corresponding
Poisson equation. The ψ and the αψ equations are closely linked and
are therefore solved in two iteration steps using the solution from
the previous time-step as a guess. The remaining four equations
determining the shift vector are also closely coupled and are solved
simultaneously. All Poissonian equations are solved using a full
multi-grid solver.

(iii) All needed derivatives are calculated on the grid using finite
differencing.

(iv) Finally, the potential and its derivatives are mapped back
on to the SPH particle distribution using a triangular-shaped cloud
method (Hockey & Eastwood 1992) obtained using particle mesh
codes. This is equivalent to second-order interpolation.

The boundary conditions and extensions of the solution beyond
the grid are obtained using a multipole expansion of the source term.
For details we refer to Oechslin et al. (2002).

Like the Newtonian and the first-order post-Newtonian approx-
imations, the CF approximation does not include gravitational ra-
diation and its reaction by construction. We therefore have to add
an additional GW extraction scheme and a radiation reaction force
which accounts for the angular momentum and energy carried away
by GWs. The waveform in a transverse traceless gauge is extracted
at the slow-motion limit (Thorne 1980; Wilson et al. 1996) and up
to quadrupole order using

hT T
i j (t, r ) = 2

r
Pi jkl Q̈kl (t − r ), (32)

where

Qi j = STF

{
−2

∫
Sψ (x)xi x j d3x

}
(33)

is the mass quadrupole of the system. The radiation reaction force
is chosen in a similar way to the original Burke–Thorne expression,
Fr r

i = σ∂ i V with V = −1/5xixjQ
(5)
i j , but its strength σ is chosen

such that the resulting angular momentum loss by back-reaction,
J̇i

tot − J̇i
num

, reproduces the expression,

J̇i = −2

5
εi jk Q(2)

jm Q(3)
km, (34)

of the slow-motion GW extraction approximation up to a difference
of the order of �5 per cent. Since Ji = εi jk

∫
ρ∗(x j ũk − xk ũ j )d3x ,

we can obtain the angular momentum change using

J̇i = εi jk

∫
ρ∗ (

(x j ˙̃uk − xk ˙̃u j ) + (
v j ũk − vk ũ j

))
d3x . (35)

The expressions J̇i
num

, the numerical angular momentum error and
J̇i

tot
, the total angular momentum change per unit time, are obtained

by evaluating equation (35) before adding and after adding the back-
reaction force terms, respectively. As J̇i

num
has an oscillating be-

haviour around zero J̇i
tot

depends on the binary orbit. Therefore,
to practically determine the value of σ , we take an average value,
〈 J̇i

tot − J̇i
num〉, for about a half orbit, and compare it with 〈 J̇ 〉 com-

puted from the quadrupole formula (34) that is averaged for the same
orbit. With model B1 we obtain 〈 J̇i

num〉/〈 J̇i
tot〉 ∼ 0.3 per cent at the

ISCO, where the average value is taken over one orbital period,
while at a certain period of time J̇i

num
may become comparable to

J̇i
tot

. As the ratio 〈 J̇i
num〉/〈 J̇i

tot〉 is negligible, the radiation reaction

force is clearly driving the inspiral process, although the predicted
time to the merger must be taken with care due to the approximative
radiation reaction scheme and the spatial CF assumption used in our
initial conditions and simulations. Fully relativistic inspiral simu-
lations Miller, Gressman & Suen (2003) are intrinsically consistent
with respect to radiation reaction dissipation but they still depend
on the outer boundary location.

2.3 Equation of state

To investigate the influence of quark matter on a NS merger, we con-
sider two EoSs – an EoS describing pure nuclear matter (‘hadronic
EoS’) and an EoS describing nuclear matter with a phase transition
to quark matter at very high densities (‘hybrid EoS’).

