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	e in
uence of sha� bending on the coupling vibration of rotor-blades system is nonignorable. 	erefore, this paper analyzed
the in
uence of sha� bending on the coupling vibration of rotor-blades system.	e vibration mode function of sha� under elastic
supporting condition was also derived to ensure accuracy of the model as well. 	e in
uence of the number of blades, the position
of disk, and the support sti�ness of sha� on critical speed of system was analyzed. 	e numerical results show that there were two
categories of coupling mode shapes which belong to a set where the blade’s rst two modes predominate in the system: sha�-blade
(SB) mode and interblade (BB) mode due to the coupling between blade and sha�. 	e BB mode was of repeated frequencies of
(��−2) multiplicity for number blades, and the SBmode was of repeated frequencies of (2) multiplicity for number blades.What is
more, with the increase of the number of blades, natural frequency of rotor was decreasing linearly, that of BB mode was constant,
and that of SB mode was increasing linearly. Natural frequency of BB mode was not a�ected while that of rotor and SB mode was
a�ected (changed symmetrically with the center of sha�) by the position of disk. In the end, vibration characteristics of coupling
mode shapes were analyzed.

1. Introduction

In the compressor/turbine engineering equipment, the blade,
the disk, and the sha� are assembled together by a certain
connecting structure and forming a blade-disk-sha� coupling
system which has some coupling characteristics. With the
development of scientic research, many scholars in this
eld have carried out a lot of research on the vibration of
blades rotor coupling system. However, the in
uence of sha�
bending on the coupling vibration of rotor-blades system
is nonignorable. And there are potential couplings between
sha� bending and blade bending under the right condition in
fact. 	erefore, this present research focuses on the in
uence
of sha� bending on the coupling vibration of rotor-blades
system.

	e 
exible disk model is the most popular analytical
model for such systems at rst. Parker andMote [1] predicted
natural frequencies of stationary annular or circular plates
with a perturbation solution, and they discussed the mode
split of the repeated natural frequencies. Khorasany and

Hutton [2] studied linear vibration behavior of annular
spinning disk whose inner boundary is free to move in the
axial direction while the body of the disk is constrained
by a space xed linear spring. Kim et al. [3] reported that
signicant changes could occur to its natural frequencies
and modes when a structure deviates from axisymmetry
because of circumferentially varying model features. Dopkin
and Shoup [4] studied the in
uence of disk’s 
exibility on
natural frequencies by a transfer matrix method.

As the rotating systems become lighter and more 
ex-
ible with higher operating speed for higher productivity
and economical design, the rigid sha�-disk model cannot
accurately predict the vibration characteristics of the system.
And the sha�-blades model is considered, considering the
coupling vibration among sha� bending and blade bending.
Anegawa et al. [5] successfully analyzed the coupling of the
sha� with in-plane vibration of the blades with � = 1
modes in a 1-DOF mass-spring system. What is more, the
existence of an unstable region due to coupling and the
characteristics of coupled resonance were indicated which
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was conrmed by experimental data. Turhan and Bulut [6]
studied coupling e�ects between sha�-torsional and blade-
bending (in-plane) vibrations in turbomachinery and other
rotating bladed structures and considered an idealizedmodel
where the blades are represented by uniform Euler-Bernoulli
beams. Besides, they derived a linearized mathematical
model for the system by using synthetically, multiframe, and
mixed (consisting in a coalescence of nite element and
Galerkinmethods) approach. Chiu andChen [7] investigated
the in
uence on coupling vibrations among sha�-torsion
and blade-bending coupling vibrations of a multidisk rotor
system analytically. 	ey solved the natural frequencies and
the mode shapes of the system for one- to three-disk cases
as examples and drew the diagrams of the coupling mode
shapes. From the results, it was found that the interblade (BB)
modeswere of repeated frequencies of (��−1)multiplicity for
number of blades. What is more, the numerical calculations
also revealed that the natural frequencies were a�ected by
blade numbers and disk distance. Lesa�re et al. [8] presented
amodel of fully 
exible bladed rotor developed in the rotating
frame and took the gyroscopic e�ects as well as the spin
so�ening e�ects and the centrifugal sti�ening e�ects into
consideration. Huang and Ho [9] introduced a new approach
to analyzing the dynamic coupling between sha� torsion and
blade bending of a rotating sha�-disk-blade unit. Numerical
examples showed not only coupling between the sha�, disk,
and blades, but also coupling between individual blades
and the blade coupling modes occurred only in repeated
frequencies. What is more, the e�ect of sha� speed on
the modal frequencies was investigated. Plots illustrating
the occurrence of critical speeds and 
utter instabilities are
presented. Chiu and Yang [10] investigated the in
uence on
coupling vibrations among sha�-torsion, blade-bending, and
lacing wire coupling vibrations of a multidisk rotor system
with grouped blades analytically. Moreover, they also found
that not only the natural frequencies in a mistuned blade but
also the types of coupling modes were found changed.

	en the disk-blademodel is used to predict the in
uence
of stagger and twist on natural frequencies for stationary as
well as rotating bladed disk systems [11]. And the 
exible
disk-blades model attracts a lot of research since the early
researches [12–14]. To get a better understanding and an
accurate prediction of the dynamic characteristics of sha�-
disk-blade units, Chun and Lee [15] developed an analysis
substructure synthesis and assumed modes method to inves-
tigate the e�ect of the 
exibility of a bladed disk assembly
on the vibrational modes of a 
exible rotor system. Yang
and Huang [16] studied the longitudinal motion e�ects on
the coupled vibration in a sha�-disk-blades system. Yang
and Huang [17–19] investigated the coupling vibrations and
applications among support-longitudinal, sha�-torsion, disk-
transverse, and blade-bending vibrations in a sha�-disk-
blades unit. Chiu and Huang [20] investigated the in
uence
on coupling vibrations among sha� torsion, disk-transverse,
and blade bending of a rotor system with a mistuned
blade length analytically and found that the sha�-disk-blades
system appeared to have four types of coupling vibrations:
sha�-blade (SB), sha�-disk-blade (SDB), disk-blade (DB),
and blade-blade (BB) mode.

From the preceding research it could be seen that there
were two kinds of analysis method for the typical structure.
One was regarding the support of blade as clamped or elastic
support and analyzing the vibration of the blade separately
and the other was regarding blade-disk system as a rigid
body component and analyzing the dynamic characteristics
of the rotor system separately. However, the research on
blade-disk-sha� coupling system had gradually become the
focus of research. Although some scholars had researched the
coupling vibration of sha� torsion and blade bending, the
in
uence of sha�’s bending is usually ignored. But we found
that there is a new mode which is SB due to the coupling
vibration of sha�’s bending and blade’s bending. And the
present paper aim is to analyze the in
uence of sha� bending
on the coupling vibration of sha�-disk-blades system. What
is more, in
uences of the blades number, disk position, and
support sti�ness on the characteristic value of system, the
Campbell diagram, and the mode shape of vibration were
studied by numerical simulation.

