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Abstract. This study investigates the role of soil moisture on

the threshold runoff response in a small headwater catchment

in the Italian Alps that is characterised by steep hillslopes

and a distinct riparian zone. This study focuses on: (i) the

threshold soil moisture-runoff relationship and the influence

of catchment topography on this relation; (ii) the temporal

dynamics of soil moisture, streamflow and groundwater that

characterize the catchment’s response to rainfall during dry

and wet periods; and (iii) the combined effect of antecedent

wetness conditions and rainfall amount on hillslope and ri-

parian runoff. Our results highlight the strong control exerted

by soil moisture on runoff in this catchment: a sharp thresh-

old exists in the relationship between soil water content and

runoff coefficient, streamflow, and hillslope-averaged depth

to water table. Low runoff ratios were likely related to the re-

sponse of the riparian zone, which was almost always close

to saturation. High runoff ratios occurred during wet an-

tecedent conditions, when the soil moisture threshold was

exceeded. In these cases, subsurface flow was activated on

hillslopes, which became a major contributor to runoff. An-

tecedent wetness conditions also controlled the catchment’s

response time: during dry periods, streamflow reacted and

peaked prior to hillslope soil moisture whereas during wet

conditions the opposite occurred. This difference resulted in

a hysteretic behaviour in the soil moisture-streamflow rela-

tionship. Finally, the influence of antecedent moisture con-

ditions on runoff was also evident in the relation between

cumulative rainfall and total stormflow. Small storms dur-

ing dry conditions produced low stormflow amounts, likely

mainly from overland flow from the near saturated riparian

zone. Conversely, for rainfall events during wet conditions,

higher stormflow values were observed and hillslopes must

have contributed to streamflow.

Correspondence to: D. Penna

(daniele.penna@unipd.it)

1 Introduction

Thresholds and other non-linear behaviours are common in

hydrologic and geomorphic systems. They can occur at dif-

ferent levels of complexity (Zehe and Sivapalan, 2009), at

various spatial scales and may limit the predictability of hy-

drological processes (Norbiato et al., 2008) and the repeata-

bility of hydrological observations (Zehe et al., 2007). There-

fore, investigating and understanding the controls exerted

by thresholds is essential to understand stream responses at

the catchment scale (Tetzlaff et al., 2008). One hydrolog-

ical variable frequently found to be non-linearly related to

runoff is soil moisture. Early work by Western and Grayson

(1998) in the Tarrawarra catchment, in South-eastern Aus-

tralia, clearly showed that surface runoff was a threshold

process controlled by catchment wetness conditions, with

runoff coefficients abruptly increasing when a certain mois-

ture threshold was exceeded. Similar results for the relation-

ship between near surface soil water content and runoff were

recently found by other authors (Tromp-van Meerveld and

McDonnell, 2005; James and Roulet, 2007, 2009; Latron

and Gallart, 2008; Zehe et al., 2010) with varying values

of the moisture threshold, likely due to differences in soil

type, soil depth and climatic conditions. Other investigations

on hillslopes and experimental catchments have revealed the

occurrence of threshold relations between soil moisture and

water table variations (Peters et al., 2003; Latron and Gallart,

2008), highlighting the critical role of wetness conditions on

surface and subsurface runoff generation. Sidle et al. (1995)

showed that hollows or zero-order basins, which produced

little or no runoff during dry conditions, contributed signifi-

cantly to total catchment runoff once an antecedent moisture

threshold was reached. These findings were consistent with

later observations by Torres (2002), who speculated on the

presence of a threshold value in the relationship between soil

moisture and pressure head, above which rapid pressure head

reactions occurred in the unsaturated zone, leading to quick
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soil-water redistribution and fast discharge responses. Fur-

thermore, in two recent papers Detty and McGuire (2010a, b)

identified a clear threshold relationship between the sum of

antecedent wetness and gross precipitation and storm runoff:

below the threshold total runoff was minimal whereas above

it total runoff was linearly correlated with the combination of

antecedent soil moisture and rainfall.