The hadronic EoS is realized using the non-linear σ − ω model
in the relativistic mean field approximation with the TM1 parameter
set (Sugahara & Toki 1994) which is motivated by a least-squares
fit to experimental results including stable and unstable nuclei. At
densities above ρ � 1014 g cm−3 this is a good approximation. For
lower values, when inhomogeneous nuclear matter appears and the
non-linear σ − ω model is no longer valid, other approximations
have to be used (e.g. Shen et al. 1998). In our case, we append
the polytropic EoS, p = κρ� , where κ and � are adjusted to ensure
smoothness of pressure and internal energy. We choose the transition
density for the polytropic EoS to be 2 × 1014 g cm−3, which leads
to � � 2.86; similar to other common, realistic EoSs in this density
regime. The hybrid EoS is obtained by combining the hadronic
EoS with a MIT bag model (Chodos et al. 1974) using a variable
pressure phase transition construction (Glendenning 1992). We use
massless up and down quarks and a bag constant of 90 MeV fm−3.
The resulting hybrid EoS then describes three physical phases as
follows.

(i) A pure hadronic phase below ≈5 × 1014 g cm−3 ≈ 1.8ρ 0

where the EoS coincides with the hadronic EoS. Here, ρ 0 := 2.8 ×
1014 g cm−3 is the nuclear saturation density. The stiffness in this
region varies between � ≈ 3 and � ≈ 2.5.

(ii) A quark–hadron mixed phase between ≈5 × 1014 g cm−3 and
≈1015 g cm−3 ≈ 3.5ρ 0 where both quark and hadrons are present.
In this phase transition region, the EoS substantially softens when
� ≈ 1–1.5.

(iii) A pure quark phase above ≈1015 g cm−3 where the MIT–
bag model EoS with a similar adiabatic index but a lower absolute
pressure compared to the hadronic EoS is applied.

In both EoSs, we neglect any temperature effects, i.e. we set T =0.
The redundant internal energy information from the EoS is dropped
and we consider the pressure as a function of the density alone.
This is a good approximation in the high-density regime where
thermal effects caused by pressure are small. At lower densities (e.g.
in the disc around the merger remnant) the thermal component is
certainly not negligible. However, in this work we are concentrating
on the high-density merger remnant and thus we do claim to be
accurate with this approximation although thermal effects could
have an effect via neutrino losses.

2.4 Initial conditions

To construct the initial conditions, we assume the binary to be in a
quasi-equilibrium state. This assumption is not very well satisfied in
the very vicinity of the ISCO (Miller 2003) and we therefore choose
slightly wider initial orbits. In our models the binaries initially have
no radial velocity and need about half an orbit to start the inspiral.
We apply the method of Uryū & Eriguchi (2000) to construct the
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Table 1. Input parameters of the models under consideration using the
hadronic and hybrid EoSs. M ∞ denotes the gravitational mass of one NS in
isolation and C is the compactness. Both the masses and the compactness
refer to one binary component in isolation. N Particle denotes the number of
SPH particles and N Grid is the number of grid points. In model E1, 973

gridpoints are used, but at the onset of collapse, the resolution is enhanced
to 1293. Models with a ‘1’ in their label are calculated with the hadronic
EoS and models with a ‘2’ used the hybrid EoS.

Model M ∞[ M�] C = (M/R)∞ N particle N Grid

A1 1.2 0.1276 154038 973

B1,B2 1.35 0.1424 153993 973

C1,C2 1.4 0.1475 169798 973

D1 1.5 0.1577 100488 973

D2 1.5 0.1579 100548 973

E1 1.75 0.1853 162536 973 (1293)
E2 1.75 0.1959 157222 1293

Table 2. Selected properties of our initial models resulting from the input
parameters shown in Table 1. M 0 is the rest mass of one single NS, P
the orbital period, f GW,0 the corresponding GW frequency, d 0 the initial
orbital separation and R∞ the radius of one single isolated NS measured
in Schwarzschild coordinates. Note that the GW frequencies are lower than
those in Fig. 2 which are taken at the ISCO.