2. The Establishment of Dynamic Model

A dynamic model of rotor-blade coupling system with elastic
restraints is shown in Figure 1. 	e rotor system is composed
of continuous 
exible sha� and rigid disk. 	e Timoshenko
beam model is used to derive the energy equation of sha�
and the bending and torsional vibration are also taken
into consideration. 	e disk is regarded as a mass point.
Considering the radial and transverse vibration of blade,
the energy equation of blade is derived by using the Euler-
Bernoulli beam model. �-��� is the global coordinate
system. ��-	�
��� is the local coordinate system of disk where
the geometric center of disk is the origin. ��-	�
��� is the
local coordinate system of blade where the geometric center
of blade root is the origin, and � point is an arbitrary point
on the blade. As shown in the gure, both ends of the rotor
are elastic supported, where the elastic support sti�ness and
damping at both ends are assumed to be equal.

2.1. �e Establishment of Flexible Rotor Model

2.1.1. �e Establishment of the Energy Equation of Flexible
Rotor Model. According to the relevant knowledge of elastic
mechanics, the kinetic energy of the sha� can be expressed as

�� = 12 ∫
��

0
(�� (	̇2 + 
̇2) + �� (����� + Ω)

2 + ���̇2

+ ���̇ (�̇��	 − �̇	��) + �
 (�̇�2 + �̇	2)) d�,
(1)

where �
 and �� are cross-sectional moment of inertia
(transverse moment of inertia) and polar moment of inertia,
respectively.

Regarding the disk as a mass point and ignoring the
in
uence of the disk on the vibration mode of beam, the
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Figure 1: Schematic diagram of the model of rotor-blade coupling system.

kinetic energy of disk can be represented in the following
form:

�
 = 12 
	̇2
 + 12 

̇2
 + 12�
��̇�2 + 12�
��̇	2
+ 12���̇ (�̇��	 − �̇	��) + 12��!2,

(2)

where  
 is the mass of disk and �
 is the distance between
the position of disk and le� end point of sha�.

	e total kinetic energy of rotor system can be obtained
as follows:

�� = �
 + ��. (3)

Analyzing themodel of sha� and considering the torsion,
bending, and shearing, the total potential energy of sha� can
be given as follows:

"� = 12 ∫
��

0
#��� (����� )

2

+ {%��� [(�2	��2)
2 + (�2
��2 )

2]

+ (�#�� � [(�	�� − ��)
2 + (�
�� − �	)

2]} d�,

(4)

where #�, %�, ��, (�, and � � denote the sha�’s shear elastic
modulus, elastic modulus, polar rotary inertia, torsional
rigidity, and cross-sectional area, respectively.

2.1.2. �e Vibration Mode Function of Sha� with Elastic
Support. In order to simulate the boundary condition of sha�
more accurately, the sha� is simplied as an elastic support
beamwith springs at both ends and simpliedmodel is shown
in Figure 2, the span and mass of uniform vertical elastic
support beam �/ are 0 and  , respectively, and the sti�ness
of spring at � and / ends is �1 and �2, respectively.

A B x

y

l

m

k1 k2

Figure 2: Schematic diagram of the simplied elastic support beam
model.

Assuming the central axis of each section of beam
has bending vibration at the same plane, applicating plane
assumption in the process of vibration, excluding the e�ects
of rotational inertia and shear deformation, and ignoring
the rotation around the center axis of the cross-section and
damping, the free vibration di�erential equation of beam has
the following expression:

 �2
 (	, �)��2 + �2�	2 (%��
2
 (	, �)�	2 ) = 0, (5)

where
(	, �) donate the transverse displacement of the beam,
and it is the function of two variables including the position
of the section 	 and the time �.

	e solution of (5) is separated from space and time.
Assumed modes method is used to discretize sha� defor-
mation, so the beam transverse displacement 
(	, �) can be
written as follows:


 (	, �) = � (	) 6 (�) , (6)

where �(	) is vibration mode function. Substituting (6) into
(5), the di�erential equation of beam can be gotten:

d4� (	)
d	4 − 74� (	) = 0, (7)
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where

74 = 82 %� . (8)

Equation (7) is a four-order linear ordinary di�erential
equation with constant coe�cients; it can be solved by using
Euler transformation

� (	) = 91 sin7	 + 92 cos7	 + 93sh7	 + 94ch7	, (9)

where 8 is the natural frequency of beam and 91, 92, 93, and94 are integral constants.

As the elastic support beam is adopted, boundary condi-
tions can be expressed as

� end: ��� (0) = 0
%����� (0) = −�1� (0) (10)

/ end: ��� (0) = 0
%����� (0) = −�2� (0) . (11)

Assuming : = 70 and substituting (10) into (9), we can
get the equation about 92 and 94:

92 = 94. (12)

Substituting (11) and (12) into (9), then

[[[[[[[[
[

%�:32�103 −1 −%�:32�103
− sin : − cos : + ch : sh :

sin : + %�:32�203 cos : cos : + ch : − %�:32�203 (sin : + sh :) sh : − %�:32�203 ch :

]]]]]]]]
]

[[
[
919293
]]
]
= 0. (13)

If there are nonzero solutions for 91, 92, and 93, the
determinant of the coe�cients must be zero in (13). 	e root
is obtained by the method of numerical solution, and then
substituting the root and (12) into (9), the vibration mode
function of elastic support beam can be written as

� (	) = cosh
:0 	 + cos :0 	 + 2 �10

3

%�:3 ⋅ sin
:0 	

+ 2�103/%�:3 + cos : + cosh :
sinh : − sin : (sinh :0 	

+ sin :0 	) ,
(14)

where % and � are Young modulus and moment of inertia of
sha�, assuming �1 = �2.
2.1.3. Discretization of the Energy Equation of the Elastic Rotor
Model. Vibration model functions of the direction of 	, 
,
and torsion are�(�),�(�), andΦ, respectively. Introducing
regular coordinates E(�), F(�), and G�. 	e assumed mode
method is adopted to discretize the continuous system: that
is,

	 (�, �) = ∞∑
=1
� (�) E (�) = X (�) � (�)


 (�, �) = ∞∑
=1
� (�) F (�) = Y (�) � (�)

�� (�, �) = ∞∑
=1
Φ (�) G� (�) = Φ (�) q� (�) .

(15)

Assuming that the shear force I is constant, the bending
angle obtained as follows:

�� (�, �) = 	� + %�(�#	���
= X
� (�) � (�) + %�(�#X��� (�) � (�)

(16)

�	 (�, �) = 
� + %�(�#
���
= Y
� (�) � (�) + %�(�#Y��� (�) � (�) .

(17)

Substituting (15)∼(17) into (3), the discrete kinetic energy
of sha� is shown in Appendix A.

