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Abstract- Scale should be recognized as a primary factor 
influencing the architecture and implementation of distributed 
systems. This paper uses Andrew and Coda, distributed file 
systems built at Carnegie Mellon University, to validate this 
proposition. Performance, operability, and security are dominant 
considerations in the design of these systems. Availability is a 
further consideration in the design of Coda. Client caching, 
bulk data transfer, token-based mutual authentication, and hi- 
erarchical organization of the protection domain have emerged 
as mechanisms that enhance scalability. The separation of con- 
cerns made possible by functional specialization has also proved 
valuable in scaling. Heterogeneity is an important by-product 
of growth, but the mechanisms available to cope with it are 
rudimentary. Physical separation of clients and servers turns out 
to be a critical requirement for scalability. 

Index Terms- Scalability, distributed file systems, Andrew, 
Coda, security, performance, availability, heterogeneity, replica- 
tion, caching, large-scale distributed systems, design principles 
for scalability. 

I. INTRODUCTION 

S OFTWARE engineering focuses on programming in the 
large, recognizing that size is a first-order influence on 

the structure of programs. This paper puts forth the analogous 
view that the scale of a distributed system is a fundamental 
influence on its design. Mechanisms which work well in a 
small distributed system fail to be adequate in the context 
of a larger system. Scalability should thus be a primary 
consideration in the design of distributed systems. 

How does one measure “scale”? One can interpret the term 
in many ways. For example, it can refer to the number of nodes 
in a distributed system. Alternatively, it could be the number 
of users of the system. These definitions are equivalent in a 
distributed workstation environment, where each workstation 
is dedicated to a user or is shared by a small number of users. 
Another interpretation is that scale refers to the number of 
organizational boundaries encompassed by the system. Human 
limitations necessitate the grouping of users and equipment 
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into autonomous or semi-autonomous organizations for man- 
agement purposes. Hence a distributed system that has many 
users or nodes will also span many organizations. Regardless 
of the specific metric of scale, the designs of distributed 
systems that scale well are fundamentally different from less 
scalable designs. 

In this paper we describe the lessons we have learned 
about scalability from the Andrew File System and the Coda 
File System. These systems are particularly appropriate for 
our discussion, because they have been designed for growth 
to thousands of nodes and users. We focus on distributed 
file systems, because they are the most widely used kind of 
distributed system in existence today, and because we have 
first-hand experience in their design, implementation, and use. 
But much of this paper also applies to other kinds of distributed 
services. 

We begin our discussion by examining why growth occurs 
in distributed systems and what its consequences are. We then 
give a brief overview of Andrew and Coda. The bulk of the 
paper consists of a detailed examination of specific aspects 
of Andrew and Coda that were significantly influenced by the 
need to scale well. Wherever possible, we contrast our design 
choices with those of other related systems. We end the paper 
with a summary of what we have learned in the form of a set 

of design principles. 

II. ORIGIN AND CONSEQUENCES OF SCALE 

There is relentless pressure on successful distributed sys- 

tems to increase in scale. It is easy to see why. A dis- 
tributed system simplifies communication between users and 
the sharing of information between them. As a distributed 
system grows, enabling more users to communicate and more 
information to be shared, it becomes an increasingly valuable 
resource. At some point in the evolution of the system, access 
to it is viewed as a necessity rather than luxury by the user 
community. There is then considerable incentive to allow users 
who were originally outside the scope of the system to be 
included in it. Growth thus acquires a momentum of its own. 

The economic impact of growth is closely related to how 
cost is reflected. The optimal system design for an organization 
where all system costs are borne centrally will be different 
from one for an organization where some costs are borne 
centrally and others are passed on to the end users. The 
latter model is more common and favors designs in which 
the cost of incremental growth is almost entirely borne by 
the individuals benefiting from that growth. This in turn 
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implies that incremental growth should minimally impact 
central resources. 

In our experience, growth also has other serious conse- 

quences. For example, performance and operability become 
dominant concerns. Lax security is no longer acceptable. 
Precise emulation of single-site interface semantics becomes 
difficult. Heterogeneity of hardware and software is more 
likely. In general, algorithms and techniques that work well 
at small scale degenerate in nonobvious ways at large scale. 

III. OVERVIEW OF ANDREW AND CODA 

The Andrew File System was developed at Carnegie Mellon 
University (CMU) from 1983 to 1989. Today, it spans 40 
sites on the Internet across the U.S. On the CMU campus 
alone it includes over 1000 workstations and is used by more 
than 3000 regular users. Further development and commercial 
distribution of this system is now being done by the Transarc 
Corporation. 

