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The influence of rounded edges on indentation

by a flat punch
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Abstract: The contact problem and stress sta'tgifor indentation by a flat punch with rounded edges
is studied. For the contact problem itself analytical solutions are obtained for both surface pressure
and interior stress fields. Cases of normal indentation and frictional contact, the latter in both sliding

or partial slip conditions, are all treated.

The transition from the Hertzian configuration to the contact between a nominally flat pad and
contacting flat surface is discussed, and it is found that the strength of the contact decays surprisingly
slowly. Regarding the von Mises yield parameter, there is a range of configurations for which the
strength is actually higher than the Hertzian one, and the strength decays only when the corner radii
are very small. The present solution is therefore a realistic alternative to the classical rigid-flat punch

idealization, and has particular application to fretting fatigue tests.

Keywords: contact stresses, flat punch, fretting fatigue pads

1 INTRODUCTION

Indenters having a nominally flat end are frequently
found both in experiments and in engineering practice.
They often bear on a counterface that is also flat.
Examples are readily found in fretting fatigue experi-
ments, in indentation testing of glasses and ceramics, in
support feet for all manner of equipment and in electrical
brushes. In each of these problems contacts arise that
characteristically have a flat base, with some kind of
radius at the edge, which is either pre-existing or gener-
ated by wear. Further examples occur in the foundations
of buildings or pads used to distribute load, e.g. under
Jacks. The design procedure for these contacts is usually
one derived from experience, as it is notoriously difficult
to determine the contact pressure, in contrast to, for
example, the Hertzian contact, where simple closed-form
solutions exist. Further, the use of flat-ended indenters,
in both the fretting fatigue tests and fracture toughness
indentation tests cited, demand a very precise knowledge
of the internal stress state induced, as well as the contact
pressure distribution.

Often the sides of the ‘indenter’ are straight and
normal to the free end, and a deduction of the contact
stress state induced is not a straightforward matter.
The solution most often encountered is that due to
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Boussinesq [see, for example, Timoshenko and Goodier
(1)], in which it is assumed that the indenter itself is
rigid and is pressed into a compliant half-plane. The
contact deformation is therefore accommodated entirely
within the latter, and a classical formulation may be
employed. As the contact is complete, the pressure distri-
bution at the edges of the contact must be square root
singular (o;; ~ 1/\/r), and hence so are components of
the stress field itself. This is physically unrealistic, even
if the indenter is much stiffer than the substrate, and the
singular state of stress would be relieved by limited-scale
plasticity in either component. If the indenter and sub-
strate have comparable elastic constants, the use of a
half-plane formulation is, in any case, inappropriate, as
there is no material adjacent to the contact to provide
support; an elasticity formulation appropriate to a rec-
tangular domain must therefore be used (2). Difficulties
encountered in the Khadem and O’Connor analysis (2)
are that the solution is in the form of a slowly convergent
series and the geometry of the indenter remote from the
contact itself has a significant effect on the contact press-
ure distribution, which is not observed experimentally.
For perfectly flat contacts, the interfacial contact
pressure is hypersensitive to small variations in surface
geometry, particularly the presence of swarf near the
edge of the indenter. If, however, the corners of the
punch are rounded off, as shown in Fig. 1, most of
these problems disappear; there is much less tendency
for swarf to become trapped, the contact pressure falls
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Fig.2 Pressure distributions: a/b = 0.0, 0.1, ..., 0.9

the value 1/z, predicted by the rigid punch singular solu-
tion, showing that the difference in behaviour as the limit
a/b—1 is approached is concentrated at the edges of
the contact.

3.2 Partial slip contact: loading

So far the case of normal loading has been considered,
i.e. a central normal force was applied to the indenter
and, for elastically similar contacts, the pressure distri-
bution under such conditions has been found. Attention
is now turned to the sequential loading of a tangential
force. In particular, after the normal load P is applied,
P is kept constant and a monotonically increasing tan-
gential force Q, less than that needed to cause sliding, is
applied. This analysis applied only to the case where the
contact arises between elastically similar components. In
order to determine the stick/slip zone geometry a second
integral equation needs to be considered, which relates
the displacement of particles parallel with the surface to
the surface tractions [see reference (7), p. 53, equation
2.22], viz.

Er 1 [ q@)dE
g'x)= x—F

2 T
where g(x) is the relative tangential displacement of

+Bp(&) (12)

surface particles and g'(x) =dg(x)/dx its derivative.