The control exerted by wetness conditions on runoff gener-

ation has been shown to be especially important in steep, hu-

mid catchments with shallow soils, where topographic prop-

erties exert a significant role on the dominant hydrological

processes (Sidle et al., 2000; McGlynn, 2005). Relatively

flat areas close to the stream have the potential to store wa-

ter, to quickly saturate even during small rainfall events and

to rapidly deliver water to the stream network, resulting in

a fast runoff response. Conversely, soil water stored in the

far-stream/hillslope zones may be released only during wet-

ter conditions, when flowpaths between the hillslope and ri-

parian zone become connected. Experimental evidence in

mountainous and agricultural catchments has revealed that

riparian zones tend to respond differently and almost inde-

pendently from upslope zones with runoff typically being

generated first in riparian areas, and with riparian-hillslope

hydrological connectivity increasing under wetter conditions

(McGlynn et al., 2004; Wenninger et al., 2004; Ocampo

et al., 2006). These different response times reveal dis-

tinctly different groundwater dynamics in riparian and ups-

lope zones (Kendall et al., 1999; Seibert et al., 2003; Rassam

et al., 2006), leading at times to hysteretic behaviours in the

groundwater-runoff relationship (Kendall et al., 1999; McG-

lynn et al., 2004; Penna et al., 2010). The influence of rapid

soil saturation in riparian zones on catchment runoff response

has been highlighted in various studies. Investigating the

runoff generation processes in a small headwater catchment

in Japan, Sidle et al. (2000) identified saturated overland flow

from the narrow riparian corridor as the main contributor to

runoff during dry conditions whereas, as antecedent wetness

increased, subsurface flow from adjacent hillslopes became

the main source for streamflow with a corresponding de-

crease in the riparian contribution to streamflow. Burns et

al. (2001) assessed the role of riparian groundwater at the

Panola Mountain Research Watershed (Georgia, USA) us-

ing end-member mixing analysis and concluded that riparian

groundwater was the largest component of runoff during ris-

ing streamflow and throughout stream recession. Similarly,

McGlynn and McDonnell (2003) and McGlynn (2005) as-

sessed the fundamental landscape controls on runoff genera-

tion and showed piezometric and tensiometric evidence for

quicker responses to precipitation inputs of riparian zones

than hillslope areas. Particularly, they found that riparian wa-

ter dominated total storm runoff during small and moderate

events or in early periods of large events. For larger events,

hillslopes became the main contributor once runoff from the

hillslope zone started, although riparian water was still more

important during the hydrograph rising limb.

Along this vein of studies, this work focuses on three main

questions for an experimental headwater catchment in the

Italian Dolomites: (i) Is there a soil moisture threshold that

controls both surface and subsurface response and how does

the catchment topography affect this control? (ii) What are

the main factors determining the catchment’s response time

during dry and wet periods? (iii) What is the combined influ-

ence of antecedent wetness condition and rainfall event size

on runoff?

2 Study area

The study area is located in the Rio Vauz Basin (1.9 km2), an

alpine headwater catchment located in the Italian Dolomites

(central-eastern Alps, Fig. 1) with elevations ranging from

1835 to 3152 m a.s.l. The site features alpine climatic condi-

tions, with a mean annual precipitation of 1220 mm (49% of

which is snow), and average monthly temperatures varying

from −5.7 ◦C in January to 14.1 ◦C in July. Snowmelt is the

most important source of runoff in late spring but summer

and early autumn storm responses significantly contribute to

the flow regime. The catchment can be divided into three

morphological units: (i) an upper part (3152–2200 m a.s.l.)

entirely formed by Dolomitic rock cliffs, (ii) a middle part

(2200–2000 m a.s.l.) composed by steep slopes and (iii) a

valley bottom (2000–1835 m a.s.l.) covered by Quaternary

till. As such, the Rio Vauz Basin can be deemed morpholog-

ically and hydrologically representative of headwater catch-

ments in the Dolomitic region.

Hydro-meteorological measurements were taken in a sub-

catchment of the Rio Vauz Basin, named Bridge Creek

Catchment (BCC, 0.14 km2), with elevations ranging from

1932 to 2515 m a.s.l. (Fig. 1). The site is densely vegetated

by alpine grasslands. Trees (Norway spruce and European

larch) are very rare and only form small shrubs. In the lower

part of BCC, two hillslopes of similar size but different topo-

graphic shape were selected: “Piramide” (0.46 ha, divergent-

convex) and “Emme” (0.47 ha, relatively planar). Elevations

range between 1930 m and 1975 m a.s.l. for Piramide and be-

tween 1935 m and 1985 m a.s.l. for Emme. Detailed physical

and chemical analyses were conducted on soil samples taken

every 10 cm from a 70 cm-profile dug at the toe of Piramide.