Andrew is designed for an environment consisting of a large 
collection of untrusted clients with local disks. These clients 
are connected via a high bandwidth network to a small number 
of trusted servers, collectively called Vice. Users execute 
applications only at clients and see a location-transparent 
shared Unix’ file system that appears as a single subtree of the 
local file system. To improve performance, clients cache files 
and directories from Vice. Cache management and emulation 
of Unix file system semantics is done at each client by a cache 
manager called Venus. 

The design of Andrew has evolved over time, resulting in 
three distinct versions, called AFS-1, AFS-2, and AFS-3. In 
this paper the unqualified term “Andrew” applies to all three 
versions of the file system. The design of a fourth version, 
AFS-4, is proprietary at the present time and is therefore not 
discussed here. 

As users become more dependent on distributed file sys- 
tems, the availability of data in them becomes increasingly 
important. Today, a single failure in Andrew can seriously 
inconvenience many users for significant periods of time. 
Coda, whose development began in 1987 at CMU, strives 
to provide high availability while retaining the scalability of 
Andrew. 

Coda provides resiliency to server and network failures 
through the use of two distinct but complementary mecha- 
nisms. One mechanism, server replication, stores copies of a 

file at multiple servers. The other mechanism, disconnected 
operation, is a mode of execution in which a caching site 
temporarily assumes the role of a replication site. Disconnected 
operation is particularly useful for supporting portable clients. 
Coda has been in serious daily use by a small user community 
for about a year, and substantial growth is anticipated in the 
near future. 

Both Andrew and Coda have been described extensively 
in the literature [6], [7], [9], [18]-[21], [25]. In contrast to 
those papers, our discussion here is narrowly focused. In each 
of the following sections we highlight one aspect of Andrew 
or Coda that is a consequence of scale or contributes sig- 
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nificantly to scalability. Wherever plausible alternative design 
choices exist, we evaluate our choices from the perspective 
of scalability. 

IV. SCALE-RELATED ASPECTS OF ANDREW AND CODA 

A. Location Transparency 

A fundamental issue is how files are named and located 
in a distributed environment. Andrew and Coda offer true 
locution transparency: the name of a file contains no location 
information. Rather, this information is obtained dynamically 
by clients during normal operation. Consequently, administra- 
tive operations such as the addition or removal of servers and 
the redistribution of files on them are transparent to users. In 
contrast, some file systems require users to explicitly identify 
the site at which a file is located. For example, Unix United [2] 
uses pathname constructs of the form “l../machinellocalputh” 
and VaxlVMS [4] uses “muchine::device:loculputh.” 

The embedding of location information in a logical name 
space has a number of negative consequences. First, users have 
to remember machine names to access data. Although feasible 
in a small environment, this becomes increasingly difficult as 
the system grows in size. It is simpler and more convenient 
for users to remember a logical name devoid of location 
information. A second problem is that it is inconvenient 
to move files between servers. Since changing the location 
of a file also changes its name, file names embedded in 
application programs and in the minds of users become invalid. 
Unfortunately, data movement is inevitable when storage 
capacity on a server is exceeded or when a server is taken 
down for extended maintenance. The problem is more acute in 
large systems, because the likelihood of these events is greater. 

Another alternative, used in Sun NFS [17], is to establish 
an association between a pathname on a remote machine and 
a local name. The association is performed using the mount 
mechanism in Unix when a machine is initialized, and remains 
in effect until the machine is reinitialized. Although this ap- 
proach avoids pathnames with embedded server identification, 
it is not as flexible. If a file is moved from one server to 
another it will not be accessible under its original name unless 
the client is reinitialized. 

Location transparency can be viewed as a binding issue. 
The binding of location to name is static and permanent 
when pathnames with embedded machine names are used. 
The binding is less permanent in a system like Sun NFS. It 
is most dynamic and flexible in Andrew and Coda. Usage 
experience has confirmed the benefits of a fully dynamic 
location mechanism in a large distributed environment. 