Ignoring the member does not appear in the equation; it
is written as follows:

�� = 12 [�̇ (�) �̇ (�) q̇�] [[
[
M�1 0 0

0 M�2 0

0 0 M�

]]
]
[[[
[

�̇ (�)
�̇ (�)
q̇�

]]]
]

+ 12 [�̇ (�) �̇ (�) q̇�] �̇ [[
[

0 G�1 0

G�2 0 0

0 0 0

]]
]
[[
[
� (�)
� (�)
q�

]]
]
.

(18)
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Discretizing the kinetic energy of disk, the discrete kinetic
energy of disk is shown in Appendix A.

�
 = 12 [�̇� (�) �̇� (�)] [
M
1 0

0 M
2
][
[
�̇� (�)
�̇� (�)]]

+ 12 [�̇� (�) �̇� (�)] �̇ [
0 G
1

G
2 0
][�� (�)
�� (�)] .

(19)

	e total kinetic energy of the rotor system is

�� = �� + �
 = 12
⋅ [�̇ (�) �̇ (�) q̇�] [[

[
M�1 +M
1 0 0

0 M�2 +M
2 0

0 0 M�

]]
]
[[[
[

�̇ (�)
�̇ (�)
q̇�

]]]
]

+ 12
⋅ [�̇ (�) �̇ (�) q̇�] �̇ [[

[
0 G�1 + G
1 0

G�2 + G
2 0 0

0 0 0

]]
]
[[
[
� (�)
� (�)
q�

]]
]
.

(20)

In the sameway, discretizing the potential energy of sha�,
the discrete potential energy of sha� is shown in Appendix A.

In order to facilitate the representation and computation,
it is written as

"� = 12 [� (�) � (�) q�] [[
[
K�1 0 0

0 K�2 0

0 0 K�

]]
]
[[
[
� (�)
� (�)
q�

]]
]
. (21)

Substituting the kinetic energy equation (20) and poten-
tial energy equation (21) into the Lagrange equations yields
the discretized equations of motion in matrix notation as

M�q̈� + (C� + �̇G�) q̇� + K�q� = 0, (22)

where matrices M�, C�, G�, and K� are mass, damping,
gyroscopic, and sti�ness matrices of the rotor system,

M� = [[
[
M�1 +M
1 0 0

0 M�2 +M
2 0

0 0 M�

]]
]
,

C� = [[
[
C�1 + C
1 0 0

0 C�2 + C
2 0
0 0 C�

]]
]
,

G� = [[
[

0 G�1 + G
1 0
G�2 + G
2 0 0

0 0 0
]]
]
,

K� = [[
[
K�1 0 0
0 K�2 0
0 0 K�

]]
]
,

(23)
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Figure 3: Schematic diagram of disk-blade system.

and the meaning of specic parameters is shown in
Appendix A, where matrices M�, C�, G�, and K� are mass,
damping, gyroscopic, and sti�ness matrices of the rotor
system.

2.2. �e Establishment of Energy Equation of Rotating Blade.
Assuming there are �� blades evenly distributed on the
rigid disk, so the disk-blade system is a circular symmetrical
structure. When the Pth blade is deformed, the schematic
diagram of disk-blade system is shown in Figure 3.

	e displacement of arbitrary point Q on the blade in the
xed coordinate system can be written as

r� = [	
 

 �
]�
+ A0A1A2A3 [(Q + 	 + R) V !]� , (24)

where 	
, 

, and �
 are the displacement of �, �, and �
direction of the disk in the global coordinate system. Α0
and A1 are the transformation matrix from local coordinate
system to the rotational coordinate system of the blade. A2
is the transformationmatrix from rotating coordinate system
to the swinging coordinate system. A3 is the transformation
matrix of the coordinate system caused by the swing. 	e
specic meaning is given in Appendix B.

When�� > 3, the circular symmetric structure has good
geometrical and mechanical properties. Without taking into
account the axial motion of rotor, the kinetic energy of the Pth
blade is

�� = 12���� ∫
��

0
ṙ
2
�d	. (25)
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Specic expression is as follows:

�� = 12���� ∫
��

0
(	̇2
 + 
̇2
 + Ṙ2 + V̇2 + U̇2 (R2 + V2)

+ (Q + 	)2 (�̇2� + U̇2�2� + �̇2�) − 2ṘVU̇ + 2RV̇U̇
+ 2	̇
Ṙ cosU − 2	̇
V̇ sinU + 2
̇
Ṙ sinU
+ 2
̇
V̇ cosU − 2 (Q + 	) 	̇
�̇� sinU
+ 2 (Q + 	) 
̇
�̇� cosU + 2 (Q + 	) V̇�̇�
− 2	̇
RU̇ sinU − 2	̇
VU̇ cosU + 2
̇
RU̇ cosU
− 2
̇
VU̇ sinU − 2 (Q + 	) 	̇
��U̇ cosU
− 2 (Q + 	) 
̇
��U̇ sinU + 4 (Q + 	) R�̇�U̇) d	,

(26)

where ��, ��, and W� are density, cross-sectional area, and
length of the blade, respectively; Q is radius of disk; U =Ω� + (P − 1)2X/��; �� is the twist angle at disk hub.

Considering the e�ects of bending, circumferential
compression, and centrifugal and normal-force-generating
potential energy of blade, total potential energy of Pth blade
can be expressed as

"� = 12%��� ∫
��

0
(�R�	)

2
d	 + 12

⋅ %��� ∫��
0
(�2V�	2)

2
d	 + 14

⋅ ����U̇2 ∫��
0
[W2� − 	2 + 2Q (W� − 	)] ( �V�	)

2
d	,

(27)

where %� and �� are Young’s modulus and cross-section area
moment of inertia of blade.

Because the movement of end of the rigid disk and the
blade is consistent, the modal function of cantilever beam is
chosen for blade:

� (	) = [ (	)
= cosh

:0 	 − cos :0 	
− cosh : + cos :

sinh : + sin : (sinh
:0 	 − sin :0 	) .

(28)

Vibration model functions of the displacement of bladesR and V are �(	) and [(	). 	e assumed mode method is
adopted to discretize the continuous system: that is,

R = �∑
=1
� (	) G� = Φqu;

V = �∑
=1
[ (	) GV = Ψqk.