The soil was classified as Cambisoil with mull, character-

ized by a thick layer of organic matter, strongly developed

by earthworm activity. Average porosity ranged from 70.5%

in the first 10 cm of soil to 45.0% in the deeper layers, with

a mean value of 57.6% along the whole profile. Clay con-

tent decreases with depth from 73.3% to 44.4%, silt content

increases with depth from 15.6% to 28.3%, whereas sand

was the less common component, ranging between 9.2%

and 1.4%. Further information about the Rio Vauz Basin,

its topographic characteristics and climatic conditions, and

the two experimental hillslopes can be found in Penna et

al. (2009) and references therein.

Hydrol. Earth Syst. Sci., 15, 689–702, 2011 www.hydrol-earth-syst-sci.net/15/689/2011/
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Fig. 1. Location of the study area and field instrumentation.

3 Materials and methods

3.1 Precipitation, streamflow and groundwater

monitoring

Precipitation, discharge, soil moisture and groundwater

data were collected at BCC during two monitoring peri-

ods, from 1 June to 10 October 2005 and from 1 June to

15 October 2006.

Precipitation was recorded by a tipping bucket rain gauge

(Onset Computer Corporation, United States of America)

located on the west of Piramide hillslope at 1943 m a.s.l.

(Fig. 1). Discharge at BCC outlet (1932 m a.s.l.) was ob-

tained at a V-notch sharp-crested weir equipped with a pres-

sure transducer (Keller AG für Druckmesstechnik, Switzer-

land) recording at a 5-min time step. Groundwater levels

were measured at nine piezometers equipped with capaci-

tance water level sensors (Trutrack, New Zealand), recording

at a 5-min time interval. Four piezometers were installed at

Piramide and five at Emme with maximum depths ranging

between 0.63 and 1.18 m from the soil surface (Fig. 1). Pre-

cipitation, streamflow and groundwater records were aggre-

gated to a 15-min interval for data processing and analysis.

3.2 Soil moisture monitoring

Volumetric soil moisture was measured at different depths

at various locations within the study area. Soil water con-

tent at 0–6 cm depth was manually measured on a 26-point

grid on each hillslope (Fig. 1) during several field campaigns

carried out in two study periods: 28 June–21 July 2005

(24 surveys) and 21 June–16 July 2006 (23 surveys), using

an impedance sensor (Theta Probe, Delta-T Devices Ltd.,

United Kingdom). Soil moisture at 0–12 and 0–20 cm was

www.hydrol-earth-syst-sci.net/15/689/2011/ Hydrol. Earth Syst. Sci., 15, 689–702, 2011
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Table 1. Pearson correlation coefficients for the relation between the average of the four soil moisture measurements at 0–30 cm and the

hillslope-averaged soil moisture at three depths at Piramide and Emme for 2005 and 2006 study periods.

Piramide Emme

0–6 cm 0–12 cm 0–20 cm 0–6 cm 0–12 cm 0–20 cm

Pearson r 0.80 0.79 0.90 0.74 0.72 0.83

number of measurements 47 47 31 48 48 39
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Fig. 2. Time series of four point-averaged soil moisture at 0–30 cm

(uncalibrated) and hillslope-averaged soil moisture at 0–6, 0–12

and 0–20 cm depth (calibrated) for Emme during the 2005 field

campaign.

measured during the field campaigns at the same sampling

points using a portable Time Domain Reflectometry probe

(TDR 300, Spectrum Technologies Inc., United States of

America), equipped with two pairs of interchangeable rods

12 and 20 cm long. Soil moisture at 0–30 cm depth was con-

tinuously monitored at hourly time steps with Time Domain

Reflectometers (CS625, Campbell Scientific, United King-

dom) at four sites located in the lower hillslope zone at Emme

(Fig. 1). The Theta Probe and TDR300 measurements were

calibrated for the local soil conditions against 55, 45 and 40

soil cores collected at the three investigated depths, using a

split tube soil sampler. It was not possible to collect undis-

turbed soil cores at 0–30 cm due to compaction of the sam-

ples. Thus, the standard calibration equation provided by the

manufacturer for clay soils was used.

Pearson correlation coefficients were computed for the re-

lationship between the average of the four measurements

at 0–30 cm and the hillslope-averaged soil moisture at Pi-

ramide and Emme during the two study periods (Table 1).

