
The Influence of Scaling and Assortativity on Takeover 
Times in Scale-Free Topologies 

 

Joshua L. Payne 
Dept. of Computer Science 

University of Vermont 
Burlington, VT 05405 

802-656-9116 
Joshua.Payne@uvm.edu

Margaret J. Eppstein 
Dept. of Computer Science 

University of Vermont 
Burlington, VT 05405 

802-656-1918 
Maggie.Eppstein@uvm.edu

  
 ABSTRACT 

In evolving systems, the topological characteristics of population 
structure have a pronounced impact on the rate of spread of 
advantageous alleles, and therefore affect selective pressure. One 
common method for quantifying the influence of population 
structure on selective pressure is through the analysis of the 
expected number of generations required for a single favorable 
allele to saturate an entire population (a.k.a. takeover time 
analysis). While takeover times have been thoroughly 
investigated in regular population structures, the selective 
pressures induced by irregular interaction topologies, such as 
scale-free graphs, have received much less attention. In this study, 
we systematically investigate the influence of scaling and 
assortativity, two frequently overlooked topological properties, on 
takeover times in scale-free population structures. Our results 
demonstrate that the scaling parameter and the magnitude and 
sign of assortativity have profound and unexpected nonlinear 
influences on takeover times in scale-free interaction topologies. 
We explore the reasons behind these results and suggest ways in 
which they may be exploited in future studies. 
 

Categories and Subject Descriptors 
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1. INTRODUCTION 
The behavior of complex adaptive systems is governed by the 
collective dynamics of the interacting system components. 
Consequently, the topological characteristics of the underlying 
interaction network strongly influence the rate of flow of 
information throughout the system, and thus play a critical role in 
determining emergent system-wide dynamics. The structural 
properties of graph-based interaction networks have been shown 
to have a pronounced impact on important phenomena, such as 
the evolution of cooperative behavior in social dilemmas 
[11][19][25], the emergence of global cascades in models of 
binary decisions with externalities [29], the maintenance of 
genetic diversity in simulated evolving populations [27], the rate 
of epidemiological invasions [13][20], and the reduction of 
selective pressure in evolutionary algorithms [7][24][26]. Thus, 
whether studying the dissemination of innovative ideas or the 
proliferation of advantageous mutations, it is important to 
understand the influence of the underlying interaction network on 
the flow of information throughout the system.  
In evolving systems, one common technique for quantifying how 
the flow of information is influenced by a given interaction 
topology is through the analysis of takeover time [8], which is 
defined as the expected number of generations required for a 
single advantageous allele to fully saturate a population, in the 
absence of variation operators such as recombination and 
mutation. Higher takeover times imply lower selective pressure, 
and vice versa. While takeover time analysis has typically been 
utilized to understand the influence of population structure on the 
saturation dynamics of evolutionary algorithms, it can also serve 
as a simplified measure of information flow in general, and so can 
provide a baseline for the analysis of a variety of graph-based 
models of dynamical processes. 
Takeover dynamics have been previously investigated and 
modeled in several regular (constant degree) population structures 
[7][8][24][26], as well as random and small-world topologies [6].  
The general result of these studies is that regular (or nearly 
regular) lattice structures reduce selective pressure, relative to 
well-mixed or randomly mixed populations, and can thus enhance 
the exploratory power of evolutionary search. However, takeover 
time analysis in “scale-free” topologies [3] has received 
considerably less attention, despite the fact that many real-world 
interaction networks fall into this class of graphs [1][5][12][15]. 
In scale-free topologies, the probability p(k) of finding a vertex of 
degree k is of the form p(k) ∝ k-γ, where γ is referred to as the 
scaling parameter. The heterogeneity of scale-free topologies, 
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captured in part by γ, has been shown to have an important 
influence on several important dynamical processes, ranging from 
percolation [9] to the emergence of cooperation in evolutionary 
games [22]. Some scale-free topologies (e.g., societal interaction 
networks) exhibit “assortative mixing” [18]; i.e., vertices of high 
degree are more likely to be attached to one another than to 
vertices of low degree. In contrast, certain biological networks, 
such as protein-protein interactions and ecological food webs 
exhibit “disassortative mixing” [18], where nodes of high degree 
are more likely to attach to nodes of low degree. Similar to the 
effects of the scaling parameter γ, the assortativity of scale-free 
topologies has also been shown to have a pronounced impact on 
dynamical processes occurring on these networks [18][23][30]. 
To date, only two studies [6][21] have analyzed takeover 
dynamics in scale-free topologies, and neither have examined the 
effects of the scaling parameter or the assortativity. In [6], 
Giacobini et al. investigated takeover dynamics on scale-free 
topologies generated using the algorithm provided by Albert and 
Barabási (AB) [3]. This scale-free graph generating algorithm 
yields a scaling parameter that approaches γ ~ 3 as the size of the 
graph approaches infinity and possesses an uncorrelated mixing 
pattern [18] (i.e., the mixing pattern is neither assortative nor 
disassortative). The results of [6] showed that the selective 
pressures induced by AB scale-free population structures are at 
least as strong as those induced by panmictic interaction 
topologies and that takeover time can be dramatically reduced by 
strategically placing the initial copy of the high fitness individual 
in a highly connected vertex. Using a variety of scale-free graph 
generating algorithms, Payne and Eppstein [21] showed that the 
selective pressures induced by scale-free interaction topologies 
with various degrees of clustering, modularity, and hierarchical 
organization, are heavily influenced by underlying topological 
properties and, by manipulating these characteristics, selective 
pressures on scale free graphs can be tuned from very high levels, 
such as those induced by random mixing, to low levels that are 
even weaker than those induced by nearest neighbor interactions. 
Their results also suggest that it may be possible to rapidly 
estimate takeover times on scale-free population structures based 
on only a few statically computed metrics of the underlying 
topology, such as the maximum path length and the variance in 
the distribution of path lengths. 
Understanding dynamics on scale-free interaction networks may 
provide insights into numerous dynamical processes, as well as 
help to determine the potential for exploiting these properties in 
evolutionary computation.  Consequently, the focus of this study 
is to analyze the independent and combined effects of scaling and 
assortativity on takeover times in scale-free population structures.   