(29)

Substituting (29) into (26) and (27), the discrete energy
equation of Pth blade is given by

�� = 12���� ∫
��

0
�̇TXT (�
)X (�
) �̇ + �̇TYT (�
)

⋅ YT (�
) �̇ + q̇TuΨTΨq̇u + q̇TuΨTΨq̇u + q̇TkVT
Vq̇

k

+ q̇T� (Q + 	)2ΦTΦq̇� + qTu U̇2ΨTΨqu
+ qT

k
U̇2VT

Vq
k
+ qT� (Q + 	)2 U̇2ΦTΦq�

− 2�̇TXT
V sinUq̇

k
+ 2q̇T

k
(Q + 	)VTΦq̇�

+ 2�̇TXT (�
)Ψ cosUq̇u + 2�̇TYT (�
)Ψ sinUq̇u
− 2�̇T (Q + 	)XT (�
)Φ sinUq̇� + 2�̇T (Q + 	)
⋅ YT (�
)Φ cosUq̇� + �̇T (Q + 	)2
⋅ {[X� (�
) + %�(#�X

��� (�
)]�

⋅ [X� (�
) + %�(#�X
��� (�
)]} �̇ − 2q̇Tu U̇ΨTVqk

+ 2q̇T
k
U̇VTΨqu − 2�̇TU̇XT (�
)Ψ sinUqu

− 2�̇TU̇XT (�
)V cosUq
k
+ 2�̇TU̇YT (�
)Ψ cosUqu

− 2�̇TU̇YT (�
)V sinUq
k
− 2�̇TU̇ (Q + 	)XTΦ

⋅ cosUq� − 2�̇TU̇ (Q + 	)YT (�
)Φ sinUq�
+ 4q̇T� U̇ (Q + 	)ΦTΨqu + 2�̇TYT (�
)V cosUq̇

k

"� = 12%��� ∫
��

0
q
T

�Ψ
�TΨ�qud	 + 12

⋅ %��� ∫��
0

q
T

v
V
��T
V
��
qvd	 + 14

⋅ qT
v
����U̇2 ∫��

0
[W2� − 	2 + 2Q (W� − 	)]

⋅ V�TV�d	qv.

(30)

Substituting kinetic energy equation (32) and potential
energy equation (30) into simplied Lagrange equation, the
di�erential equation of vibration of Pth blade is obtained as
follows:

Mq̈ + (C + G) q̇ + Kq = 0, (31)

where M, C, G, and K are mass, damping, gyroscopic, and
sti�ness matrices of the blade.

2.3. Matrices Assembly of the Rotor-Blade Coupling System.
Discretize the di�erential equations ofmotion of the Pth blade
and the rotor system obtained and write in matrix forms.
Because each blade has a corresponding mass matrix a,
damping matrix 9, gyroscopic matrix #, and sti�ness matrix
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Figure 4: Schematic diagram of assembly of matrices of the rotor-blade coupling system.

b and blade-disk system is cyclic symmetric structure, the
matrices of each blade and rotor system can be assembled
to the global matrix of rotor-blade coupling system. 	e
mass, gyroscopic, sti�ness, and damping matrices have been
assembled as shown in Figure 4.

Assembled di�erential equations of motion of a rotor-
blade coupled system are written as

M��q̈�� + C��q̇�� + K��q�� = 0, (32)

where themeaning of the parameters in the formula is shown
in Appendix C.

3. Dynamic Eigenvalue Analysis of a
Rotor-Blade Coupling System

In order to further study the vibration characteristics of the
coupling system, it is necessary to analyze the critical speed.
Specic parameters are shown in “Geometric and Material
Properties of Rotor-Blade System.”

In order to reduce the length of article, only these e�ects
on critical speed of rotor-blade coupling system are studied
in this section: the number of blades�� from three to seven,
the position of disk, and the support sti�ness of sha�.

3.1. �e In
uence of Blades Number on Critical Speed

3.1.1. When the Rotational Speed 8 = 0. Figure 5 shows how
the rst two-order frequencies of blade change due to the
number of blades in a three-to-seven-blade rotor when the
position of disk is di�erent. 1c1 and 1d1 belong to a set
where the blade’s rst mode predominates in the rotor-
blade coupling system. 1e1 and 1f1 belong to a set where
the blade’s second mode predominates in the sha�-blade
coupling system. Note that there are two reference marks
at 163.15 and 1022.5, respectively, denoting the cantilevered
blade’s rst- and second-order frequency. Because of the
coupling between sha� and blade, there are two coupling
modes dominated by blade’s rst two-order modes which
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Figure 5: Frequency of blade changes due to the number of blades in a three-to-seven-blade rotor.
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Figure 6: Frequency of rotor changes due to the number of blades in a three-to-seven-blade rotor.

could be found: sha�-blade (SB) and blade-blade (BB). What
is more, it also reveals a signicant phenomenon that the BB
modes are of repeated frequencies of (��−2) multiplicity and
the SB modes are of repeated frequencies of (2) multiplicity
as two transverse vibration directions of sha� are taken into
consideration. Andwith the increase of the number of blades,
the frequency of SB mode increases linearly but that of
BB mode is constant. In addition, it also shows frequency
changes of both two modes, respectively, when the disk is
located in 1/3 and 1/2 of the sha�. It could be found that the
frequency of BB mode does not change but the frequency of
SB mode changes with the change of disk position, and the
changing trend of blades number between rst- and second-
order modes is di�erent.

Figure 6 demonstrates how the rst two-order frequen-
cies of rotor change due to the number of blades in a
three-to-seven-blade rotor when the position of disk is

di�erent. It could be found that 1g1 and 1g2 belong to a
set where the rotor’s rst mode predominates in the sha�-
blade coupling system and 1h1 and 1h2 belong to a set where
the rotor’s second mode predominates in the sha�-blade
coupling system. Note that 93.75Hz, 95.48Hz, 322Hz, and
329.22Hz, respectively, denoting the rotor’s rst- and second-
order frequency when the disk is located in 1/3 and 1/2 of the
sha�. Furthermore, it also shows that the frequency of rotor
decreases with the increase of the number of blades and the
trend of decrease is mainly linear. In addition, it is also found
that the position of disk can also have a certain in
uence on
the vibration of sha�-blade coupling system.	erefore, it will
be investigated in next section.

3.1.2. When the Rotational Speed 8 ̸= 0. Figure 7 illustrates
how Campbell diagram of blade changes due to the number
of blades. 1c1, 1d1, and 1d2 belong to a set where the blade’s
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Figure 7: Campbell diagram of blade changes due to the number of blades.
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Figure 8: Campbell diagram of rotor changes due to the number of blades.

rst mode predominates in the rotor-blade coupling system.1c2, 1d3, and 1d4 belong to a set where the blade’s secondmode
predominates in the rotor-blade coupling system. It could be
found that the Campbell diagram of blade is a�ected by the
number of blades, and with the increase of the number of
blades, frequency and corresponding Campbell diagram of
BB mode are constant, but frequency of SB mode increases
and corresponding Campbell diagram of SB mode shows the
trend of increasing. 	ese phenomena can be veried with
Figure 5.

Campbell diagram of rotor changes due to the number
of blades are shown in Figure 8. 1e1 and 1f1 belong to a
set where the rotor’s rst mode predominates in the rotor-
blade coupling system and 1e2 and 1f2 belong to a set where
the rotor’s second mode predominates in the rotor-blade
coupling system. It could be found that theCampbell diagram

of rotor is a�ected by the number of blades, and with the
increase of the number of blades, frequency of rotor decreases
and corresponding Campbell diagram of it shows the trend
of decreasing. What is more, the trend is more obvious in
the rst-order Campbell diagram. 	ese phenomena can be
veried with Figure 6.