B. Client Caching 

The caching of data at clients is undoubtedly the architec- 
tural feature that contributes most to scalability in a distributed 
file system. Caching has been an integral part of the Andrew 
and Coda designs from the beginning. Today, every distributed 
file system in serious use uses some form of caching. Even 
AT&T’s RFS [16], which initially avoided caching in the 
interests of strict Unix emulation, now uses it. In implementing 



SATYANARAYANAN: INFLUENCE OF SCALE ON DISTRIBUTED FILE SYSTEM DESIGN 3 

caching one has to make three key decisions: where to locate 
the cache, how to maintain cache coherence, and when to 

propagate modifications. 
Andrew and Coda cache on the local disk, with a further 

level of file caching by the Unix kernel in main memory. Most 
other distributed file systems maintain their caches only in 
main memory. Disk caches contribute to scalability by reduc- 
ing network traffic and server load on client reboots, a surpris- 
ingly frequent event in workstation environments. They also 
contribute to scalability in a more indirect way by enabling 
disconnected operation in Coda. The latter feature is critically 
dependent upon a local disk or some other form of local 
nonvolatile storage. Since disconnected operation allows users 
to continue in the face of remote failures, and since the latter 
tend to be more numerous as a system grows, caching on local 
disks can be viewed as indirectly contributing to scalability. 

Cache coherence can be maintained in two ways. One 
approach is for the client to validate a cached object upon 
use. This strategy, used in AFS-1 and Sprite [12], results in 
at least one interaction with a server for each open of a file. 
A more scalable approach is used in AFS-2, AFS-3, Coda, 
and Echo [5]. When a client caches an object, the server 
hands out a promise (called a callback or token) that it will 
notify the client before allowing any other client to modify that 
object. Although more complex to implement, this approach 
minimizes server load and network traffic, thus enhancing 
scalability. Callbacks further improve scalability by making 
it viable for clients to translate pathnames entirely locally. 

Maintaining cache coherence is unnecessary if the data in 
question can be treated as a hint [28]. A hint is a piece of infor- 
mation that can substantially improve performance if correct, 
but has no semantically negative consequence if erroneous. For 
maximum performance benefit a hint should nearly always be 
correct. Hints improve scalability by obviating the need for 
a cache coherence protocol. Of course, only information that 
is self-validating upon use is amenable to this strategy. One 
cannot, for instance, treat file data as a hint, because the use of 
a cached copy of the data will not reveal whether it is current or 
stale. Hints are most often used for file location information 
in distributed file systems. Andrew and Coda, for instance, 
cache individual mappings of volumes to servers. Similarly, 
Sprite caches mappings of pathname prefixes to servers. A 
more elaborate location scheme, incorporating a hint manager, 
is used by Apollo Domain [8]. 

Existing systems use one of two approaches to propagat- 
ing modifications from client to server. Write-back caching, 
used in Sprite and Echo, is the more scalable approach. 
When operating disconnected, a Coda client is effectively 
using deferred write-back caching. However, in the connected 
mode the current implementation of Coda uses write-through 
caching. We plan to change this to write-back caching in 
the near future. Because of implementation complexity and 

to reduce the chances of server data being stale due a client 
crash, Andrew uses a write-through caching scheme. This is 
a notable exception to scalability being the dominant design 
consideration in Andrew. Sun NFS is another example of a 
system that synchronously flushes dirty data to the server upon 
close of a file. 

C. Bulk Data Transfer 

An important issue related to caching is the granularity of 

data transfers between client and server. The approach used 
in AFS-1 and AFS-2 is to cache entire files. This enhances 
scalability by reducing server load, because clients need only 
contact servers on file open and close requests. The far 
more numerous read and write operations are invisible 
to servers and cause no network traffic. Whole-file caching 
also simplifies cache management, because clients only have 
to keep track of files, not individual pages, in their cache. 

Amoeba [lo] and Cedar [23] are examples of other systems 
that employ whole-file caching. 

Caching entire files has at least two drawbacks. First, files 
larger than the local disk cannot be accessed. Second, the 
latency of open requests is proportional to file size, and can be 
intolerable for extremely large files. To avoid these problems, 