2. METHODS 
2.1 Definitions and Metrics 
The population structure of an evolutionary algorithm can be 
represented as a graph G = (V, E), defined as a nonempty finite 
set of vertices (V) and a finite set of edges (E) connecting these 
vertices. Each individual in the population is represented by a 
vertex i ∈V, so that |V| = μ, where μ is the population size. The 
graph is undirected, with an edge <i, j> ∈E for every individual j 
in the mating neighborhood of individual i, for all i ∈V. In this 
study, we consider the simple case of a population with only two 
levels of fitness. The initial population comprises a single high 
fitness individual and μ-1 low fitness individuals. If Nt denotes 

the proportion of high fitness individuals at time t, then the 
takeover time of an individual experiment T = min{t | Nt = 1} is 
defined as the minimum number of generations such that copies 
of the most fit individual fully saturate the entire population, 
starting with only one such individual in the initial population 
[24]. Ei[T] is defined as the empirical estimate of the expected 
takeover time given that the initial best individual is located in 
vertex i, and the overall empirically estimated takeover time E[T] 
is computed as the average of Ei[T] over all vertices i ∈ V.  
In order to most directly infer the influence of scaling and 
assortativity on takeover times in scale-free topologies, we adopt 
a simple “replace if better” selection mechanism (a.k.a. uniform 
selection [10]), where nodes are updated synchronously. For each 
node i ∈V, a node j is selected at random from the mating 
neighborhood of node i, with neighborhood size ki. Thus, if there 
are x nodes of high fitness in the mating neighborhood of node i, 
then the probability of selecting one of them is simply x/ki and the 
value of node j replaces the value of node i if node j has higher 
fitness. 
The distribution of vertex connectivity, p(k), is a probability 
distribution function (PDF) depicting the frequency with which 
nodes have degree k. The complementary cumulative distribution 
function (CCDF), commonly used to visualize scale-free 
distributions [4], depicts the frequency with which nodes have 
degree greater than k. For all of the graphs considered in this 
study, the PDF of vertex connectivity will take the form p(k) ∝ k-

γ, where the scaling parameter, γ, will be systematically varied. 
Note that the resulting CCDF is then of the form P(k) ∝ k-γ+1. The 
path length Li of a vertex i is defined as the mean of the shortest 
paths between i and all of the other vertices in the graph. The 
maximum of the individual path lengths of all nodes is referred to 
as LMAX. The characteristic path length L of a graph G is the 
average of the path lengths of the individual vertices Li, with 
variance σL

2. The metric suggested in [21] to predict takeover 
times in spatially structured populations is defined as follows: 
         2

MAX MAX LL Lζ σ= +        (1) 

The assortativity r of a graph G is a measure of the propensity 
with which vertices of similar degree connect to one another. 
Formally, assortativity (r) is defined as [18]: 
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where ki and kj are the degrees of the nodes at the ends of an edge 
<i, j>. A graph is said to be assortative if r > 0, uncorrelated if r = 
0, and disassortative if r < 0. 