Despite the different sampling depths, all correlation coef-

ficients were statistically significant (α = 0.01) revealing a

marked consistency between the measurements. The good

agreement was also confirmed by comparing the time se-

ries of the average of the measurements at 0–30 cm with the

temporal patterns of hillslope-averaged soil moisture derived

from the 26 sampling points at the three depths for each ex-

perimental hillslope. An example is shown in Fig. 2. The

higher soil moisture values of the 0–30 cm series compared

to those at the other depths are due to the different sampling

volume and lack of a soil specific calibration for the TDR

sensors. In any case, the figure shows clearly the concor-

dance between the temporal patterns. Moreover, a marked

temporal stability of the soil moisture spatial patterns was

found for the two sites (Penna et al., 2007). These observa-

tions allowed us to consider the average of the four measure-

ments at 0–30 cm representative of the soil water content of

the hillslope zone at BCC. Further information on the soil

moisture measurements can be found in Penna et al. (2009).

3.3 Selection of rainfall-runoff events

To analyze the catchment’s response to precipitation and the

influence of soil moisture on runoff processes, 40 rainfall-

runoff events during the two monitoring periods were identi-

fied. Storms were defined as events with more than 6 mm

of precipitation. Events were considered distinct if they

were separated by at least 6 h of no precipitation. For each

event, the flood hydrograph was separated into baseflow and

stormflow using the constant-k method proposed by Blume

et al. (2007), with the only difference being that the break

in slope in the recession that identified the end of stormflow

was determined visually and not analytically. Baseflow was

subtracted from total flow to compute the event runoff coeffi-

cients, defined as the ratio between event stormflow (in mm)

and total rainfall (in mm). The events were generally charac-

terized by relatively short and intense convective storms but a

Hydrol. Earth Syst. Sci., 15, 689–702, 2011 www.hydrol-earth-syst-sci.net/15/689/2011/
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Table 2. Properties of selected rainfall-runoff events. The runoff coefficient had a mean of 0.15, a coefficient of variation of 1.05, and a

skewness of 1.71.

Date total rainfall duration total stormflow peak discharge runoff coefficient

(mm) (h) (mm) (l s−1) (−)