3.2. �e In
uence of Disk Position on Critical Speed

3.2.1. When the Rotational Speed 8 = 0. Figure 9 shows how
the rst two-order frequencies of blade change due to the
position of disk when the number of blades is di�erent. 1c1,1d1, and 1d2 belong to a set where the blade’s rst mode
predominates in the rotor-blade coupling system. 1c2, 1d3,
and 1d4 belong to a set where the blade’s second mode
predominates in the rotor-blade coupling system. Note that
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Figure 9: Frequency of blade changes due to the position of disk.
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Figure 10: Frequency of rotor changes due to the position of disk.

there are two reference marks at 163.15Hz and 1022.5Hz,
respectively, denoting the cantilevered blade’s rst- and
second-order frequency. It could be found that the natural
frequency of the SB mode is a�ected by the position of the
disk. And the in
uence is symmetrical about the middle of
sha�. When the disk moves from the end to the center of
the sha�, the rst-order frequency increases gradually and
reaches the maximum when the disk is in the center of
sha�, but the second-order frequency increases rst and then
decreases and reaches the minimum when the disk is in the
center of sha�. What is more, the trend of the change is more
obvious with the increase of the number of blades.

Figure 10 illustrates how rst two-order frequencies of
rotor change due to the position of disk in a three-to-seven-
blade rotor when the number of blades is di�erent. 1e1 and1e2, respectively, belong to a set where the rotor’s rst mode

predominates in the three-blade and seven-blade rotor-blade
coupling system. 1f1 and 1f2, respectively, belong to a set
where the rotor’s second mode predominates in the three-
blade and seven-blade rotor-blade coupling system. It could
be found that the natural frequency of rotor is a�ected by
the position of the disk and changes symmetrically with
the center of sha�. When the disk moves from the end to
the center of the sha�, the rst-order frequency decreases
gradually and reaches the minimum when the disk is in the
center of sha�, but the second-order frequency decreases rst
and then increases and reaches the maximum when the disk
is in the center of sha�. What is more, the trend of change is
not a�ected by the number of blades.

3.2.2. When the Rotational Speed 8 ̸= 0. Figure 11 demon-
strates how the Campbell diagram of blade changes due
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Figure 11: Campbell diagram of blade changes due to the position of disk.
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Figure 12: Campbell diagram of rotor changes due to the position of disk.

to the position of disk. 1c1, 1d1, and 1d2 belong to a set
where the blade’s rst mode predominates in the rotor-
blade coupling system. 1c2, 1d3, and 1d4 belong to a set
where the blade’s second mode predominates in the rotor-
blade coupling system. It could be found that the Campbell
diagram of blade is a�ected by the position of disk. When
the disk moves from 1/3 to the center of the sha�, rst-
order frequency and corresponding Campbell diagram of BB
mode are constant, and rst-order frequency of SB mode
increases and corresponding Campbell diagram of SB mode
shows the trend of increasing but second-order frequency
and corresponding Campbell diagram behave oppositely.
	ese phenomena can be veried with Figure 9.

Campbell diagram of rotor changes due to the position
of disk is shown in Figure 12. 1e1 and 1f1 belong to a

set where the rotor’s rst mode predominates in the rotor-
blade coupling system. 1e2 and 1f2 belong to a set where
the rotor’s second mode predominates in the rotor-blade
coupling system. It could be found that the Campbell dia-
gram of rotor is a�ected by the position of disk. When
the disk moves from 1/3 to the center of the sha�, rst-
order frequency of rotor decreases and corresponding Camp-
bell diagram of rotor shows the trend of decreasing but
second-order frequency and corresponding Campbell dia-
gram behaves oppositely. 	ese phenomena can be veried
with Figure 10.

3.3. �e In
uence of Support Sti�ness on Critical Speed. In
order to make the e�ect of support sti�ness on critical speed
more obvious, in this section�� = 7, D_loc = 1/2.
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Figure 13: Frequency of blade changes due to the support sti�ness of sha�.
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(b) Second-order frequency changing diagram

Figure 14: Frequency of rotor changes due to the support sti�ness of sha�.

3.3.1. When the Rotational Speed 8 = 0. Figure 13 shows how
the rst two-order frequencies of blade change due to the
support sti�ness of sha�. 1c1 and 1d1 belong to a set where the
blade’s rst mode predominates in the rotor-blade coupling
system. 1c2, 1e1, and 1f1 belong to a set where the blade’s
second mode predominates in the rotor-blade coupling
system. It could be found that the natural frequency of BB
mode is constant but that of SB mode is constant at rst and
then increases with the increase of support sti�ness of sha�.
What is more, the increasing trend of rst-order frequency
is more obvious. 	at is, because the rst-order frequency of
blade is closer to that of sha�, the coupling phenomenon is
more obvious.

Figure 14 demonstrates how the rst two-order frequen-
cies of rotor change due to the support sti�ness of sha�. 1g1,1g2, 1g3, and 1g4 belong to a set where the rotor’s rst mode
predominates in the rotor-blade coupling system. 1h1, 1h2,

1h3, and 1h4 belong to a set where the blade’s second mode
predominates in the rotor-blade coupling system. It could be
found that the natural frequency of rotor is a�ected by the
support sti�ness quite obviously. When the support sti�ness
is small, the frequency of rotor is nearly zero. However, when
the support sti�ness reaches a critical point, the frequency of
rotor increases rapidly with the increase of support sti�ness.
When the support sti�ness is large enough, the frequency of
rotor is constant.

3.3.2. When the Rotational Speed 8 ̸= 0. Figure 15 illustrates
how Campbell diagram of blade changes due to the support
sti�ness of sha�. 1c1, 1d1, 1d2, and 1d3 belong to a set
where the blade’s rst mode predominates in the rotor-blade
coupling system. 1c2, 1d4, 1d5, and 1d6 belong to a set where
the blade’s second mode predominates in the rotor-blade
coupling system. It could be found that, with the increase of
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Figure 15: Campbell diagram of blade changes due to support sti�ness of sha�.
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Figure 16: Critical speed of blade changes due to the support sti�ness of sha�.

support sti�ness, the frequency and corresponding Campbell
diagram of BB mode are constant, but the frequency of SB
mode increases and corresponding Campbell diagram of SB
mode shows the trend of increasing. 	ese phenomena can
be veried with Figure 9.

In order to further analyze the in
uence of the change
of support sti�ness, it is analyzed that the critical speed of
blade changes due to the support sti�ness of sha� when 8 =30 rad/s.

First two-order critical speeds of blade change due to the
support sti�ness of sha� are shown in Figure 16. 1e1 and 1f1
belong to a set where the blade’s rst mode predominates
in the rotor-blade coupling system. 1c2, 1e2, and 1f2 belong
to a set where the blade’s second mode predominates in the

rotor-blade coupling system. It could be found that the critical
speed is a�ected by support sti�ness. 	e critical speed of BB
mode is constant but that of SB mode is constant at rst and
then increases with the increase of support sti�ness of sha�.
What is more, the trend of increasing of rst-order frequency
is more obvious.