2.2 Tuning the Scaling Exponent 
The growing random network (GN) model of Krapivsky, Redner, 
and Leyvraz [14] can be used to generate scale-free topologies 
with a range of scaling parameters. Briefly, the GN algorithm 
works as follows. In each time step t, a single node is added to the 
graph, connecting to an existing node of degree k with probability 
proportional to the linear connection kernel Ak, where Ak = 1 if k = 
1 and Ak = αk if k > 1.  By altering the parameter α in the 
connection kernel, the scaling parameter of the degree distribution 
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can theoretically be tuned anywhere in the range 2 < γ < ∞, for 
infinitely sized graphs [14]. However, due to finite size effects, 
we restricted our investigation to scaling parameters in the range 
2.4 ≤ γ ≤ 4. Note that if α = 1, the AB algorithm [3] is recovered. 
We modified the GN algorithm slightly, so that instead of 
initializing the graph as a single node, we initialize it with a 
clique of m0 nodes with no edges, as in [21]. Newly arriving 
nodes are connected to m (= m0) existing nodes, as opposed to 
simply making a single connection. After t time steps, the graph 
comprises t + m0 nodes and mt edges. Since we set m = m0, graph 
connectivity is ensured. In order to obtain finite-sized graphs with 
specific scaling parameters, graph instances were created 
repeatedly and for each the observed γ was calculated as 
described in the next paragraph.  Only those graphs with observed 
scaling parameters within 0.01 of the desired scaling parameter 
were saved and used in the experiments. 
In order to accurately estimate the scaling parameter (γ) and lower 
bound (kmin) of the scale-free region of the degree distribution, we 
utilized the method provided by Clauset, Shalizi, and Newman 
[4]. By varying γ and kmin over a specified range and iteratively 
applying the Kolmogrorov-Smirnov (KS) test to the observed data 
and fitted model, the combination of γ and kmin that minimized the 
KS statistic was chosen as the hypothesized power-law model. 
The goodness of fit of this model was then calculated using a 
Monte-Carlo procedure [4] in order to verify that the degree 
distribution of the resulting graph was, in fact, consistent with the 
hypothesized power-law model.  
In order to eliminate any structural motifs that may have been 
inadvertently introduced into the topology as an artifact of the 
graph construction algorithm, we then randomized the edge set of 
each saved topology using the Maslov-Sneppen algorithm [16], as 
follows. In each step of the algorithm, two edges, <a,b> and 
<c,d>, are chosen at random with uniform probability. Their 
connections are then swapped such that two new edges, <a,c> and 
<b,d> replace the original pair of edges. If either of the newly 
formed edges are already present in the graph, then the edge swap 
is aborted. This process is repeated for 10,000 edge swaps. Since 
the degree of each node remains unchanged after a swap, this 
method exactly preserves the underlying degree distribution.  

2.3 Tuning the Assortativity 
Xulvi-Brunet and Sokolov [30] have proposed a single-parameter 
shuffling algorithm that probabilistically alternates between 
Maslov-Sneppen edge swaps, and edge swaps that alter 
assortativity. However, since the assortative edge swaps are 
performed probabilistically, their algorithm yields a range of 
assortativities for a given specified probability. In this study, we 
wanted to investigate takeover times on topologies with well-
controlled assortativities, so we devised the following iterative 
method that allows for the direct specification of assortativity, 
within some error tolerance. 
In each iteration of our algorithm, the assortativity of the graph is 
measured using equation (2) and compared to the desired 
assortativity.  Two edges, <a,b> and <c,d>, are then selected at 
random with uniform probability. If the observed assortativity is 
less than the desired assortativity, the edges are swapped such that 
the two nodes with the larger degrees are connected together and 
the two nodes with the smaller degrees are connected together. If 
the observed assortativity is greater than the desired assortativity, 

the reverse is done. If either of the new edges are already present 
in the graph, then the swap is aborted. The algorithm iteratively 
continues swapping edges in this fashion until the observed 
assortativity is within some epsilon of the desired assortativity. If 
the desired assortativity is not achieved within 10,000 swaps, the 
graph is discarded. Since vertex degree is never altered in a 
swapping event, this algorithm exactly preserves the underlying 
degree distribution. 