AFS-3 uses partial-file caching. However, usage experience 
with AFS-3 at CMU has not demonstrated substantial improve- 
ment in usability or performance due to partial-file caching. On 

the contrary, it has exposed the following unexpected problem. 
By default, Unix uses the file system rather than a separate 

swap area as backing store for the code segments of executing 
programs. With partial-file caching, parts of this backing store 

may not be present on the client’s local disk; only the server 
is guaranteed to have the full image. This image is overwritten 
when a new version of a program is copied into AFS-3. If a 
client started executing the program prior to the copy, there is 
a possibility that page faults from that instance of the program 
may no longer be serviceable. This problem does not arise with 
whole-file transfer, because a local copy of the entire program 

is guaranteed to be present when execution of the program is 
begun. For partial-file caching to work correctly a server must 
prevent overwriting of a file as long as any client in the system 
is executing a copy of that file; or, a server must be able to 
defer deletion of older versions of executable files until it is 
sure that no client is executing any of those versions. In either 

case, the cache coherence protocol will be more complex and 

less scalable. 
Coda also uses whole-file caching. However, scalability is 

not the only motivation in this case. From the perspective of 
disconnected operation, whole-file caching also offers another 
important advantage: remote failures are only visible on open 
and close operations. In our opinion, the simplicity and 
robustness of this failure model outweigh the merits of partial- 

file caching schemes such as those of AFS3, Echo, and MFS 

c31. 
When caching is done at large granularity, considerable 

performance improvement can be obtained by the use of a 
specialized bulk data-transfer protocol. Network communica- 
tion overhead caused by protocol processing typically accounts 
for a major portion of the latency in a distributed file system. 

Transferring data in bulk reduces this overhead by amortizing 
fixed protocol overheads over many consecutive pages of a 
file. For bulk transfer protocols to be effective there has to 
be substantial spatial locality of reference within files. The 
presence of such locality has been confirmed by empirical 
observations of Unix systems. For example, Ousterhout et al. 
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[13] note that most files are read in their entirety after being 
opened. 

Systems that use whole-file caching are most naturally 
suited to using bulk transfer protocols. Other systems exploit 
bulk transfer in varying degrees. AFS-3 transfers data in large 
chunks, typically 64 kilobyte in size. Sun NFS and Sprite 
do not use bulk transfer protocols, but use large datagrams, 
typically 8 kilobyte in size. It is likely that bulk transfer 
protocols will increase in importance as distributed file systems 
spread across networks of wider geographic area. 

D. Token-Based Mutual Authentication 

A social consequence of large scale is that the casual attitude 
toward security typical of closely knit distributed environments 
is no longer viable. The relative anonymity of users in a 
large system requires security to be maintained by enforcement 
rather than by good will. This, in turn, raises the question of 
who can be trusted to enforce security. Security in Andrew and 
Coda is predicated on the integrity of a relatively small number 
of servers, rather than the much larger number of clients. 

Many small-scale distributed systems present a facade of 
security by using simple extensions of the mechanisms used 
in a time-sharing environment. For example, authentication 
is often implemented by sending a password in the clear 
to the server, which then validates it. Besides the obvious 
danger of sending passwords in the clear, this also has the 
drawback that the client is not certain of the identity of the 
server. Andrew and Coda, in contrast, perform full mutual 
authentication using a variant of the Needham and Schroeder 
private key authentication algorithm [ll]. 

In AFS-1, AFS-2, and Coda, this function is integrated with 
the RPC mechanism. To establish a secure and authenticated 
RPC connection, a 3-phase handshake takes place between 
client and server. The client supplies a variable-length iden- 
tifier and an encryption key for the handshake. The server 
provides a key lookup procedure and a procedure to be invoked 
on authentication failure. The latter allows the server to record 

and possibly notify an administrator of suspicious authen- 
tication failures. At the end of a successful authentication 
handshake the server is assured that the client possesses the 
correct key, while the client is assured that the server is capable 
of looking up his key. The use of randomized information in 
the handshake guards against replays by adversaries. 

A naive use of the RPC handshake would require the user 
to supply his password every time a new connection had to 
be established. The obvious improvement of having the user 
type in his password once and storing it in the clear at the 
client is risky. The approach used in Andrew and Coda is 
to provide a level of indirection using authentication tokens. 
When a user logs in to a client, the password he types in is 
used as the key to establish a secure RPC connection to an 
authentication server. A pair of authentication tokens are then 
obtained for the user on this secure connection. These tokens 
are saved by the client and are used by it to establish secure 
RPC connections on behalf of the user to file servers. To bound 
the period during which lost tokens can cause damage, tokens 
expire after a finite time (typically 24 h). 

Like a file server, an authentication server runs on physically 
secure hardware. To improve availability and to balance load, 
there are multiple instances of the authentication server. Only 
one instance accepts updates; the others are slaves and respond 
only to queries. To improve accountability, the master main- 
tains an audit trail of changes to the authentication database. 