Model M 0[ M�] P [ms] f GW,0 = 2/P d 0 [km] R∞ [km]

A1 1.295 2.92 685 38.00 13.88
B1,B2 1.471 2.72 737 36.93 13.99
C1,C2 1.523 2.65 756 36.71 14.01
D1 1.649 2.57 777 36.19 14.03
D2 1.649 2.57 777 36.19 14.02
E1 1.957 2.20 909 33.40 13.93
E2 1.959 1.97 1058 31.14 13.07

initial configuration. This method takes an EoS as the input and
then solves the hydrostatic equation for an irrotational velocity field
together with the Einstein field equations in the CF approximation.
A similar method has been developed by Bonazzola, Gourgoulhon
& Marck (1999; see also Gourgoulhon et al. 2001, Taniguchi &
Gourgoulhon 2002). We map the output of the above method, the
hydrodynamic quantities and the conformal factor on to a distribu-
tion of SPH particles. Finally, this SPH distribution is relaxed, to
avoid any spurious inter-particle forces, using a braking term,

f = − 1

τrelax
(v− virr), (36)

where virr is the given initial irrotational velocity field of the ini-
tial mass distribution. Using this method, we produce a set of ir-
rotational quasi-equilibrium configurations, both varying the EoS
and the gravitational mass M ∞, where M ∞ refers to the mass of
a single NS in isolation. For M ∞, we use values between M ∞ =
1.2 M� which is at the lower limit of the observational range and
M ∞ = 1.75 M� which is close to the maximal gravitational NS
mass of M max = 1.78 M� of the hybrid EoS. The models are sum-
marized in Table 1. The letter (A–E) in the model label indicates
the mass while the number (1, 2) indicates the EoS. All orbits are
taken slightly outside the ISCO, about 12 ∼ 25 per cent in coordi-
nate separation. This results in smaller lag angles and oscillations
in the initial phase since tidal forces are weaker with larger sep-
aration distances. In Table 2, we summarize the properties which
result as a consequence our choice of initial parameters (detailed in
Table 1).
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Figure 1. Comparison of the nuclear EoSs under consideration. The hybrid
EoS (dashed curve) has a phase transition region (1.8ρ0 < ρ < 3.5ρ0) where
the adiabatic indices are substantially lower, followed by a quark phase which
has a similar stiffness to nuclear matter at such densities.

3 R E S U LT S

In this section, we consider the final evolution of the binary NS from
a circular orbit configuration to one single object, a transient NS or
a BH. This evolution takes place on a dynamical time-scale and is
triggered by a radiation reaction. In Section 3.1, the EoS effects on
the GW frequency from the final inspiral phase just before a merger
is discussed and in the latter subsections the results of the dynamical
evolution of the binary NS from a stable circular orbit to merger are
presented.

3.1 The impact of the equation of state on the
quasi-equilibrium binary

By considering the compactness (M/R)∞ in Table 1, we observe
that the properties of the models become EoS dependent for the
most massive cases of D1, D2 and E1, E2, i.e. when M ∞ � 1.5 M�.
For lower stellar masses, the NSs do not reach the phase transition
density, ρ t := 1.8ρ 0, in the centre and an EoS effect cannot be
observed. It has been shown that the orbital frequency and the GW
frequency of a binary system depends on the compactness of its
components (e.g. Lai & Wiseman 1996; Uryū, Shibata & Eriguchi
2000; Faber et al. 2002). Therefore we expect that an EoS effect
may be seen in the GW frequency at the final inspiral stage in our
models.

Using the method of Uryū & Eriguchi (2000); Uryū et al. (2000),
we systematically investigated the locations of the ISCO, beyond
which the binary become dynamically unstable, and the GW fre-
quency at the ISCO. As shown in Fig. 2(a), an EoS effect becomes
important above M ∞ = 1.5 M�. The reason is that at this mass, the
central density reaches the phase transition density of mixed matter
in the hybrid case and a dense core of mixed matter is formed. For
even larger masses, the transition density of pure quark matter at
ρ � 3.5ρ 0 is reached and a quark core is formed. Owing to this, a
NS with the hybrid EoS becomes more compact than one with the
hadronic EoS as shown in Fig. 2(b), which is reflected in the differ-
ence in the GW frequency. Near the maximal NS mass of the hybrid
EoS, the GW frequency of the hybrid EoS binary is up to 10 per
cent larger than that of the hadronic EoS binary. Such a change in
the tendency for the GW frequency to increase with respect to in-
creasing mass at M ∞ � 1.5 M� may suggest a drastic change in
the EoS such as a quark phase transition.
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Figure 2. (a) GW frequencies depending on the gravitational mass in iso-
lation at the ISCO. (b) Compactness of an isolated NS with respect to grav-
itational mass.