12 Jun 2005 10.4 3.0 0.3 8.1 0.03

14 Jun 2005 9.0 16.5 1.6 9.4 0.18

24 Jun 2005 23.2 1.7 0.6 14.7 0.03

25 Jun 2005 6.8 0.5 0.1 8.7 0.02

29 Jun 2005 20.4 8.2 1.0 13.4 0.05

30 Jun 2005 38.4 19.7 14.7 48.8 0.38

05 Jul 2005 32.0 12.5 9.3 39.3 0.29

7 Jul 2005 27.4 32.7 13.8 37.4 0.50

18 Jul 2005 11.0 1.2 0.2 14.1 0.02

23 Jul 2005 12.4 5.7 0.3 13.5 0.03

13 Aug 2005 11.8 6.0 0.3 11.2 0.03

14 Aug 2005 13.8 3.0 0.5 14.5 0.04

18 Aug 2005 14.6 2.7 0.8 16.6 0.06

20 Aug 2005 58.8 67.5 19.3 26.2 0.33

3 Sep 2005 28.0 7.5 1.4 21.9 0.05

9 Sep 2005 15.2 4.7 1.9 21.2 0.13

17 Sep 2005 35.8 67.5 11.0 24.5 0.31

29 Sep 2005 12.0 8.7 1.4 15.8 0.11

1 Oct 2005 134.2 126.2 92.5 78.9 0.69

29 Jun 2006 22.4 11.3 1.7 21.3 0.08

2 Jul 2006 8.0 2.0 0.2 9.7 0.02

5 Jul 2006 17.4 5.3 0.9 19.3 0.05

6 Jul 2006 14.2 12.5 3.1 21.3 0.22

9 Jul 2006 14.8 8.5 2.4 23.3 0.16

27 Jul 2006 13.2 2.8 0.3 13.8 0.03

31 Jul 2006 11.6 1.3 0.5 15.9 0.05

1 Aug 2006 17.0 8.3 1.6 16.3 0.09

2 Aug 2006 52.0 40.3 21.7 60.9 0.42

9 Aug 2006 15.2 6.3 0.5 14.6 0.03

10 Aug 2006 10.8 4.8 1.2 15.9 0.11

11 Aug 2006 24.8 30.8 7.9 25.2 0.32

14 Aug 2006 8.8 7.0 1.7 21.4 0.20

16 Aug 2006 17.4 17.5 3.7 23.7 0.21

17 Aug 2006 12.4 10.0 1.1 21.5 0.09

25 Aug 2006 9.8 4.3 0.3 14.8 0.03

26 Aug 2006 26.6 5.3 4.9 39.0 0.18

7 Sep 2006 21.8 7.5 0.8 18.7 0.04

15 Sep 2006 56.6 15.3 8.4 53.4 0.15

16 Sep 2006 11.8 8.8 1.4 20.8 0.12

14 Oct 2006 10.4 3.0 0.3 11.6 0.02

long autumn rainfall event (1–4 October 2005) was recorded

as well. Total event precipitation ranged between 6.8 and

134.2 mm. The main characteristics of the selected rainfall-

runoff events are given in Table 2. The water content reflec-

tometers were re-installed in the study area on 28 June 2005,

therefore soil moisture data at 0–30 cm were not available for

the first four events in 2005.

3.4 Determination of the size of the riparian area

In high elevation, small headwater catchments, the marked

topographic features allow for relatively easy determination

of the fundamental landscape units. At BCC, we assessed the

extent of the riparian zone by combining field surveys and

DEM analysis, partially following the procedure suggested

by McGlynn and Seibert (2003). We used a 1 m resolution

Digital Elevation Model derived from a LIDAR dataset. We

www.hydrol-earth-syst-sci.net/15/689/2011/ Hydrol. Earth Syst. Sci., 15, 689–702, 2011
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Fig. 3. Hourly time series of streamflow, mean soil moisture and hillslope-averaged depth to water table for the 2005 (a) and 2006 (b) study

periods. Gray and white circles represent the events with dry and wet antecedent conditions respectively shown in Fig. 8.

chose a slope threshold value greater than the mean longi-

tudinal slope of the stream channel and less than the ridge

slope. By visually assessing the slope distribution over the

whole catchment based on orthophotos and hillshade rep-

resentations, we indentified a value of 15◦ as the threshold

to distinguish between grid cells belonging to the riparian

zone (cell value below the threshold slope) and grid cells be-

longing to the hillslope zone (cell value above the threshold

slope). The results from the DEM analysis were compared in

the field with the real topography, walking the whole stream

length and mapping the relatively flat zones characterized by

wet soils. The two approaches gave similar results, yield-

ing a riparian zone that was approximately 1.2 ha or 8.6% of

the total catchment area (Fig. 1). This value for the size of

the riparian area was used to assess the maximum potential

riparian contribution to stormflow, as discussed in Sect. 4.4.

4 Results and discussion

4.1 Time series of streamflow, soil moisture and water

table

Figure 3 shows the time series of streamflow, average soil

moisture and water table for the two study periods. The

total cumulative precipitation from 1 June to 10 October

was 647 mm and 500 mm for 2005 and 2006 respectively,

whereas the 18-year average cumulative precipitation for the

same period in this region was 588 mm. Total runoff was

561 mm in 2005 and 428 mm in 2006 and the average runoff

for the same period at BCC (computed over four years) was

473 mm. This reveals that 2005 was a relatively wet pe-

riod and, conversely, 2006 was slightly drier than average.

Generally, maximum rainfall intensities were also higher in

2005 than in 2006 and events were associated with moder-

ately short storms. The catchment’s hydrological response

was similar for the two years, yielding a comparable number

of rainfall-runoff events (19 and 21, in 2005 and 2006 respec-

tively). A low flow period between mid-July and the begin-

ning of August (usually, the driest and warmest period of the

year) was observed in both time series. Generally, stream-

flow and soil water content were highly reactive, showing

marked fluctuations over the entire period and rapid, sharp

responses, even to small rainfall events. Conversely, ground-

water response was characterized by smoother variations, es-

pecially during recession periods (Fig. 3). A large storm

event occurred at the beginning of October 2005, triggering

a large hydrometric and piezometric response.