For reasons of standardization, AFS-3 uses the Kerberos 
authentication system [26]. Kerberos provides functionality 
equivalent to the authentication mechanism described above, 
and resembles it in design. 

E. Hierarchical Groups and Access Lists 

Controlling access to data is substantially more complex 
in large-scale systems than it is in smaller systems. There is 
more data to protect and more users to make access control 
decisions about. This is an area in which the Unix file system 

model is seriously deficient. The Unix protection model was 
obtained by simplifying the Multics protection model to meet 
the needs of small time-sharing systems. Not surprisingly, 
the Unix model becomes inadequate when a system is scaled 
up. To enhance scalability Andrew and Coda organize their 
protection domains hierarchically and support a full-fledged 
access-list mechanism. 

The protection domain is composed of users and groups. 
Membership in a group is inherited, and a user’s privileges are 
the cumulative privileges of all the groups he or she belongs 
to, either directly or indirectly. New additions to a group G, 
automatically acquire all privileges granted to the groups to 
which G belongs. Conversely, when a user is deleted, it is 
only necessary to remove him from those groups in which he is 
explicitly named as a member. Inheritance of membership con- 
ceptually simplifies the maintenance and administration of the 
protection domain, a particularly attractive trait at large scale. 
At least two other systems, CMU-CFS [l] and Grapevine [22], 
have also used a hierarchical protection domain. 

Andrew and Coda use an access-list mechanism for file 
protection. The total rights specified for a user are the union 
of the rights specified for him and the groups he or she belongs 
to. Access lists are associated with directories rather than 
individual files. The reduction in state obtained by this design 
decision provides conceptual simplicity that is valuable at large 
scale. Although the real enforcement of protection is done on 
the basis of access lists, Venus superimposes an emulation of 
Unix protection semantics by honoring the owner component 
of the Unix mode bits on a file. The combination of access 
lists on directories and mode bits on files has proved to be an 
excellent compromise between protection at fine granularity, 
scalability, and Unix compatibility. 

The ability to rapidly revoke access privileges is important 
in a large distributed system. Revocation is usually done by 
removing an individual from an access list. But that individual 
may be a direct or indirect member of one or more groups 
that give him or her rights on the object. The process of 
discovering all groups that the user should be removed from, 
performing the removal at the site of the master authentication 
server, and propagating it to all slaves may take a significant 
amount of time in a large distributed system. Andrew and Coda 
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simplify rapid and selective revocation by allowing access lists 
to specify negative rights. An entry in a negative rights list 
indicates denial of the specified rights, with denial overriding 
possession in case of conflict. Negative rights thus decouple 
the problems of rapid revocation and propagation of group 
membership information. 

The loss of accountability caused by the shared use of a 
pseudo-user id (such as “root” in Unix systems) by system 
administrators is a serious problem at large scale. Conse- 
quently, administrative privileges in Andrew and Coda are 
obtained by membership in a distinguished group named 
“System:Administrators.” This improves accountability, since 
system administrators have to reveal their true identity during 
authentication. 

F. First Versus Second-Class Replication 

The use of two distinct mechanisms for high availability 
in Coda, server replication and disconnected operation, is an 
indirect consequence of Coda’s desire to scale well. Systems 
such as Locus [29] that rely solely on server replication have 
poor scaling characteristics. Since disconnected operation is 
almost free, while server replication incurs additional hardware 
costs and protocol overhead, it is natural to ask why the 
latter mechanism is needed at all. The answer to this question 
depends critically on the very different assumptions made 
about clients and servers in Coda. These assumptions, in turn, 
reflect the usage and administrative characteristics of a large 
distributed system. 

Clients are like appliances: they can be turned off at will and 
may be unattended for long periods of time. They have limited 
disk storage capacity, their software and hardware may be tam- 
pered with, and their owners may not be diligent about backing 
up the local disks. Servers, in contrast, have much greater disk 
capacity, are physically secure, and are carefully monitored 
and administered by a professional staff. It is therefore ap- 
propriate to distinguish between first-class replicas on servers 
and second-class replicas on clients (i.e., cached copies). 
First-class replicas are of higher quality-they are more persis- 
tent, widely known, secure, available, complete, and accurate. 
Second-class replicas, in contrast, are inferior along all these 
dimensions. Only by periodic revalidation with respect to a 
first-class replica can a second-class replica be useful. 