Tangential equilibrium will be satisfied if

0= J q(§)d§ (13)
L

As stated at the outset, Dundurs’ constant is assumed
to vanish, so that both equations (1) and (12) take on
simplified appearances and become uncoupled. The fol-
lowing equations may be used to establish the size of the
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stick zone, ¢, which must be centrally positioned, from
considerations of symmetry.

Within the stick zone the relative tangential displace-
ment of surface particles must be zero, since there was
no relative displacement cumulated during the phase of
normal loading, so that

g(x)=0, —c<x<c (14)
and the shearing traction must be less than the limiting

value, i.e.

lg(x)| < —fp(x),
where f is the coefficient of friction. Further, within the
slip zones the shearing traction is limited by friction, so
that .

—c<x<c¢ (15)

—b<x<—c
x) = fp(x), 16
9(x) = fp(x) {+c<x<+b (16)
Basic energetic considerations also state that the shear
traction must always locally oppose the direction of
change of the slip displacement, i.e.

) <6q> {—b<x<~c 7
=S -~ |
el 8 5 +e<x< +b (7

Upon applying a normal load, P, alone, there is no tend-
ency for surface particles to slip, and hence the initial
stick zone envelops the entire contact. A monotonically
increasing shearing force, Q, will therefore give rise to
advancing slip, and under these circumstances equation
(17) is automatically satisfied. The shear tractions aris-
ing in the contact will be considered as a superposition
of the full sliding one, with a ‘difference’ part, g*(x).
Two cases need to be considered separately, viz. when
the dimension of the stick zone, c, is less than the dimen-
sion of the flat part of the indenter, 5, and the case ¢ > b.
In the first case ¢ < b, equation (12) states that

*

X gx)=0

_1 [ /pE)+q*@)dE

T x—&

L] o
Liticx '—f ’
—b<—c<x<c<b (18)

The second, simplified, term in the above equation fol-
lows from equation (1), which indicates that the first
term in the first integral is proportional to A'(x), and is
zero for |x| < a. Then, because only bounded solutions
can be considered [as ¢*(x), being a perturbation within
the stick zone, must fall continuously to zero at the
stick/slip boundary], only the solution g*(x) = 0 is com-
patible with the present model. This simply means that,
within the limit of the half-plane assumptions, no partial
slip solution can exist when the stick zone is contained
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entirely within the flat part of the punch. It should be
borne in mind that this conclusion has been arrived at
within the context of a half-plane formulation, and in a
real problem the presence of far boundaries may have
‘an influence on the solution. Nevertheless, the solution
presented is a strong indication that there is unlikely to
be a stable partial slip solution in this regime.
Attention is now turned to the case where the stick
zone at the maximum shearing force extends into the
curved portion of the indenter profile (¢ > b). Again the
shearing stress is represented as the sum of the full slip
solution together with a perturbation in the stick zone,
and if the corresponding integral is split into two parts,
the term relating to the full slip distribution is seen to
be the same as equation (1). This immediately allows
the following simplified integral equation for g*(x) to be
written:

lf g*(%) d§
L

stick x—g
E*f —(a+ x)/R, —c<x< —a
=— 3 0, —as<x< 4a (19)
—(x—a)/R, +as<x< +c

Thus, the same integral equation arising for normal
loading must be solved to determine the influence of
the corrective tangential shearing traction, g*(x). The
results presented in Section 3.1 therefore apply, mutatis
mutandis. If the actual shearing force is Q, the value of
the corrective shearing force, O, corresponding to the
corrective tractions is given by 0*=Q+ /P, and the
auxiliary angle 6 is used to define x. The necessary
changes are that Q'/f replaces P, O replaces ¢, 6, replaces
%o and c replaces 4. It should be stated that when the
length of the flat portion of the contact is made vanishin-
gly small, @ — 0, the standard Cattaneo—Mindlin solution
(9, 10) is recovered. It will be recognized that this argu-
ment may be used for an indenter of any shape.