3.2 Dynamical evolution of the neutron star merger

We now turn to the merger phase that follows the quasi-stationary
inspiral when the two NSs cross the ISCO and become dynamically
unstable. To first illustrate the overall dynamics, we plot in Fig. 3
the density distribution for model B1 together with the velocity
field in the corotating frame, whose angular velocity is determined
as

� =
∑

i miωi∑
i mi

, (37)

where i runs over all particles and ω i denotes the angular velocity of
the individual particles. The stars are counterrotating relative to the
corotating frame and tidal lag angles are developing (snapshot 1).
At merger, this counterrotation is first turned into a shear motion at
the contact layer and then into a pattern of vortex rolls owing to the
growing Kelvin–Helmholtz instability (snapshots 2 and 3). Finally,
we end up with a differentially rotating, non-axisymmetric merger
remnant (snapshot 4). In Fig. 4, we concentrate on the evolution
of the merger remnant during the first few milliseconds by linearly
plotting the density contour; this gives better visualization of the
high-density central parts (the lowest density contour is at 5 × 1013

g cm−3.) In this figure we can see that ∼2 ms after merger, the core
actually consists of two small subcores which are leftovers of the
original cores of the NSs. Also visible is the fact that the two subcores
still carry a small counterrotating motion – a direct consequence of
the irrotating setup – which steadily dissipates until we end up in
with a nearly axisymmetric, differentially rotating configuration. It
is reported from finite difference simulations (e.g. Shibata & Uryū
2002; Shibata et al. 2003) that this twin-core pattern persists for a

longer time than our simulations last. This may be a consequence
of the numerical viscosity in our code.

3.3 Equation of state differences in maximal density

To investigate the different consequences of the EoSs in detail,
we first consider the evolution of the maximum density during the
merger phase. We split the whole merger event into pre-merger evo-
lution where the binary still consists of two tidally stretched objects
and post-merger evolution where a merger remnant, a NS or BH
is forming. As the SPH particle density ρ a has no direct physical
meaning, the actual density ρ(x) has to be calculated as a statistical
average over the various densities of the particles ρ a . To find the
maximum density, we first determine density values at selected grid-
points and then look for their maximum. Both statistical averaging
and finite grid spacing introduce a small amount of noise. In general,
the evolution of ρmax, plotted in Fig. 5 for our simulations, shows
a slow decrease during the pre-merger phase when the two stars
become tidally stretched and reaches its minimum during the actual
merger. This is the case when the GW luminosity either approaches
its maximum and the two NSs are maximally tidally stretched or
just a bit later when a new merger remnant has already formed but a
twin-core structure is still present (see Section 3.2). After the min-
imum, we can distinguish three possible evolutionary scenarios of
ρmax, depending on the collapse behaviour of the remnant. If the
remnant can be stabilized by pressure and centrifugal forces, ρmax

slowly increases and then becomes constant. The second scenario
is the delayed collapse where ρmax first slowly increases on several
dynamical time-scales. This fragile equilibrium finishes with a final
collapse, which is shown by the steep increase in ρmax. The final
scenario is the immediate collapse just after the merger. Here, ρmax

increases without delay on a dynamical time-scale.
Differences in the merger dynamics caused by the EoS, appear