Figure 17 shows how the Campbell diagrams of rotor
change due to the support sti�ness of sha�. 1g1, 1h1, and1k1 belong to a set where the rotor’s rst mode predominates
in the rotor-blade coupling system. 1g2, 1h2, and 1k2 belong
to a set where the blade’s second mode predominates in
the rotor-blade coupling system. It could be found that the
Campbell diagram of rotor is a�ected by support sti�ness and
with the increase of support sti�ness, the natural frequency
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Figure 17: Campbell diagram of rotor changes due to support sti�ness of sha�.
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(b) Second-order critical speed changing diagram

Figure 18: Critical speed of rotor changes due to the support sti�ness of sha�.

of rotor increases and corresponding Campbell diagram of
rotor shows the trend of increasing.	ese phenomena can be
veried with Figure 10.

In order to further analyze the in
uence of the change
of support sti�ness and make the change more obvious, it is
analyzed that the critical speed of rotor changes due to the
support sti�ness of sha� when 8 = 1000 rad/s.

Figure 18 demonstrates how the rst two-order critical
speeds of rotor change due to the support sti�ness of sha�.1ℎ1 and 1P1 belong to a set where the rotor’s rst mode
predominates in the rotor-blade coupling system. 1ℎ2 and 1P2
belong to a set where the rotor’s second mode predominates
in the rotor-blade coupling system. It could be found that
the critical speed is a�ected by support sti�ness. 	e critical
speed of rotor increases with the increase of support sti�ness

of sha�.What ismore, the trend of increasing of second-order
frequency is more obvious.

4. Analysis of Mode Shapes

In order to further analyze the vibration characteristics of
rotor-blade coupling system and verify the above phenom-
ena, the in
uence of di�erent factors on mode shapes of
system is analyzed in detail. In order to make the analysis
more reasonable, the mode shape of rst-order natural
frequency of the blade is analyzed prior to the formal analysis.
Here, the number of blades�� = 4 and the support sti�ness
of sha� b = 1 × 107N/m.

Figure 19 demonstrates the mode shape of 4-blade rotor-
blade coupling system. It could be found that there is no
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(a) SB mode of blade (b) BB mode of blade (c) First-order mode of rotor (d) Second-ordermode of rotor

Figure 19: Mode shape of 4-blade rotor-blade coupling system.

(a) Mode of blade (4 blades) (b) Mode of blade (7 blades) (c) Mode of rotor (4 blades) (d) Mode of rotor (7 blades)

Figure 20: Mode shapes of rotor-blade coupling system change due to the number of blades.

(a) Mode of blade (at 1/6) (b) Mode of blade (at 1/2) (c) Mode of rotor (at 1/6) (d) Mode of rotor (at 1/2)

Figure 21: Mode shapes of rotor-blade coupling system due to the position of disk.

obvious di�erence between the mode shape of SB mode and
BB mode of blade; that is to say it is di�cult to distinguish
these two modes through their mode shapes. Furthermore, it
is also revealed the sha� does not bend obviously in themode
of blade but the blade bends quite obviously in the mode of
rotor.	erefore, a conclusion is drawn that themode of blade
has no e�ect on the deformation of rotor but the mode of
rotor has an obvious e�ect on the deformation of blade.

Based on the conclusion that has been drawn, when dis-
cussing the in
uence of di�erent factors on the mode shape
of coupling system, themode shape of blade is represented by
the rst-order mode shape of SB mode. Similarly, the mode
shape of rotor is represented by the rst-order mode shape of
rotor.

4.1. �e In
uence of Blades Number on Mode Shapes. Mode
shapes of rotor-blade coupling system changes due to the
number of blades are shown in Figure 20. Figure 20(a) is

blade mode shape of rotor-blade coupling system with 4
blades; Figure 20(b) is blade mode shape of rotor-blade
coupling system with 4 blades. Figure 20(c) is rotor mode
shape of rotor-blade coupling system with 4 blades; and
Figure 20(d) is rotor mode shape of rotor-blade coupling
system with 7 blades. It could be found that there are no
obvious changes of blade and sha� bending deformations
with the increase of the number of blades. 	is shows that
the number of blades has no signicant e�ect on the mode
shape of blade and rotor.

4.2. �e In
uence of Disk Position on Mode Shapes. Figure 21
illustrates how the mode shape of rotor-blade coupling
system changes due to the position of disk. Figure 21(a) is
blade mode shape of rotor-blade coupling system when the
position of disk is 1/6; Figure 21(b) is blade mode shape of
rotor-blade coupling system when the position of disk is
1/2. Figure 21(c) is rotor mode shape of rotor-blade coupling
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(a) Mode of blade (100 rad/s) (b) Mode of blade (1000 rad/s) (c) Mode of rotor (100 rad/s) (d) Mode of rotor (1000 rad/s)

Figure 22: Mode shapes of rotor-blade coupling system due to the rotational speed.

system when the position of disk is 1/6; Figure 21(d) is rotor
mode shape of rotor-blade coupling systemwhen the position
of disk is 1/2. It could be found that when the diskmoves from
the end to the center of sha�, the bending deformation of
blade remains almost unchanged but that of sha� increases
obviously.	is shows that the position of disk has an obvious
e�ect on the mode shape of rotor.

4.3. �e In
uence of Rotational Speed on Mode Shapes.
Figure 22 shows the mode shape of rotor-blade coupling
system change due to the rotational speed. Figure 22 is blade
mode shape of rotor-blade coupling systemwhen the rational
speed is 100 rad/s; Figure 22(b) is blade mode shape of rotor-
blade coupling system when the rational speed is 1000 rad/s.
Figure 22(c) is rotor mode shape of rotor-blade coupling
system when the rational speed is 100 rad/s; Figure 22(d) is
rotor mode shape of rotor-blade coupling system when the
rational speed is 1000 rad/s. It could be found that, with
the increase of rotational speed, the bending deformation of
blade remains almost unchanged but that of sha� increases
obviously.	is shows that the position of disk has an obvious
e�ect on the mode shape of rotor.

5. Conclusion

	e model of rotor-blade coupling system model is estab-
lished, the mode function of elastic support beam is deduced,
the di�erential equation of system is deduced by the semi-
analytical method, and the in
uences of blades number, disk
position, and support sti�ness on system characteristic value,
Campbell diagram, and mode shape of vibration are studied
by numerical simulation.

(1) Because of the coupling between sha� and blade,
there are SB and BB modes dominated by blade’s
rst two-order modes which could be found and
the BB modes are of repeated frequencies of (�� −2) multiplicity and the SB modes are of repeated
frequencies of (2) multiplicity. Frequencies of both
modes could be found in the Campbell diagram of
blade all the time.