It is interesting to look at the relationship between
applied dimensionless shearing force, Q/(fP), and the
non-dimensional stick zone size, ¢/b. From the consider-
ations above, it can easily be shown that, for the
geometry under consideration,

101 ¢\? 1t — 26, — sin 26,
DS = e

whereas Q/(fP) =1 for ¢ <a. This relationship is shown
in Fig. 3, where it may be appreciated that, in the partial
slip regime, ¢ cannot be smaller than a. This simply
means that the transition partial slip-sliding is reached
when the slip zone envelopes the rounded part of the
contact, but it may be observed that this transition is
smooth, both in the value of Q/(fP) and its derivative.
The solution for a/b =0, the Hertzian -geometry, and
hence the Cattaneo-Mindlin problem, is included for
comparison. Note also that as a/p is increased, so that
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Fig.3 Partial slip problem: relationship between applied
shearing force Q/( fP) and stick zone size ¢/b

the geometry tends to the flat-ended rigid punch case,
the stick-slip behaviour of the completely flat contact is
recovered, so that there is no stable partial slip regime.

3.3 Partial slip contact: unloading and cyclic loading

The procedure outlined above may be extended to the
unloading configuration. Suppose that a particular par-
tial slip condition has been reached in loading, corre-
sponding to a tangential load Omax> With a stick zone
L ;e of dimension 2Cmax - At the start of unloading, stick
occurs everywhere. On further reducing the value of the
tangential load, reverse slip occurs at the edge of the
contact area. The configuration is again one of advanc-
ing slip, according to Dundurs’ classification, and there-
fore the problem does not require an incremental
formulation.

Define a particular unloading level, Q (< Ornax), With
a new stick zone L, , of dimension 24. The new traction
distribution can be found from a superposition of the
previous one at the end of loading phase, plus a full
reverse slip distribution and a new corrective part g**(x).
The considerations rehearsed for the loading case con-
tinue to apply, and using equation (12) (with B=0), the
amount of slip that is ‘locked in’ the slip zones at the
end of the normal loading phase can be calculated. It
may easily be shown that this new corrective component
is again of the same form as the normal contact pressure,
rescaled for the dimension of the new stick zone.
Therefore, the correction is zero if the new stick zone is
entirely within the flat part of the contact, which again
means that during unloading, as for loading, a partial
slip regime is not possible with the stick zone lying
entirely within the flat part of the contact. -

It is clear that the same procedure can be continued
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for cyclic loading, whereas more complicated laws of
loading, such as oblique loading or reloading from an
incompletely reversed unloading, require special investi-
gation and are not within the scope of the present paper.

4 INTERIOR STRESS FIELD

The strength of the contact, as quantified by a resistance
to yielding, demands a knowledge of the complete
interior stress field, as, particularly for low coefficients
of friction, the strength is controlled by a subsurface
point. The most suitable vehicle to use for half-plane
problems is Mushkelishvili’s potential, and it is very
straightforward to include the effects of sliding friction,
as the shearing traction distribution is identical to the
contact pressure. Furthermore, as it has been shown, the
‘corrective’ term in the case of partial slip problems also
has the same form, and hence it is equally straightfor-
ward to determine the stress state in the case of partial
slip problems.

As the shear traction in the full sliding regime is q(x) =
Jp(x) throughout the whole contact, Mushkelishvili’s
potential is given by

.__‘ 1
@(z):l—?—rj LACy (21)
2ni o t—z

where dimensionless coordinates are now adopted for
X, ¥, 1, = x + iy by normalizing them with respect to the
contact half-width b, and p(x) is expanded in terms of
Chebyshev polynomials U,,(x) as

P) = —J(1—x2) S b, U (x) (22)
n=0

The corresponding Mushkelishvili’s potential is (7)

_=if e it S
(D(Z)_Wfﬂt_——zdl_— ) ngobnRan(Z)
(23)

where R,(z) =[z — (2> — 1)"]". From the potential, the
stresses can be obtained using the standard relations

o, +
2T R d(2)
2
0, — 0, +2it
2

as well as the displacement derivatives. The absolute dis-
placements may be found only to within an arbitrary
constant, which is a characteristic of plane elasticity.

=(I-2)P(2)~ D(z) — P(2)

5 RESULTS

5.1 Yield strength

It is difficult to display comprehensive results for the
complete state of stress over the neighbourhood of con-
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tact with several independent variables. These are the
ratio of the size of the straight part of the punch to the
end radius, a/R, or, equivalently, the dimensionless size
of the contact, #/a, the coefficient of friction, f, and, if
the contact is in partial slip, the dimensionless shearing
force, Q/A(fP). Results have therefore been chosen to
illustrate the frictionless case and f=0.3, which is rep-
resentative of the measured value in many instances.
Moreover, the investigation will be limited to the value
of Poisson’s ratio equal to 0.3, which is the value of
greatest engineering interest.