when ρmax reaches the phase transition density ρ t . At this point
the hybrid EoS and therefore the dynamical evolution of the hybrid
models separates from that of the hadronic EoS. If the individual
stars are more massive than M ∞ � 1.5 M�, their central density
exceeds the phase transition density ρ t . In this case, EoS differences
happen before the merger. This makes a very small effect which even
disappears close to the merger due to tidal distortion if M ∞ is just
at the threshold of �1.5 M� as in model D1/D2. Alternatively, if
M ∞ is close to the maximal gravitational mass of the hybrid EoS
as in model E1/E2, the EoS difference in ρmax increases to up to
∼60 per cent. Differences can also be measured for global quanti-
ties such as the angular velocity of the binary, the compactness and
especially the GW frequency (cf. Section 3.1). If the initial mass
is less than M ∞ � 1.5 M� a change in the EoS can only be seen
after the merger as part of a different evolutionary scenario of the
merger remnant. Typically, the remnant collapses immediately or
after a couple of dynamical time-scales in the hybrid cases while
it settles down to a transient NS in the hadronic cases. Among the
hadronic models, only the very massive model E1 collapses im-
mediately. In model D1, the maximal density slowly increases but
does not really settle down – a sign that this object might eventually
collapse. However, this might well be a numerical effect as angu-
lar momentum is transported from the core to the outer layers and
differential rotation is slowly converted into uniform rotation. The
amount which is transported is of the order of 40–50 per cent in the
very centre during the whole evolution, despite a very good overall
angular momentum conservation, by either numerical viscosity or
gravitational interaction between the non-axisymmetric core and the
outer layers. However, it is still possible to stabilize a remnant with
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Figure 3. Snapshots at selected times of the baryonic density distribution and the velocity field of model B1 during pre-merger and merger evolution. The
density is plotted logarithmically in units of g cm−3 and the velocity field is plotted in the corotating frame.

a gravitational mass of nearly 3 M� with an EoS having a maximal
gravitational mass of 2.2 M� for about 12 ms � 820 M tot, where
M tot = 2.98 M� is the initial gravitational mass for this model. This
stabilization effect due to differential rotation has been pointed out
in Shibata & Uryū (2000); Baumgarte, Shapiro & Shibata (2000).
The less massive models C1, B1 and A1 lead to transient NSs which
do not collapse on a hydrodynamic time-scale. With the hybrid EoS
models, the models collapse over different time-scales. While mod-
els E2 and D2 collapse immediately, C2 collapses with a delay of
∼9 ms. Model B2 does not collapse within the simulation time but
it also shows a continuously growing maximum density. However,
these collapse time-scales are likely to be dominated by the previ-
ously mentioned angular momentum transport.

3.4 The gravitational wave signal

A second indicator of EoS effects is the GW signal. As the wave-
form is sensitive to dynamical mass motions we expect that all the
above maximal density differences are reflected in the GW signal
mainly in the form of different frequencies. In Fig. 6 we plot the
waveforms of all models sorted according to initial mass. Model

E1/E2, the most massive one, is the only one which shows a signif-
icant pre-merger EoS difference in the waveform. This is because
the above-mentioned maximal density difference translates via the
compactness and the binary angular velocity into a GW frequency
difference which amounts to ∼10 per cent at the ISCO (cf. Fig. 2)
while it disappears during the actual merger phase. The next less
massive model, D1/D2, does not show any EoS differences in GW
frequency at the ISCO and further during the pre-merger phase, but
we expect, for larger binary distances and therefore smaller tidal
interaction that GW frequency differences could be seen. The more
interesting part of this model is the different collapse behaviour and
therefore the totally different waveform. While the hybrid model
D2 only produces a short, high-frequency burst before the collapse,
the hadronic model emits a long wavetrain which decreases slowly
in amplitude. Both models C1/C2 and B1/B2 emit a quasi-periodic
(QP) GW signal which is characteristic of the rotation and oscilla-
tion mode in the merger remnant. EoS differences in the waveform
do not appear until a considerable mixed matter core has formed in
the hybrid case. As a consequence, the first part of the post-merger
GW signal, which is the strongest in our simulations, will not be
affected by any differences in the EoS. However, when the mixed
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Figure 4. Same as Fig. 3 but for post-merger evolution. The density is plotted linearly in units of 1013 g cm−3.

matter core becomes large enough, an accumulating phase shift in
the waveform becomes clearly visible. In model C1/C2 the shift adds
up to more than half a period before the hybrid remnant collapses,
whereas in the B1/B2 model the shift is only very small, but visible.