2.4 Experimental Design 
A population size of μ = 1024 was used in all experiments. Scale-
free topologies with scaling parameters γ ∈ {2.4, 2.6, 2.8, 3.0, 
3.2, 3.4, 3.6, 3.8, 4.0} were generated, as described in Section 2.2. 
Once graphs with the desired scaling parameters were obtained, 
they were subsequently shuffled as described in Section 2.3 to 
have assortativities r ∈ {-0.2, -0.1, 0, 0.1, 0.2}. In all cases, m0 = 
m = 2, such that the average degree <k> = 4. The goodness of fit 
for each hypothesized power-law model was found to be 
satisfactory (p > 0.1, using the Monte Carlo method in [4]) and 
kmin was found to range from 3 to 5. Ten graph instances were 
generated for each combination of γ and r, using these methods. If 
any graph became disconnected during shuffling, then that graph 
instance was discarded, a new graph was generated, and the 
process was repeated. 
In contrast to regular population structures, the expected takeover 
times in scale-free population structures have been shown to be 
highly dependent upon the placement of the initial copy of the 
high fitness individual [6]. Therefore, for each graph instance we 
systematically placed the high fitness individual of the initial 
population in each node of the topology, one at a time, and 
subsequently performed ten independent takeover time 
simulations for each initial placement, in order to mitigate the 
stochasticity inherent in the selection policy. Thus, 102,400 
independent runs were performed for each combination of γ and r, 
resulting in a total of 4,608,000 independent takeover time 
simulations. 

3. RESULTS AND DISCUSSION 
3.1 Influence of Scaling Alone 
We first consider the case of uncorrelated (r = 0) scale-free 
topologies. Takeover times of the individual simulations (T) are 
shown as a function of the scaling parameter (γ) in Figure 1a, with 
average takeover times (E[T]) provided in Figure 1b. In Figure 1c, 
we depict the average takeover time given that the initial high 
fitness individual is placed in node i (Ei[T]), as a function of the 
degree of this initial vertex (ki). I.e., each data point in Figure 1c 
represents the average takeover time observed across all 
simulations in which the vertex of initial placement had degree ki. 
The relationship between Ei[T] and ki appears to decay according 
to a power-law, implying that Ei[T] decreases faster than linearly 
in ki. As evidenced in Figure 1c, the scaling parameter (γ) of the 
population structure affects the relationship between Ei[T] and ki. 
E[T] decreased from 34.8 generations to 22.7 generations as the 
scaling parameter (γ) increased from γ ~ 2.4 to γ ~ 4.0 (Figure 1b) 
and the standard deviation of E[T] across graph instances 
similarly decreased from 1.58 for γ ~ 2.4 to 0.05 for γ ~ 4.0. The 
decrease in E[T] occurs for two reasons, as described below. 
First, scale-free topologies with lower scaling parameters possess 
more highly connected vertices than those with larger scaling 
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Figure 1. Influence of scaling on takeover times (in generations) in uncorrelated (r = 0) scale-free topologies. (a) Individual 
takeover times (T) of all independent simulations are presented as a function of the scaling parameter (γ). (b) Average takeover 
times (E[T], averaged over all simulations on each of 10 graph instances, error bars denote one standard deviation) are depicted as 
a function of the scaling parameter (γ). (c) Average takeover times given that the initial high fitness individual was placed in vertex 
i (Ei[T]) are shown as a function of the degree of the initial vertex (ki). The dashed (γ ~ 2.4), solid (γ ~ 3.0), and dotted (γ ~ 4.0) lines 
are included as a visual aid to indicate trends as a function of scaling and ki. Note the change in scale in the vertical axes between 
(a) and (b), and the double logarithmic axes in (c). 
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Figure 2. Frequency distributions of individual path 
lengths (Li) for (a) γ ~ 4.0, (b) γ ~ 3.4, and (c) γ ~ 2.4. Each 
distribution represents the frequency with which 
individual path lengths were observed across all ten graph 
instances. In (a), the distribution of path lengths is 
normally distributed (p > 0.01, χ2 test) and the solid line 
depicts a Gaussian PDF created using the sample mean and 
standard deviation of the individual path lengths. In (b) 
and (c), the solid squares denote the characteristic path 
length (L), averaged across all ten graph instances, and the 
horizontal error bars denote one standard deviation across 
the graph instances. The insets depict the CCDF of the 
respective degree distributions (P(k)). 