4.2 Event runoff coefficients

Runoff coefficients were highly variable during the two study

periods, with values ranging from 0.02 to 0.69 and a co-

efficient of variation larger than 1 (Table 2). This dis-

tribution likely reflects the variability of the storms ana-

lyzed, mostly in terms of total precipitation, storm duration,

rainfall intensity and antecedent wetness conditions. The

mean value (0.15) was noticeably lower than that found by

Norbiato et al. (2009) for two larger catchments which in-

clude BCC (Cordevole at La Vizza, 7.3 km2, mean: 0.33;

Cordevole at Saviner, 109 km2, mean: 0.28). Besides a

Hydrol. Earth Syst. Sci., 15, 689–702, 2011 www.hydrol-earth-syst-sci.net/15/689/2011/
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Fig. 4. Threshold behaviour in the relationship between average

soil moisture at 0–30 cm prior to the event and the runoff coeffi-

cient. The vertical line highlights the soil moisture threshold, the

horizontal line represents the value of the runoff coefficient corre-

sponding to the ratio between the riparian area and total catchment

area.

different calculation method, this was likely due to a differ-

ent selection of runoff events. Investigations are on going

to identify scale dependency in the different distributions of

runoff coefficients.

4.3 Relation between soil moisture and runoff

The relationship between antecedent soil moisture at 0–

30 cm (defined as the mean of the four measurements taken

before the storm onset) and the runoff coefficients for the 40

rainfall-runoff events during the study period was strongly

non-linear and allowed the identification of a soil moisture

threshold value (approximately 45%) above which runoff

significantly increased (Fig. 4). This behaviour was very

similar to that found in other catchments with different to-

pographic, climatic and land use characteristics: smooth un-

dulating hills and temperate climate in Tarrawarra, Australia

(Western and Grayson, 1998), low-elevation mountain grass-

land with a Mediterranean semi-humid climate in Colorso,

Central Italy (Brocca et al., 2005), significant topographic

relief and a humid climate in Mont Saint-Hilaire, Canada

(James and Roulet, 2007), and gentle agro-forested terrain

with a sub-humid climate at Fiumarella of Corleto, Southern

Italy (Onorati et al., 2007).

A clear threshold behaviour was also observed in the soil

moisture at 0–30 cm and streamflow relationship (Fig. 5a)

and the soil moisture at 0–30 cm and groundwater relation-

ship (Fig. 5b). Discharge and water table level were low dur-

ing dry conditions and a sharp increase occurred when the

45% moisture threshold was exceeded. These results agree

with previous findings in other experimental watersheds and

hillslopes (Meyles et al., 2003; Peters et al., 2003; Latron and

Gallart, 2008) and underline the influence of soil moisture

on non-linear runoff generation processes. Interestingly, the

moisture value above which the hillslope average water level

considerably rose was the same as for discharge, revealing

the strong influence exerted by wetness conditions on both

surface and subsurface response. Similar results were found

at the Piramide and Emme sites for the relationships between

hillslope-averaged soil moisture at 0–6, 0–12 and 0–20 cm

depth and hillslope-averaged depth to water table (Fig. 6).

4.4 Soil moisture and the contribution of the riparian

zone to storm runoff

The high elevation range and the clear distinction between

the two fundamental catchment units at BCC were assumed

to play an important role on streamflow generation. Disag-

gregating the watershed into discrete landscape units and de-

termining the percentage of riparian and hillslope area can be

used as a tool to assess the relative contribution of riparian

water (event and pre-event water originating from riparian

zones) and hillslope water (event and pre-event water orig-

inating from upland and hillslope zones) to total catchment

runoff (McGlynn, 2005). Inspection of Fig. 4 reveals that

the majority of small runoff coefficients (below the 45% soil

moisture threshold), was lower than 0.09 (or 9%). This value

compared surprisingly well with the size of the riparian zone

(8.6%, see Sect. 3.4). This observation led us to speculate

that low runoff ratios, derived from small storms with dry an-

tecedent soil moisture conditions, were likely due to runoff

from the riparian zone that was characterized by high soil

moisture conditions and is therefore prone to rapid runoff

response. When the soil moisture threshold was reached,

the entire riparian zone might have become saturated and

runoff coefficients close to the ratio of the riparian area to

total catchment area occurred, indicating the maximum po-

tential riparian contribution to basin runoff. During wetter

conditions and larger events, when the soil moisture thresh-

old was exceeded, higher runoff ratios occurred. For these

events, the most important contribution to streamflow must

have come from hillslopes, which likely became hydrologi-

cally active and started to release water once the soil mois-

ture threshold was exceeded. We currently do not have iso-

topic or hydrochemical data to confirm these hypotheses but

they agree with previous tracer-based results in other exper-

imental catchments (Sidle et al., 2000; Burns et al., 2001;