The function of a cache coherence protocol is to combine 
the performance and scalability advantages of a second-class 
replica with the quality of a first-class replica. When discon- 
nected the quality of the second-class replica may be degraded, 
because the first-class replica upon which it is contingent 
is inaccessible. The longer the duration of disconnection, 
the greater the potential for degradation. Whereas server 
replication preserves the quality of data in the face of fail- 
ures, disconnected operation forsakes quality for availability. 
Hence server replication is important, because it reduces the 
frequency and duration of disconnected operation, which is 
properly viewed as a measure of last resort. 

G. Data Aggregation 

In a large system, considerations of operability and system 

T 

administration assume major significance. To facilitate these 
functions, Andrew and Coda organize file system data into 
volumes [24]. A volume is a collection of files located on one 
server and forming a partial subtree of the Vice name space. 
Volumes are invisible to application programs and are only 
manipulated by system administrators. The aggregation of data 
provided by volumes reduces the apparent size of the system 
as perceived by operators and system administrators. Our 
operational experience in Andrew and Coda confirms the value 
of the volume abstraction in a large distributed file system. 

Virtually all administrative functions in Andrew and Coda 
are done at the granularity of volumes. For example, volumes 
are the unit of read-only replication in Andrew, and read-write 
replication in Coda. Balancing of the available disk space 
and utilization on servers is accomplished by redistributing 
volumes across one or more servers. These modifications can 
be made during normal operation without disrupting service 
to users. Disk storage quotas are specified and enforced on 
individual volumes 

Volumes also form the basis of the backup and restoration 
mechanism. To backup a volume, a read-only clone is first 
made, thus creating a frozen snapshot of the constituent files. 
Since cloning is an efficient operation, users rarely notice any 
loss of access to that volume. An asynchronous mechanism 
then transfers this clone to a staging machine from where it 
is dumped to tape. The clone is also made available on-line. 
This substantially reduces the number of restoration requests 
received by operators, since users can themselves undo recent 
deletions by copying data from the clone. 

H. Decentralized Administration 

A large distributed system is unwieldy to manage as a 
monolithic entity. For smooth and efficient operation, it is es- 
sential to delegate administrative responsibility along lines that 
parallel institutional boundaries. Such a system decomposition 
has to balance site autonomy with the desirable but conflicting 
goal of system-wide uniformity in human and programming 
interfaces. The cell mechanism of AFS-3 [30] is an example 
of a mechanism that provides this balance. 

A cell corresponds to a completely autonomous Andrew 
system, with its own protection domain, authentication and 
file servers, and system administrators. A federation of cells 
can cooperate in presenting users with a uniform, seamless 
file name space. Although the presence of multiple protection 

domains complicates the security mechanisms in Andrew, 
Venus hides much of the complexity from users. For example, 
authentication tokens issued in a cell are only valid within 
that cell. To preserve transparency when accessing files from 
different cells, Venus maintains a collection of tokens for the 
cells of interest. A user is aware of the existence of cells only 
at the beginning of a session, when he or she authenticates 
himself to individual cells to obtain authentication tokens. 
After this initial step, Venus uses the appropriate tokens when 
establishing a secure connection to a file server. 

I. Functional Specialization 

When implementing a distributed realization of an interface 
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originally defined for a single site, one often finds that scala- 
bility and exact interface emulation make conflicting demands. 
One way to improve scalability is to relax the accuracy with 
which the interface is emulated. This strategy is particularly 
attractive if there is a natural partitioning of applications 
based on their use of the interface. Each equivalence class 
of applications can then use a distributed realization of the 
interface tuned to its critical requirements. 

In Andrew and Coda, propagating modifications only upon 
close operations violates strict Unix semantics, but is irrel- 
evant to most Unix applications. The use of caching and bulk 
data transfer presume substantial temporal and spatial locality 
of file accesses. The use of an optimistic replication strategy 
in Coda is based on the assumption that sequential write 
sharing is relatively rare. But the assumptions on which these 
techniques are based usually fail to hold for databases. Poor 
locality, fine granularity of update and query, and frequent 
concurrent and sequential write-sharing are the norm rather 
than the exception in databases. 

Rather than compromise scalability in an attempt to support 
databases, Andrew and Coda partition the problem into two 
orthogonal components-file access and database access-and 
only address the former. Support for database access has to be 
provided by a separate mechanism. This two-pronged strategy 
is in contrast to the unified strategies of time-sharing Unix file 
systems, where all accesses (from databases or otherwise) are 
supported on the same interface. 