 

parameters (e.g., max(k) = 133 for γ ~ 2.4 as compared to 
max(k)= 23 for γ ~ 4.0). While previous research on uncorrelated 
scale-free topologies has shown that genetic information 
disseminates rapidly when favorable alleles are strategically 
placed in such highly connected vertices [6], this high 
connectivity also makes these vertices more difficult to invade. 
Consider the case where the initial high fitness individual is 
placed in a vertex with low connectivity, which neighbors a high 
degree “hub” of degree k. Under the uniform selection mechanism 
previously described, it will take on average k generations for the 
hub to adopt the high fitness value of its neighboring vertex. 
Therefore, increasing the degree of a vertex increases the average 
amount of time required for a neighboring vertex to invade it. In 
uncorrelated scale-free topologies under uniform selection, a 
single structural property thus simultaneously inhibits and 
facilitates the dissemination of information, depending on the 
degree of the vertex of initial placement. 
The second factor influencing the decrease in E[T] as a function 
of γ is the distribution of path lengths (Li). As shown in Figure 2, 
uncorrelated scale-free topologies with larger scaling parameters 
were found to possess more homogeneous distributions of path 
lengths (e.g., γ ~ 4.0, Figure 2a) than those with smaller scaling 
parameters (e.g., γ ~ 3.4 and γ ~ 2.4, in Figures 2b and 2c, 
respectively). As the scaling parameter is decreased, the 
distribution of path lengths becomes more heavily skewed, 
deviating from a normal distribution for all γ < 4.0 (p << 0.01, χ2 
test). Thus, the longer path lengths inherent in the topologies with 
smaller scaling parameters serve to slow the spread of information 
throughout the population.  
The change in the variability of T (Figure 1a), and consequently 
E[T] (Figure 1b), as a function of γ can be understood as follows. 
Scale-free topologies with lower scaling parameters possess larger 
variability in their degree distribution (e.g., compare the inset of 
Figure 2c with that of Figure 2a) and takeover time is 
(nonlinearly) inversely correlated with the degree of the vertex in 
which the initial high fitness individual is placed (Figure 1c). 
Since in our experiments the initial high fitness individuals are 
placed in each node of the population structure, one at a time, and 
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Figure 3. Average takeover time (E[T], in generations) as a 
function of characteristic path length (L) in uncorrelated (r = 
0) scale-free topologies. Each data point represents the 
average takeover time observed on a single graph instance. 
The crooked arrow is merely provided as a visual aid to 
indicate the surprising changes in E[T] and L as the scaling 
exponent decreases from γ ~ 4.0 to γ ~ 2.4. 
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Figure 4. (a) Average takeover time (E[T], in generations) 
is shown as a function of assortativity (r) in scale-free 
topologies with γ ~ 3.0. Each data point represents the 
average takeover times on each graph instance; the solid 
line is drawn through the means of the data. (b) Average 
takeover time (E[T], in generations) is presented as a 
surface function of assortativity (r) and scaling (γ). Each 
point in the surface is calculated as the average takeover 
time across all graph instances for a given combination of r 
and γ. For reference, the data presented in Figure 4a (• 
symbols) and Figure 1b (□ symbols) are indicated in (b) to 
show how these figures relate to one another. Note that the 
vertical axis in (b) is truncated at 40 generations, down 
from the peak value of 132 generations, in order to scale 
the plot to better elucidate the shape of the nonlinear 
interaction in the response of E[T] to r and γ. 