Figure 4 shows plots of the normalized von Mises
yield parameter, b./J,/P, for representative cases. As the
ratio @/R becomes very small the solution tends to the
standard Hertzian distribution, while as R/z becomes
small the geometry looks increasingly like a flat-ended
punch. However, perhaps surprisingly, the strength of
the contact first increases with respect to the Hertzian
case and then decreases very slowly. Results from several
plots of this kind are summarized in Fig. 5, which gives
the elastic limit for normal indentation as a function of
the ratio b/a according to von Mises’ yield criterion,
with the yield strength of the material in pure shear being
denoted by k. Also shown in the figure is the depth at
which the severest state of stress occurs, and therefore
the point at which the yield condition is first attained.
[t will be recognized that over the wide range
0 <a/b <0.55 the contact strength is in fact higher than
the Hertzian case (or the state of stress is milder) for
normal frictionless contact. The reason for this is appar-
ent from a consideration of Fig. 2, where the pressure is
close to uniform over a wide range of geometries and
the maximum of the yield parameter b J/>/P moves from
a point at the centre-line to a region of near-maximum
value, located well off-axis. If the ratio a/b is increased
further, the strength of the contact drops rapidly, and is
almost halved for a ratio of @b~ 0.9. In some respects
much more useful design information can be obtained
from these calculations than the Boussinesq solution,
which suggests that (admittedly for an atomically sharp
contact) the elastic limit is zero.

For design purposes, a complete set of results has been
obtained for the full sliding case, which are summarized
in Fig. 6 for a more complete range of values of a/b =
0,0.9, in steps of 0.05. The dashed line represents the
well-known Hertzian case (7), whereas the lines a/b =
0.05, 0.1, 0.15, 0.2 are a little higher than the Hertzian
line for low values of f, when the strength is subsurface
controlled, and fall well below the Hertzian line for
/> 0.3. This behaviour is better understood from Fig. 7,
where the locus of the severest state of stress is shown.
First, starting from the Hertzian configuration, for
coefficients of friction less than about f = 0.3 the severest
state of stress remains subsurface, while for higher values
of f the tendency to yield is greatest at the surface, in
the sense that the local maximum on the surface sud-
denly becomes the global maximum. This behaviour
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Fig.5 Elastic limit P/(bk) for normal indentation, including
the depth of the severest state of stress, as a function

of @b (v=0.3)
6
PI(bk) Lk
=

N
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a/b=0, 0.05,..., 0.9

0 i T [ T I T ! T ﬂ
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f

Fig. 6 Elastic limit P/(bk) for sliding indentation as a function
of a/b and the coefficient of friction f (v = 0.3)

gives rise to the cusp shape of the dashed line in Fig. 6
and corresponds, in Fig. 7, to the jump of the point
where the overall maximum moves to the surface (in
Fig. 7 each small cross corresponds to an increase of f =
0.0125). For the rounded flat punch case, for low /b
ratios the point at which yield first occurs is deeper, but
persists at a subsurface point for longer, before jumping
to the surface. For a/b < 0.2, the lateral (x value) of the
point of severest stress increases significantly for low
coefficients of friction and, for f> 0.3, the point moves
to the surface. For higher a/b ratios, the strength gradu-

ally decreases and; when compared with the normal -

loading, the decrease in strength is proportionately
greater. ’
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a/b=0.3,04,..,09 /

x/b'

Fig.7 Location of the maximum of the von Mises yield
parameter b./J,/P in the subsurface case for sliding
indentation as a function of a/b and the coefficient of
friction f (each little cross corresponds to an increment
of f=0.0125) (v=0.3)

5.2 Fatigue and brittle fracture strength of the contact

One of the principal practical applications of the analysis
is the use of almost flat-ended pads on fretting fatigue
specimens, where the ratio a/R might typically be about
10. The geometry is operated in the partial slip regime,
with the shearing force being generated by imposing a
small tangential displacement, either using a rotating—
bending or push—pull arrangement (11). In these cases,
although the yield condition is important, the most
important quantity, and the one that controls the devel-
opment and growth of cracks, is the maximum tensile
stress; of particular relevance is its value at or near the
surface, adjacent to the trailing edge of the contact,
where its maximum value occurs. Figure 8 summarizes
the results for maximum surface tension, for a partial
slip or full sliding contact, as a function of ¢/b [equiv-
alently, in terms of ¢/(fP), see Fig. 3] and for a range
of geometries, a/b. The maximum tension is lower for a
partial slip configuration, which is clear from the fact
that the resulting applied tangential load is lower. In the
Hertzian case, the decrease in surface tension is immedi-
ate and occurs as soon as ¢/b (dimensionless size of the
stick zone) increases from zero; in the flat punch case,
the decrease starts to occur when b > a/b, simply
because the contact is in full sliding for lower /b.