3.5 Gravitational wave spectra

The Fourier spectrum of the GW waveform is plotted in Fig. 7.
The most massive model, E1/E2, shows its EoS differences at
pre-merger, i.e. in the frequency domain around 1 kHz. Here the
spectrum produced by the pre-merger hybrid waveform is signifi-
cantly stronger than that of the hadronic waveform, since the am-
plitude of the wave strain h scales roughly as (r/M) h ∼ (M/R)∞,
where r is the distance from the source. This is consistent with
simulations using quasi-equilibrium sequences (Faber et al. 2003).
There is no high-frequency contribution from this model as both
remnants collapse immediately after the merger. Note that we miss
the waveform emitted by the ringing of the resulting BH. However,
the expected frequency of this signal lies in the range of 5–10 kHz
(Shibata & Uryū 2002; Leaver 1985) and we can clearly separate
out the BH waveform.

The other models show their EoS differences via different fre-
quency peaks which result from the QP waveform emitted post-

merger. The difference is most obvious in model D1/D2. For
hadronic EoS model D1 a distinct Fourier peak is clearly visible,
whereas hybrid EoS model D2 only leads to a much weaker and
broader Fourier peak as the remnant collapses very soon after merg-
ing producing a much shorter post-merger GW signal. In model
C1/C2, both the hadronic and the hybrid models have strong QP
peaks and the peak of model C2 is slightly shifted to higher fre-
quencies owing to the more compact remnant. The same can be
seen for model B1/B2. However, the effects here are smaller and
measurement may be difficult. The EoS effects are only small be-
cause the spectrum is dominated by the first GW burst after merging,
which is insensible to EoS differences.

We may compare the obtained QP frequencies f QP to values
from a fully relativistic calculation (Shibata & Uryū 2002) where an
irrotational initial velocity field with a polytropic EoS is considered.
Two peaks are found in the spectrum,

fQP1 ∼ 1.8 fQE (38)

and

fQP2 ∼ 2.8 fQE (39)

for an adiabatic index of � = 2.25; and
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Figure 5. Evolution of the maximal density measured in units of the nuclear
saturation density ρ0 := 2.8 × 1014 g cm−3. The origin of the time axis has
been shifted to the GW luminosity maximum. The solid lines correspond to
the hadronic models and the dashed lines to the hybrid models.
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Table 3. Ratio of f QP2 to f QE for all models where a transient NS forms
or a delayed collapse happens. The values for f QE are determined from
quasi-equilibrium models and are taken at the ISCO.

Model M ∞[ M�] C = (M/R)∞ f QP2[kHz] f QP2/ f QE

A1 1.2 0.128 1.98 2.47
B1/B2 1.35 0.143 2.20 2.56
C1/C2 1.4 0.148 2.32 2.65
D1 1.5 0.158 2.70 2.97
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Figure 8. Relationship between the ratio f QP2/ f QE and the compactness
C = (M/R)∞. The diamonds correspond to hadronic EoS models A1– D1
and the values for � = 2 and � = 2.25 are taken from Shibata & Uryū (2002).

fQP1 ∼ 1.8 fQE (40)

and

fQP2 ∼ 3.0 fQE (41)

for � = 2. Here, f QE is the GW frequency of the binary at the
ISCO. Shibata & Uryū (2002) point out, that f QP2/ f QE is not very
dependent on the initial compactness of the stars but the higher
peak, f QP2/ f QE, depends on � so that softer EoSs lead to higher
values for f QP2/ f QE. As we use realistic EoSs with a non-constant
� in our simulations, we expect the f QP2/ f QE ratio to vary with
increasing compactness (Zang, Centrella & McMillan 1996; Faber
& Rasio 2001; Oechslin et al. 2002). Indeed our values for f QP2/ f QE

are strongly dependent on the initial mass M ∞ and compactness
as can be seen in Table 3. From the behaviour of the f QP2/ f QE

ratio we can deduce that the EoS softens for more compact models,
i.e. the EoS softens at higher densities. It might be interesting to
calculate the f QP2/ f QE − (M/R)∞ relationship for various other
realistic EoSs on the market. Evaluating this relationship might give
a detailed insight into the Eos of the NS in the nuclear regime above
1014 g cm−3.