topologies with smaller γ have larger variation in the degree of the 
vertices in which the initial high fitness individuals are placed, the 
variability in T, and consequently in E[T], increases. 
In Figure 3, we show the relationship between characteristic path 
length (L) and E[T] over a range of scaling parameters (γ). As this 
metric captures the average distance between all pairs of vertices 
in an interaction network, L strongly influences the rate of 
information flow throughout many systems. For example, 
expected takeover times in regular population structures are 
known to increase linearly in L [24]. Interestingly, as the scaling 
parameter decreases from γ ~ 4.0 (× symbols) to γ ~ 2.6 (  
symbols), L decreases from an average of 5.1 to 4.3, with a 
corresponding increase in E[T] from 22.7 to 27.5. In contrast, as γ 
decreases from 2.6 to 2.4 (star symbols), the trend changes 
abruptly, with L and E[T] simultaneously increasing to 4.8 and 
34.8, respectively. This finding has two interesting implications. 
First, contrary to previous belief [21], the expected takeover time 
can actually decrease as the characteristic path length increases. 
Second, as witnessed by the topologies with γ ~ 3.4 (Figure 3, □ 
symbols; Figure 2b, horizontal error bars) and γ ~ 2.4 (Figure 3, 
open stars; Figure 2c, horizontal error bars), interaction networks 
with statistically indistinguishable characteristic path lengths (p = 
0.46, unpaired t-test for distributions with unequal variance) can 
have significantly different expected takeover times (p << 0.01, 
unpaired t-test for distributions with unequal variance). As L is an 
averaged metric, it belies the true nature of the underlying path 
length distribution (Figures 2b,c) and is therefore not wholly 
indicative of E[T] in heterogeneous interaction topologies. 

3.2 Influence of Assortativity Alone 
We now consider the influence of assortativity on takeover times 
in scale-free topologies with γ ~ 3, as this scaling parameter is 
representative of graphs generated using the AB algorithm, which 
is commonly employed in studies of dynamical processes on 
scale-free networks (e.g., [20][25]). Figure 4a shows a general 
increase in the mean and variance of the expected takeover time 
E[T] as assortativity (r) increases from r = -0.2 to r = 0.2. The 

heteroskedacticity of E[T] across the values of assortativity 
considered herein results from an increase in the variability of the 
path length distribution as r increases (σL

2 increases linearly from 
0.17 at r = -0.2 to 0.79 at r = 0.2, R2 = 0.96), similar to the effect 
of decreasing γ in uncorrelated scale-free topologies (Figure 2). 
The increase in E[T] as a function of r results from the nature of 
assortative networks, as explained below.  
As assortativity increases, vertices of similar degree begin to 
connect to one another more frequently. This has two relevant 
implications. First, as the highly connected vertices attach to one 
another, the efficacy with which these vertices disseminate 
information is mitigated by their neighboring hubs, which are 
more difficult to invade than the low degree vertices that are 
typically adjacent to a hub in disassortative scale-free topologies. 
Second, as vertices of low connectivity begin to attach to one 
another, they form long linear chains across which information 
travels slowly. In contrast, more disassortative topologies promote 
the linking of dissimilar nodes (in terms of degree), facilitating 
the rapid promulgation of information by hubs and inhibiting the 
presence of long linear chains. Thus, the selective pressures 
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Figure 5. Each plot shows the average takeover time Ei[T] as a function of the degree of the vertex in which the initial high fitness 
individual was placed (ki). Raw data has been substituted with best fit lines in order to indicate trends (see Figure 1c to get a sense 
of the variability around these lines). Assortativity increases from left to right from (a) r = -0.2 to (e) r = 0.2. Note the log-log scale 
on all plots. 

induced by scale-free population structures are easily tunable 
through the simple alteration of assortativity. 

3.3 Combined Scaling and Assortativity 
We now analyze the combined influence of scaling and 
assortativity on takeover times in scale-free topologies. In Figure 
4b, we show the average takeover time E[T] as a function of the 
scaling parameter (γ) and assortativity (r). The observed 
relationship is highly nonlinear. While E[T] grows roughly 
linearly as r increases for 3.8 ≤ γ ≤ 4.0 (R2 > 0.88), the effect of 
assortativity becomes increasingly pronounced for γ ≤ 3.6, with 
E[T] rising sharply as the graph becomes more assortative. 
Similarly, for disassortative and uncorrelated graphs (r ≤ 0), E[T] 
grows approximately linearly as γ decreases from γ ~4.0 to γ ~2.6 
(R2 > 0.91), after which an abrupt jump in E[T] is observed for γ ~ 
2.4. For assortative graphs (r > 0), E[T] becomes more sensitive to 
lower values of γ. In combination, low values of the scaling 
parameter (γ) and high values of assortativity (r) give rise to 
exceptionally high takeover times; e.g., for γ ~ 2.4 and r = 0.2 the 
maximum takeover time observed in a single simulation (T) was 
280 generations, with an average takeover time E[T] of 132 
generations. As a baseline for comparison, the average takeover 
times reported in [21] in same sized panmictic and 2D lattice-
structured populations were 14.83 and 44.15 generations, 
respectively. 