Functional specialization also characterizes the mechanism 
in Andrew for supporting personal computers (PC’s) such 
as the IBM PC and Apple Macintosh. Such machines differ 
from full-fledged Andrew clients in that they do not run Unix, 
typically possess limited amounts of memory, and often do not 
possess a local disk. Caching of whole files, or large chunks 
of files, is not a viable design strategy for such machines. 
However, since a significant number of Andrew users also use 
PC’s, we felt it essential to allow PC users to access Vice 
files. This functionality is provided by a mechanism called 
PCServer [15] that is orthogonal to the Andrew file system. 

PCServer runs on an Andrew client and makes its file system 
appear to be a transparent extension of the file systems of a 
number of PCs. Since Vice files are transparently accessible 
from the client, they are also transparently accessible from the 
PC. The client thus acts as a surrogate for Vice. The protocol 
between PCServer and its clients is tuned to the capabilities 
of a PC. From the point of view of Venus, it appears as if the 
PC user had actually logged in at the client running PCServer. 
The decoupling provided by PCServer allows the Andrew file 
system to exploit techniques essential to good performance 
at large scale, without distorting its design to accommodate 
machines with limited hardware and software capability. 

J. Heterogeneity 

As a distributed system evolves it tends to grow more 
diverse. One factor contributing to diversity is the improve- 
ment in performance and decrease in cost of hardware over 
time. This makes it likely that the most economical hardware 
configurations will change over the period of growth of the 

system. Another source of heterogeneity is the use of different 
computer platforms for different applications. For example, the 
same individual may use a supercomputer for simulations, a 
Macintosh for document processing, a Unix workstation for 
program development, and a laptop IBM PC while traveling. 
Easy access to shared data across these diverse platforms 
would substantially improve usability. 

Andrew did not set out to be a heterogeneous computing en- 
vironment. Initial plans for it envisioned a single type of client, 
running one operating system, with the network constructed 
of a single type of physical media. Yet heterogeneity appeared 
early in its history and proliferated with time. Some of this 
heterogeneity is attributable to the decentralized administration 
typical of universities, but we are convinced that much of it is 
intrinsic to the growth and evolution of any distributed system. 

Coping with heterogeneity is inherently difficult, because 
of the presence of multiple computational environments, each 
with its own notions of file naming and functionality. Since 
few general principles are applicable, the idiosyncrasies of 
each new system have to be accommodated by ad hoc mech- 
anisms. The distributed file system community has gained 
some experience with heterogeneity. For example, Pinkerton 
et al. describe an experimental file system at Washington [14] 
that focuses on heterogeneity. TOPS [27] is a product offered 
by Sun Microsystems which allows shared-file access across 

the MS-DOS and Macintosh operating systems. PC-NFS, also 
from Sun, allows MS-DOS applications to access files on 
an NFS server. PCServer, described in the previous section, 
performs a similar function in the Andrew environment. 

V. DESIGN PRINCIPLES FOR SCALABILITY 

The essence of the Andrew and Coda strategy is to de- 
compose a large distributed system into a small nucleus that 
changes relatively slowly, and a much larger and less static 
periphery. From the perspectives of security and operability, 
the scale of the system appears to be that of the nucleus. But 
from the perspectives of performance and availability, a user 
at the periphery receives almost stand-alone service. It is the 
thesis of this paper that such a strategy is feasible and effective. 

A consequence of this strategy is that clients and servers 
need to be physically distinct machines. This seemingly minor 
detail turns out to be critical. Without this dichotomy, one 
cannot make different security and administrative decisions 
about clients and servers, nor can one optimize their hardware 
and software configurations independently. Although the need 
to have physically distinct clients and servers is not a problem 
at large scale, it is an expensive proposition at small scale. It is 
therefore tempting to make the client-versus-server distinction 
only a logical one, so that the start-up cost of a small 
installation is low. Unfortunately, systems such as NFS and 
Locus that have chosen this approach have foundered on the 
rock of scalability. Growth in these systems is unwieldy, and 
none of them appears capable of growth to thousands of sites. 
One is therefore forced to conclude that the client-server 
distinction is a fundamental one from the perspective of 
scalability, and that a higher initial cost is the price one pays 
for a system that can grow gracefully. 

-- 



SATYANARAYANAN INFLUENCE OF SCALE ON DISTRIBUTED FILE SYSTEM DESIGN 

Besides this high-level principle, we have also acquired 
more detailed insights about scalability in the course of 

building Andrew and Coda. We present these insights here 
as a collection of design principles: 

l Clients have the cycles to burn 
Whenever there is a choice between performing an 

operation on a client and performing it on a server, it 
is preferable to pick the client. This will enhance the 
scalability of the design, since it lessens the need to 
increase central resources as clients are added. 