(2) With the increase of the number of blades, the
frequency of SB mode increases linearly, that of BB
mode is constant, and that of rotor decreases linearly.

	e changing trend of Campbell diagram is the same
as natural frequency.

(3) Frequencies of SB mode of blade and rotor mode are
a�ected by the position of disk and change symmet-
rically with the center of sha�. What is more, the
changing trend of rst- and second-order frequency
is di�erent. But that of Campbell diagram is the same
as natural frequency.

(4) It could be found that there is no obvious di�erence
between the mode shape of SB mode and BBmode of
blade. Furthermore, the mode of blade has no e�ect
on the deformation of rotor but the mode of rotor
has an obvious e�ect on the deformation of blade.
	e number of blades has no signicant e�ect on the
mode shape of blade and rotor but the position of
disk and rotational speed have an obvious e�ect on
the mode shape of rotor.

Appendix

A. Vectors and Matrices Related to the
Rotor System

(1)Expression of discrete kinetic energy of sha� can be shown
as follows:

�� = ∫��
0

12�� (�̇� (�)X� (�)X (�) �̇ (�)
+ �̇� (�)Y� (�)Y (�) �̇ (�)) + 12���̇2 + 12
⋅ �
 ([X� (�) �̇ (�) + %�(�#X��� (�) �̇ (�)]

�

⋅ [X� (�) �̇ (�) + %�(�#X��� (�) �̇ (�)]) + 12
⋅ �
 [Y� (�) �̇ (�) + %�(�#Y��� (�) �̇ (�)]

� [Y� (�)
⋅ �̇ (�) + %�(�#Y��� (�) �̇ (�)] + 12���̇ ([X� (�) �̇ (�)
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+ %�(�#X��� (�) �̇ (�)]
� [Y� (�) � (�)

+ %�(�#Y��� (�) � (�)]) − 12���̇ ([X� (�) � (�)
+ %�(�#X��� (�) � (�)]

� [Y� (�) �̇ (�)
+ %�(�#Y��� (�) �̇ (�)]) + 12�� ∫

��

0
q̇
T

�Φ
TΦq̇�d�.

(A.1)

(2) Expression of discrete kinetic energy of disk can be
expressed as

�

= 12 �̇� (�) 
X� (�
)X (�
) �̇ (�)
+ 12 �̇� (�) 
Y� (�
)Y (�
) �̇ (�)
+ 12 �̇� (�) �
� %�(�#X���� (�
)X� (�
) �̇ (�)
+ 12 �̇� (�) �
� ( %�(�#)

2
X
���� (�
)X��� (�
) �̇ (�)

+ 12 �̇� (�) �
�Y�� (�
)Y� (�
) �̇ (�)
+ 12 �̇� (�) �
� %�(�#Y�� (�
)Y��� (�
) �̇ (�)
+ 12 �̇� (�) �
� %�(�#Y���� (�
)Y� (�
) �̇ (�)
+ 12 �̇� (�) �
� ( %�(�#)

2
Y
���� (�
)Y��� (�
) �̇ (�)

+ 12 �̇� (�) ���̇X�� (�
)Y� (�
) � (�)
+ 12 �̇� (�) ���̇ %�(�#X�� (�
)Y��� (�
) � (�)
+ 12 �̇� (�) ���̇ %�(�#X���� (�
)Y� (�
) � (�)
+ 12 �̇� (�) ���̇ ( %�(�#)

2
X
���� (�
)Y��� (�
) � (�)

− 12�� (�) ���̇X�� (�
)Y� (�
) �̇ (�)
− 12�� (�) ���̇ %�(�#X�� (�
)Y��� (�
) �̇ (�)
− 12�� (�) ���̇ %�(�#X���� (�
)Y� (�
) �̇ (�)
− 12�� (�) ���̇ ( %�(�#)

2
X
���� (�
)Y��� (�
) �̇ (�) .

(A.2)

(3) Expression of discrete potential energy of sha� can be
written as

"� = 12 ∫
��

0
{%� ([X�� (�) � (�)]� [X�� (�) � (�)]

+ [Y�� (�) � (�)]� [Y�� (�) � (�)])
+ (#�([ %�(�#X��� (�) � (�)]

�

⋅ [ %�(�#X��� (�) � (�)] + [ %�(�#Y��� (�) � (�)]
�

⋅ [ %�(�#Y��� (�) � (�)])}f� = 12
⋅ ∫��
0
{q��#���Φ��Φ�q� + �� (�) %�X��� (�)X�� (�)

⋅ � (�) + �� (�) %�Y��� (�)Y�� (�) � (�) + �� (�)
⋅ (%�)2(�# X

���� (�)X��� (�) � (�) + �� (�) (%�)2(�#
⋅ Y���� (�)Y��� (�) � (�)} d�.

(A.3)

(4)	e specic meaning of each parameter in the vibra-
tion di�erential equation of rotor is

M�1 = ∫��
0
[��X� (�)X (�) + �
X�� (�)X� (�)

+ �
 %�(�#X�� (�)X��� (�)
+ �
 %�(�#X���� (�)X� (�)
+ �
 ( %�(�#)

2
X
���� (�)X��� (�)] d�

M�2 = ∫��
0
[��Y� (�)Y (�) + �
Y�� (�)Y� (�)

+ �
 %�(�#Y�� (�)Y��� (�)] + �
 %�(�#Y���� (�)
⋅ Y� (�) + �
 ( %�(�#)

2
Y
���� (�)Y��� (�) d�

a� = �� ∫��
0
Φ�Φ f�

G�1 = ∫��
0
[��X�� (�)Y� (�)

+ �� %�(�#X�� (�)Y��� (�) + �� %�(�#X���� (�)Y� (�)
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+ �� ( %�(�#)
2
X
���� (�)Y��� (�)] d�

G�2 = ∫��
0
[−�� ( %�(�#)

2
Y
���� (�)X��� (�)

− �� %�(�#Y���� (�)X� (�) − �� %�(�#Y�� (�)X��� (�)
− ��Y�� (�)X� (�)] d�
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2
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(A.4)

B. Vectors and Matrices Related to the Blade

(1) 	e specic meaning of each transformation matrix of
blade can be obtained as follows:

A0 = [[
[
cos �� − sin �� 0
sin �� cos �� 0
0 0 1

]]
]

A1 = [[
[
cosU − sinU 0
sinU cosU 0
0 0 1

]]
]

A2 = [[[
[

1 0 0
0 cos �	 − sin �	0 sin �	 cos �	

]]]
]

A3 = [[
[

cos �� 0 sin ��0 1 0
− sin �� 0 cos ��

]]
]
,

(B.1)

where U = Ω� + (P − 1)2X/�� and (P − 1)2X/�� indicates
the position of the Pth blade in the blade, �� is the number
of blades, �� is the twist angle at disk hub, and �� and �	 are
swinging angles of disk.

C. Vectors and Matrices Related to the
Rotor-Blade Coupling System

(1) G�� is generalized coordinate vector of rotor-blade cou-
pling system.