In Figure 5, we show the average takeover time on graphs with γ 
∈{2.4, 3.0, 4.0}, given that the single initial high fitness 
individual is placed in node i (Ei[T]), as a function of the degree 
of this initial vertex (ki) and the assortativity (r) of the graph. This 
relationship is also highly nonlinear; in disassortative graphs (r < 0; 
Figures 5a,b), the scaling parameter has only a marginal effect on 
the rate of decay of Ei[T] in ki and its overall magnitude. However, 
as assortativity increases (r ≥ 0; Figures 5c-e), Ei[T] as a function of 
ki becomes increasingly sensitive to the scaling parameter (e.g., 
compare the dashed lines in Figures 5a-e), indicating that the 
influence of the degree of the vertex of initial placement on average 
takeover time is contingent upon the assortativity of the topology. 
Further, the rate of decay of Ei[T] as a function of ki decreases 
dramatically at high assortativity and low scaling. For example, for 
graph instances with γ ~ 2.4 and r = 0.2 (Figure 5e, dashed line), 
Ei[T] is relatively invariant as a function of ki. This finding has the 
interesting implication that in highly assortative scale-free graphs 

with low scaling parameters, the degree of the vertex in which the 
initial high fitness individual is placed has virtually no impact on the 
resulting takeover time, a result that rests in stark contrast to the 
relationship between Ei[T] and ki observed in uncorrelated and 
disassortative scale-free topologies (Figures 5a-c). 
We now turn our attention to the characteristic path length (L) and 
the metric ζ presented in [21], and their relationships to average 
takeover times (E[T]), as the scaling parameter (γ) and assortativity 
(r) are varied. Note that the values of γ are not explicitly shown in 
Figure 6 as they are in Figure 3; however, to better elucidate trends 
in the data, we provide lines as visual aids in each panel, and γ 
decreases monotonically as these lines are read from bottom to top 
(e.g., compare the r = 0 data in Figure 6c with the same data in 
Figure 3, where γ is shown explicitly). In Figures 6a,c, we depict the 
relationship between L and E[T] as the graph instances are changed 
from disassortative (r = -0.2; Figure 6a,c, lines indicated by - 
symbol) to uncorrelated (r = 0; Figure 6a,c, lines indicated by 0 
symbol) to assortative (r = 0.2; Figure 6a,c, lines indicated by + 
symbol). In graph instances with r = -0.2, E[T] decreases as a 
monotonic function of L. However, as the graph instances become 
more assortative, the relationship between E[T] and L exhibits an 
interesting shift. Consider the case of γ ~ 2.6 (Figure 6c, open 
circles). As these graph instances are tuned from disassortative (r = -
0.2) to uncorrelated (r = 0), the characteristic path length remains 
unchanged (p = 0.34, unpaired t-test for distributions with unequal 
variance), while the average takeover time increases significantly (p 
<< 0.01, unpaired t-test for distributions with unequal variance). As 
these graph instances are further tuned from uncorrelated to 
assortative (r = 0.2), both L and E[T] increase significantly (p << 
0.01, unpaired t-test for distributions with unequal variance). This 
has the interesting implication that, while for highly disassortative 
graphs average takeover time (E[T]) is negatively correlated with 
characteristic path length (L), the relationship between L and E[T] 
becomes an ambiguous multifunction as assortativity increases, with 
significantly different average takeover times observed on graph 
instances possessing indistinguishable characteristic path lengths.  
In Figures 6b,d (note the log-log scaling), we depict the relationship 
between ζ and E[T]. For uncorrelated and assortative graphs (lines 
indicated by 0 and + symbols, respectively), E[T] and ζ were found 
to be strongly correlated (R2=0.94 for r = 0, R2=0.88 for r = 0.2, 
between log(E[T]) and log(ζ)), with E[T] growing sublinearly in ζ 
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Figure 6. (a) Average takeover time (E[T]) as a function of characteristic path length (L) and (b) E[T] as a function of the 
empirical metric provided in [21] (ζ = LMAX + LMAX σ

2
L). The data shown in (c) and (d) are magnifications of the lower regions of 

the data presented in (a) and (b), respectively. Each data point represents the average takeover time observed on a single graph 
instance. In (c), the circle symbol (indicating the data corresponding to γ ~ 2.6) is used to show how data for a single scaling 
exponent “turns the corner” in this unusual relationship between E[T] and L as assortativity increases. The lines are added as a 
visual aid to indicate trends in the data. The negative (-), zero (0), and positive (+) symbols are also included as a visual aid to 
indicate the sign of the assortativity. Note that the data for r = 0 in (c) is the same as that presented in Figure 3. Axes are scaled 
logarithmically in (a,b,d) and linearly in (c). 