If the stress concentration for surface tension is con-
sidered as a function of Q, it is clear that the full sliding
condition is less severe than the full-stick case, which
arises only when the coefficient of friction is infinitely
high. The flat punch casé is always more severe than the
Hertzian case, although for a/b as high as 0.8, the stress
concentration is only double the Hertzian case.
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Fig. 8 Maximum tension arising in the surface under partial
slip conditions

6 CONCLUSIONS

The problem of a flat punch with rounded edges has
been studied in detail, giving analytical results for surface
traction and interior stress field induced by the contact.
This changes the character of the solution compared
with a punch having abrupt corners, for which the
strength of the contact is not clearly defined. It has the
advantages, from both the analytical and experimental
viewpoints, of producing a well-defined state of stress
and a quantifiable partial slip solution. It is also worth
remarking that the geometry is the only one of simple
manufacture that renders the contact, under a wide
range of loading conditions, less severe than the Hertzian
one. If the contact also transmits tangential loading, the
concentration of tensile stresses at the trailing edge of a
sliding contact is shown to be always significantly higher
than the Hertzian case, but the transition to the infinitely
high stress concentration associated with a sharp-
cornered flat punch is slow. For design purposes, a com-
plete set of practical diagrams has been given.
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APPENDIX

Derivation of the pressure distribution

From the integral relating the pressure to the function
h'(t), equation (5) in the main text,

_E* , (@+1)de
)= =gt [l

* (t—a)d:
+£ J(b2~t2)(t—x)] (24

On adding and subtracting x, this becomes

E*
2nR

Px)= = o— /(67 — x?)

—a ds —a ds
X[("”) b VO == T f NS

bode b dr ]
* .[ J@B*—12) +oe-a) £ VO = 2) (1 —x)
(25)
Now,
—-a dt B J‘a d[ N E
b \/(bZ_IZ) - A \/(bz _ [2) - 2 "¢0

where ¢, = arcsin a/b. Further, define  — [2T/1 + )]
and x = [2&/(1 + £%)}b, so that
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*2 dr
o VO =)t —x)
1+ E (% dr

(26)

b L, G—E( -1

B 1+ &2 & dr &2 dr
”b(l—&Z)(L —E r—l/&) 7

where £, £, are related to x,, x, by
_%& %
1+&7 1+ &

Now, considering the Cauchy principal values of the
integrals of the last formula,

b (28)

Xy

*2 dr
), JE=A =%
_ 1+& £E-&, 1“551)’
“hi-g (s—a) (1—552 (29)

Assuming & = tan ¢/2 and substituting, with integration
limits given by

Xp==b, xy=-—a, &=-1, §2=—tan%—°
X, =a, x,=b, §1=tan%, E=1
(30)
it is found that
-a dr R Sin (g + ¢o)2
- JOP =)t —x) bcosg cos(p — ¢o )2
Jb de 1 cos(@ + ¢ )2
o O =) (t=x) " beosg " |sin(g— po)2
(31)
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From equations (28) and (30), it follows that x —
b sin ¢, and assuming a = b sin ¢, and substituting gives

2nR cos ¢
g+ P(@) = —(—2¢0) Sin ¢,
B sin ¢ u sin(g + ¢,)
sin ¢ sin(@ — ¢o)
P+d0, P—oo
—In [tan 3 tan 3 ) (32)

Overall equilibrium is ensured by substituting the profile
dervative into equation (6):

»

2PR (7% (a+0)rdr b(t—a)ytde 33
B, Jo-n" |, Jo - (33)

Assuming ¢= b sin ¢ and according to a = b sin ¢,, the
integration is straightforward and gives

2PR TP : .
= f (sin ¢g + sin @) sin ¢ dg

E* -n/2
/2
+ J (sin ¢ — sin ¢y) sin ¢ dgp (34)
%0
2 T _2¢0 _
=q (2 sin? oy cot ¢o> (35)
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