G�� = [G� G� G�]� , (C.1)

where G� and G� are vectors of translational and torsional
degrees of freedom of rotor; G� is the vector of degrees of
freedom of blade.

(2)a�� is mass matrix of rotor-blade coupling system.

a�� = [[[
[

a� 0 a��0 a� a��
a��� a��� a�

]]]
]
, (C.2)

wherea� anda� are vectors of translational and torsional
massmatrix of rotor;a� is the vector ofmassmatrix of blade;a�� anda�� are coupling mass matrix of system.

(3) 9�� is damping matrix of rotor-blade system (includ-
ing proportional damping and gyro matrix)

9�� = [[[
[

9� 9�� 9��
9��� 9� 9��
9��� 9��� 9�

]]]
]
, (C.3)

where 9� and 9� are vectors of translational and torsional
damping matrix of rotor; 9� is the vector of damping matrix
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of blade; 9��, 9��, and 9�� are coupling damping matrix of
system.(4) b�� is sti�ness matrix of rotor-blade coupling system

b�� = [[
[
b� 0 0
0 b� 0
0 0 b�

]]
]
, (C.4)

where b� and b� are vectors of translational and torsional
sti�ness matrix of rotor; b� is the vector of sti�ness matrix
of blade.

Geometric and Material Properties of
Rotor-Blade System

Sha�

��: Density (7850 kg/m3)#�: Shear modulus (75Gpa)0�: Sha� length (0.6m)Q�: Radius (0.015m).

Disk

�
: Density (7850 kg/m3)%
: Young’s modulus (200Gpa)Q
: Outer radius (0.2m)/
: 	ickness (0.015m)q
: Poisson ratio (0.3).

Blade

��: Density (7850 kg/m3)%�: Young’s modulus (200Gpa)0�: Blade length (0.6m)��: Cross-section (1.2 × 10−4m2)��: Area moment of inertia (1.92 × 10−9m2).
Competing Interests

	e authors declare that they have no competing interests.

Acknowledgments

	e project is supported by the China Natural Science Funds
(no. 51575093) and Fundamental Research Funds for the
Central Universities (nos. N140304002 and N140301001).

References

[1] R. G. Parker and C. D. Mote, “Exact perturbation for the
vibration of almost annular or circular plates,” Journal of
Vibration and Acoustics, Transactions of the ASME, vol. 118, no.
3, pp. 436–445, 1996.

[2] R. M. H. Khorasany and S. G. Hutton, “An analytical study
on the e�ect of rigid body translational degree of freedom on
the vibration characteristics of elastically constrained rotating
disks,” International Journal of Mechanical Sciences, vol. 52, no.
9, pp. 1186–1192, 2010.

[3] M. Kim, J. Moon, and J. A. Wickert, “Spatial modulation of
repeated vibration modes in rotationally periodic structures,”
Journal of Vibration and Acoustics, Transactions of the ASME,
vol. 122, no. 1, pp. 62–68, 2000.

[4] J. A. Dopkin and T. E. Shoup, “Rotor resonant speed reduction
caused by 
exibility of disks,” Journal of Engineering for Industry
ASME, vol. 96, no. 4, pp. 1328–1333, 1974.

[5] N. Anegawa, H. Fujiwara, and O. Matsushita, “Resonance and
instability of blade-sha� coupled bending vibrations,” Interna-
tional Journal of Fluid Machinery & Systems, vol. 1, no. 1, pp.
169–180, 2008.

[6] Ö. Turhan and G. Bulut, “Linearly coupled sha�-torsional and
blade-bending vibrations in multi-stage rotor-blade systems,”
Journal of Sound and Vibration, vol. 296, no. 1-2, pp. 292–318,
2006.

[7] Y.-J. Chiu and D.-Z. Chen, “	e coupled vibration in a rotating
multi-disk rotor system,” International Journal of Mechanical
Sciences, vol. 53, no. 1, pp. 1–10, 2011.

[8] N. Lesa�re, J.-J. Sinou, and F. 	ouverez, “Contact analysis of a

exible bladed-rotor,” European Journal of Mechanics, A/Solids,
vol. 26, no. 3, pp. 541–557, 2007.

[9] S. C. Huang and K. B. Ho, “Coupled sha�-torsion and blade-
bending vibrations of a rotating sha�-disk-blade unit,” Journal
of Engineering for Gas Turbines and Power, vol. 118, no. 1, pp.
100–106, 1996.

[10] Y. Chiu and C.-H. Yang, “	e coupled vibration in a rotat-
ing multi-disk rotor system with grouped blades,” Journal of
Mechanical Science and Technology, vol. 28, no. 5, pp. 1653–1662,
2014.

[11] V. Omprakash and V. Ramamurti, “Coupled free vibration
characteristics of rotating tuned bladed disk systems,” Journal
of Sound and Vibration, vol. 140, no. 3, pp. 413–435, 1990.

[12] F. Sisto, A. Chang, andM. Sutcu, “In
uence of coriolis forces on
gyroscopic motion of spinning blades,” Journal of engineering
for power, vol. 105, no. 2, pp. 342–347, 1983.

[13] D. J. Ewins, “Vibration characteristics of bladeddisc assemblies,”
Journal ofMechanical Engineering Science, vol. 15, no. 3, pp. 165–
186, 1973.

[14] F. Kushner, “Disc vibration—rotating blade and stationary vane
interaction,” Journal of mechanical design, vol. 102, no. 3, pp.
579–584, 1980.

[15] S.-B. Chun and C.-W. Lee, “Vibration analysis of sha�-bladed
disk systembyusing substructure synthesis and assumedmodes
method,” Journal of Sound & Vibration, vol. 189, no. 5, pp. 587–
608, 1996.

[16] C.-H. Yang and S.-C. Huang, “	e coupled vibration in a sha�-
disk-blades system,” Journal of the Chinese Institute of Engineers,
vol. 28, no. 1, pp. 89–99, 2005.

[17] C.-H. Yang and S.-C. Huang, “	e coupled vibration in a
sha�−disk−blades system,” Journal of the Chinese Institute of
Engineers, vol. 28, no. 1, pp. 89–99, 2005.

[18] C.-H. Yang and S.-C. Huang, “	e in
uence of disk’s 
exibility
on coupling vibration of sha�-disk-blades systems,” Journal of
Sound and Vibration, vol. 301, no. 1-2, pp. 1–17, 2007.

[19] C.-H. Yang and S.-C. Huang, “Coupling vibrations in rotating
sha�-disk-blades system,” Journal of Vibration and Acoustics,
Transactions of the ASME, vol. 129, no. 1, pp. 48–57, 2007.

[20] Y.-J. Chiu and S.-C. Huang, “	e in
uence on coupling
vibration of a rotor system due to a mistuned blade length,”
International Journal of Mechanical Sciences, vol. 49, no. 4, pp.
522–532, 2007.



Submit your manuscripts at

https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