McGlynn and McDonnell, 2003), which describe the dom-

inant role of the riparian zone for runoff generation during

small events/early in the event and low antecedent wetness

conditions and, on the other hand, the major contribution

from hillslopes for larger events/later in the event during wet-

ter conditions. The observation of runoff production due

to precipitation falling onto saturated areas and expanding

over time is related to the variable source area (VSA) con-

cept (Hewlett and Hibbert, 1967) but only partially agrees

with it. At BCC, saturated areas were believed to expand
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2

Fig. 5. Threshold behaviour in the relationship between average soil moisture and streamflow (a) and between average soil moisture and

hillslope-averaged depth to water table (b).

27

 

Fig. 6. Threshold behaviour in the relationship between hillslope-averaged soil moisture at 0–6 cm (a), 0–12 cm (b), 0–20 cm (c) and

hillslope-averaged depth to water table.

from the riparian corridor to the foot of the hillslopes with

increasing wetness but the threshold behaviour of hillslope

activation and the subsequent abrupt increase in runoff is a

mechanism not explained by the VSA concept (McDonnell,

2003). These findings, based on runoff volumes, confirm the

strong control exerted by topography on runoff generation in

mountain watersheds and the essential role of hillslopes and

riparian zones as fundamental landscape units in determining

the catchment hydrological response.

4.5 Response time

The temporal dynamics of the catchment’s response to pre-

cipitation were investigated to better understand the dom-

inant processes controlling the hydrological behaviour of

BCC. Response times were computed following the method-

ology of Blume et al. (2009). Time lags between storm on-

set and the start and peak of soil moisture, streamflow and

water table response were calculated for all rainfall-runoff

events. In order to reduce the effects of storm duration (the

longer the rainfall event, the longer the response time, espe-

cially to peak response), all time lag values were normalized

by dividing by the time between rainfall start and water ta-

ble peak (typically the longest time lag). In order to deter-

mine the influence of antecedent soil moisture on the timing

of the response, all events were classified into wet and dry

antecedent conditions (according to the 45% soil moisture

threshold) and the mean and median normalized time lags

were computed for both conditions (Table 3). Overall, the

observed high values of the standard deviation of the time

lag indicated a marked variability of response lag time for

the various events. However, distinct behaviours emerged as

well. During wet conditions, (hillslope) soil moisture and

streamflow on average started to rise at approximately the

same time, while soil moisture peaked earlier than stream-

flow. Conversely, streamflow started to increase and peaked

prior to (hillslope) soil moisture during dry conditions (Ta-

ble 3). Hillslope-averaged water table response always ex-

hibited a delayed start and peak, confirming previous ob-

servations in another subcatchment of the Rio Vauz Basin

(Penna et al., 2010) and elsewhere (Kendall et al., 1999;

McGlynn et al., 2004). Rapid soil saturation of the riparian

zone could lead to a quick streamflow response (McGlynn

and McDonnell, 2003) whereas deeper percolation and fill-

ing of the soil moisture deficits likely resulted in a delay of

the water table response.

Two rainfall-runoff events with similar cumulative precip-

itation but different antecedent soil moisture conditions are
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Fig. 7. Time series of streamflow, average soil moisture at 0–30 cm and hillslope-averaged water table for (a) an event with dry antecedent

conditions (14 October 2006, 10.4 mm of cumulative precipitation) and (b) an event with wet antecedent conditions (29 September 2005,

12.0 mm of cumulative precipitation). Note the difference in scale of the axes. The vertical dashed line represents the time of the start of the

rainfall event. The vertical solid lines represent the time of the peak of the response.