over many orders of magnitude. However, the slope of the 
relationship between log(E[T]) and log(ζ) increases as assortativity 
decreases, to the point where the line is essentially vertical at r = -
0.2 and thus there is no predictive power in ζ for disassortative 
graphs (R2 ~ 3e-4). These observations have several interesting 
implications. First, ζ is not a useful predictor of average takeover 
times (E[T]) in disassortative graphs (r < 0). Second, while ζ is 
highly predictive of E[T] in uncorrelated and assortative graphs (r ≥ 
0), this relationship is sublinear, in contrast to the observations made 
in [21]. Third, even in uncorrelated and assortative graphs, the 
relationship between E[T] and ζ is contingent upon the degree of 
assortativity, a factor that was not considered in [21]. 

4. SUMMARY AND CONCLUSIONS 
The results of this study demonstrate that the scaling parameter (γ) 
and the degree of assortativity (r) strongly affect the flow of 
advantageous alleles throughout scale-free population structures, 
and thus impact the selective pressures induced by these topologies. 
Specifically, our results demonstrate that decreasing γ increases the 
average takeover time because (a) as γ decreases, the distribution of 
vertex connectivity spans a greater domain, possessing highly 
connected vertices that are difficult to invade, and (b) the 

distribution of path lengths becomes more heavily skewed, such that 
information must travel across greater distances to fully saturate the 
population. Increasing assortativity (r) increases the average 
takeover time because (a) highly connected vertices are likely to 
attach to one another, therefore limiting one another’s influence and 
(b) as vertices of low connectivity link together, they form long 
linear chains of nodes over which information travels slowly. In 
disassortative and uncorrelated topologies, the average takeover 
time was found to decay faster than linearly as a function of the 
degree of the vertex in which the initial high fitness individual was 
placed, and the magnitude of this relationship was found to be a 
function of γ. In contrast, in scale-free population structures with 
low γ and high r, the average takeover time was virtually 
independent of the degree of the vertex in which the initial high 
fitness individual is placed. Thus, the influence of the degree of the 
vertex of initial placement is contingent upon both assortativity and 
the scaling parameter of the degree distribution. In combination, the 
scaling parameter and degree of assortativity were found to exhibit a 
nonlinear influence on the average takeover time, with the highest 
takeover times observed on highly assortative graphs possessing low 
scaling parameters.  
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In disassortative scale-free graphs, the average takeover time was a 
nonlinear inverse function of the characteristic path length (L), but 
was virtually independent of the metric ζ suggested in [21] to be 
predictive of average takeover times. Conversely, in uncorrelated 
and assortative scale-free topologies, average takeover time was a 
sublinear function of ζ, but was an ambiguous multifunction of L. 
This result suggests that any general topological metric designed to 
predict average takeover times will have to incorporate assortativity. 
Future work will investigate how these relationships are affected by 
population size. 
The uniform selection method considered in this study is clearly a 
simplification of the selection operators commonly used in 
evolutionary algorithms. However, even in this simplified model of 
information flow, non-trivial relationships were observed between 
the topological properties of population structure and average 
saturation time. Our results may serve as a useful frame of reference 
in a variety of models of dynamical processes on networks, such as 
graph-based models of disease transmission or fad proliferation. For 
example, it may be interesting to investigate the impact of scaling 
and assortativity in binary decision models that utilize 
heterogeneous threshold-based update policies (e.g., [29]), in which 
the decision of any single individual is contingent upon both the 
individual’s particular response function and the decisions of 
neighboring individuals. Future work will seek to address the 
inclusion of this update policy as well as others, such as the 
frequency-dependent selection mechanisms commonly employed in 
studies of evolutionary games (e.g., [25][28]).  
While lattice-based interaction networks have been explored for 
evolutionary optimization algorithms (e.g., see [2] and references 
therein), the potential utility of scale-free population structures is 
still unclear. Future work will seek to elucidate how, if at all, one 
can exploit scale-free population structures to improve the search 
performance of population-based optimization algorithms. For 
example, we hypothesize that it may be possible to adaptively 
control selective pressure in scale-free population structures by 
dynamically changing assortativity through simple swaps. 
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