The only functions performed by servers in Andrew 
and Coda are those critical to the security, integrity, or 
location of data. Further, there is very little interserver 
traffic. Pathname translation is done on clients rather 
than on servers in AFS-2, AFS-3, and Coda. The parallel 
update protocol in Coda depends on the client to directly 
update all accessible servers, rather than updating one of 
them and letting it relay the update. 

l Cache whenever possible 
Scalability, user mobility, and site autonomy motivate 

this principle. Caching reduces contention on centralized 
resources, and transparently makes data available wher- 
ever it is being currently used. 

AFS-1 cached files and location information. AFS-2 
also cached directories, as do AFS-3 and Coda. Caching 
is the basis of disconnected operation in Coda. 

l Exploit usage properties 
Knowledge about the use of real systems allows better 

design choices to be made. For example, files can often be 
grouped into a small number of easily identifiable classes 
that reflect their access and modification patterns. These 
class-specific properties provide an opportunity for inde- 
pendent optimization, and hence improved performance, 
in a distributed file system design. 

Almost one-third of file references in a typical Unix 
system are to temporary files. Since such files are seldom 
shared, Andrew and Coda make them part of the local 
name space. The executable files of system programs are 
often read, but rarely written. AFS-2, AFS-3, and Coda 
therefore support read-only replication of these files to 
improve performance and availability. Coda’s use of an 
optimistic replication strategy is based on the observation 
that sequential write-sharing of user files is rare. 

9 Minimize system-wide knowledge and change 
In a large distributed system it is difficult to be aware 

at all times of the entire state of the system. It is also 
difficult to update distributed or replicated data structures 
in a consistent manner. The scalability of a design is 
enhanced if it rarely requires global information to be 
monitored or atomically updated. 

Clients in Andrew and Coda only monitor the status 
of servers from which they have cached data. They do 
not require any knowledge of the rest of the system. 
File location information on Andrew and Coda servers 
changes relatively rarely. Caching by Venus, rather than 
file location changes in Vice, is used to deal with move- 

ment of users. 

Coda integrates server replication (a relatively heavy- 
weight mechanism) with caching to improve availability 
without losing scalability. Knowledge of a caching site is 
confined to those servers with callbacks for the caching 
site. Coda does not depend on knowledge of system-wide 
topology, nor does it incorporate any algorithms requiring 
system-wide election or commitment. 

Another instance of the application of this principle 
is the use of negative rights. More rapid revocation is 
possible by modifications to an access list at a single 
site rather than by a system-wide change to a replicated 
protection database. 

l Trust the fewest possible entities 
A system whose security depends on the integrity of the 

fewest possible entities is more likely to remain secure as 
it grows. 

Rather than trusting thousands of clients, security in 
Andrew and Coda is predicated on the integrity of the 
much smaller number of Vice servers. The administrators 
of Vice need only ensure the physical security of these 
servers and the software they run. Responsibility for 
client integrity is delegated to the owner of each client. 
Andrew and Coda rely on end-to-end encryption rather 
than physical link security. 

l Batch if possible 
Grouping operations together can improve throughput 

(and hence scalability), although it is often at the cost of 
latency. 

The transfer of files in large chunks in AFS-3 and in 
their entirety in AFS-1, AFS-2, and Coda is an instance of 
the application of this principle. More efficient network 
protocols can be used when data is transferred en masse 
rather than as individual pages. In Coda, the second phase 

of the update protocol is deferred and batched. Latency 
is not increased in this case, because control can be 
returned to application programs before the completion 
of the second phase. 

VI. CONCLUSION 

The central message of this paper is that growth is an in- 
evitable characteristic of successful and long-lived distributed 
systems. Designers should therefore prepare for growth a 
priori, rather than treating it as an afterthought. Our experience 
with Andrew and Coda has taught us much about building 
scalable distributed systems. We now have a collection of 
mechanisms that have been shown to enhance scalability, and 
a set of general principles to guide future design choices. 
But there is always the danger that system designers, like old 
generals, are fighting the last war. Each quantum increase in 
scale is likely to expose new ways in which the old tricks fail 
to work. It is with some trepidation, therefore, that we await 
the challenges posed by the next generation of large-scale 
distributed systems. 
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