One might expect that f QP2 is overestimated in our simulations
due the already mentioned numerical viscosity effects in the code
which lead to a slowly contracting merger remnant and therefore
to the emission of GWs with higher frequencies. To check that this
is not the case, we have also calculated the spectra of the truncated
wavesignals which only contain the first few oscillations of the post-
merger signals. The resulting QP peaks are reduced in strength but
their positions remains unchanged within the uncertainty of the peak
width (see Fig. 7).

4 C O N C L U S I O N S

In this work, we have considered the impact of the EoS on the in-
spiral and merger dynamics of a binary NS coalescence. We have
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performed equilibrium sequence studies to investigate the GW fre-
quencies around the ISCO. We then carried out dynamical simu-
lations of the merging event using a 3D SPH code. We chose a
hadronic EoS based on the relativistic mean field approximation
and a hybrid EoS obtained by combining the hadronic EoS with a
MIT–bag model EoS in the high-density regime above ρ t = 1.8ρ 0.
The GW frequency at the ISCO depends strongly on the initial
mass of the binary. For a generic mass of 2 × 1.4 M�, we find a
GW frequency of ∼900 Hz for both EoSs. EoS differences become
important for models with initial gravitational masses larger than
M ∞ ∼ 1.5 M�. At this mass range, the central density of the indi-
vidual stars reach the phase transition ρ t included in the hybrid EoS
model. At masses close to the maximum gravitational mass of the
hybrid EoS, M = 1.78 M�, the relative difference in f GW becomes
as large as ∼10 per cent.

The maximum density evolution during the merger depends sensi-
tively on the fact whether the phase transition density is reached and
at what time this happens. For very massive models such as model
E1/E2, which has an initial mass of M ∞ = 1.75 M�, this is al-
ready fulfilled by the individual companion stars in the pre-merger
phase. Less massive models with masses below M ∞ � 1.5 M�
cross this threshold later in the post-merger phase when the matter
is contracting to form a transient NS or a BH. The hadronic EoS
models all form a transient NS except the very massive model, E1,
which collapses immediately. In model D1, the maximum density
does not converge after 12 ms but rises slowly and continuously. We
think that this is the effect of considerable angular momentum trans-
portation from the remnant core to the outer layers which implies
continuous conversion of the differential rotation pattern into uni-
form rotation. All hybrid EoS models collapse on time-scales which
are highly dependent on the model mass. While the massive models
E2 and D2 collapse immediately, models C2 and B2 collapse after
a contraction of the remnant on several dynamical time-scales and
a considerable decrease in the degree of differential rotation. This
indicates that the collapse is driven here by angular momentum
transport caused, for example, by numerical viscosity. The collapse
dynamics of these models will be investigated in future work. The
emitted gravitational waveforms are very dependent on the initial
mass of the model. The most massive model E1/E2 shows a large
difference prior to merger both in frequency and amplitude. This
is a consequence of the different levels of compactness in models
E1 and E2 owing to the different EoSs involved. The same effect
is not visible in the less massive models because the difference in
compactness owing to the EoSs vanishes. A second aspect of the
GW signal is the waveform emitted by the remnant. If the remnant
does not collapse immediately to a BH, a QP waveform with a fre-
quency of 2-3 kHz is emitted. The ratio of this frequency to the GW
frequency at the ISCO, f QP2/ f QE, depends sensitively on the model
and therefore on the mass or compactness, (M/R)∞. As f QP2/ f QE

is fairly constant for an EoS with constant stiffness, we interpret this
result as being a consequence of the varying stiffness of the EoS
used. Hence, the relationship f QP2/ f QE − (M/R)∞ is characteris-
tic for the behaviour of the stiffnesses of EoSs. A measurement
of this quantity would provide important additional information
on EoSs.

It has been suggested in Hughes (2002) that measurements of
high-frequency GWs require a network of broadband detectors com-
bined with narrowband detectors that have a good level of sensi-
tivity in the high-frequency domain. Such measurements of high-
frequency GWs may become feasible in the future and confirm or
deny the existence of a phase transition in NS star matter at high
densities.
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