Table 3. Mean, median and standard deviation of time lags normalized by the peak water table time lag. SF: streamflow; SM: average soil

moisture at 0–30 cm; WT: hillslope-averaged water table. Events where a water table response did not occur were excluded.

time lag (hours) between storm onset and:

SF start SM start WT start SF peak SM peak WT peak

Mean

all events 0.12 0.12 0.28 0.65 0.62 1.00

events in dry conditions 0.24 0.25 0.34 0.73 0.91 1.00

events in wet conditions 0.06 0.05 0.24 0.60 0.46 1.00

Median

all events 0.07 0.08 0.29 0.67 0.59 1.00

events in dry conditions 0.21 0.21 0.30 0.76 0.70 1.00

events in wet conditions 0.04 0.03 0.28 0.61 0.44 1.00

Standard deviation

all events 0.14 0.15 0.21 0.29 0.38 0.00

events in dry conditions 0.19 0.19 0.24 0.35 0.43 0.00

events in wet conditions 0.05 0.04 0.19 0.25 0.25 0.00
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Fig. 8. Hysteretic behaviour in the relationship between average

soil moisture at 0–30 cm and streamflow for various events with

dry (a) and wet (b) antecedent conditions. P : event cumulative

precipitation.

compared in Fig. 7. During dry conditions (AMC < 45%,

panel a), soil moisture peaked after streamflow whereas dur-

ing wet conditions (AMC > 45%, panel b) the reverse oc-

curred. Moreover, during dry conditions the soil moisture

recession was slow, with water being retained in the soil. On

the contrary, during wet conditions, reduced storage deficits

and higher hydraulic conductivity facilitated the rapid dis-

placement of water through the soil. This resulted in a faster

recession and in shorter response times for events with wet

conditions. These observations agree with previous findings

about the different contributions of the riparian and hillslope

zone to runoff: during dry periods, streamflow likely mainly

increased due to channel interception and riparian runoff,

resulting in peak stream discharge prior to peak hillslope

soil moisture. When wetness conditions increased, hillslope

runoff commenced and became the main source of catchment

runoff and hillslope soil moisture peaked prior to streamflow.

 

Fig. 9. Total stormflow as a function of total precipitation for all

events. P : Precipitation; AMC: average Antecedent Moisture Con-

tent measured at 0–30 cm. In the inset: zoom for the relation at low

precipitation values.

The difference in timing of streamflow and soil moisture

response resulted in clear hysteretic relationships between

soil moisture and streamflow at BCC. Particularly, during

rainfall-runoff events with dry antecedent conditions, stream-

flow responded and peaked earlier than hillslope soil mois-

ture, leading to hysteretic loops with a clockwise direction

(Fig. 8, panel a). For events with wet antecedent conditions,

the reverse response time resulted in a hysteretic behaviour

with an anticlockwise direction (Fig. 8, panel b). In the re-

cent literature, hysteresis in hillslope and catchment response

has been found in the relationship between streamflow and

water table response (McGlynn et al., 2004; Beven, 2006;

Ewen and Birkinshaw, 2007; Norbiato and Borga, 2008;

Penna et al., 2010). A few studies have identified two oppo-

site directions of hysteretic loops according to location (near-

stream riparian zone or hillslope zone) and the difference in

timing of the water table response (Kendall et al., 1999; Detty

and McGuire, 2008). Moreover, very recently McGuire and

McDonnell (2010) showed hillslope-streamflow hysteresis

patterns that changed direction over time, as a result of in-

creasing wetness conditions.

4.6 Relationship between total precipitation and total

stormflow

The relationship between cumulative rainfall and total storm-

flow for the selected rainfall events is shown in Fig. 9. As

expected, total stormflow increased with total precipitation

but very small values of stormflow occurred for small events.

The effect of antecedent moisture conditions on storm runoff

production was assessed by dividing the 40 rainfall-runoff

events into four classes based on two threshold values: 45%

of soil moisture, as previously identified, and 23 mm of
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cumulative rainfall because stormflow appeared to signifi-

cantly increase when rainfall exceeded 23 mm. A clear com-

bined effect of precipitation depth and antecedent soil wet-

ness on total stormflow was observed at BCC: small events

produced very low stormflow amounts during dry conditions

and greater stormflow amounts during wet conditions (see in-

set of Fig. 9). A noticeable increase of stormflow occurred

when both precipitation amount and antecedent wetness con-

ditions increased. The best fit line through the data points

had a slope of 0.09 (R2 = 0.66) for events smaller than 23 mm

with dry antecedent moisture conditions (<45%) and a slope

of 0.26 (R2 = 0.57) for events smaller than 23 mm with wet

antecedent moisture conditions (>45%). The runoff coef-

ficient for small events with dry antecedent conditions (9%)

agreed well with the size of the riparian zone (8.6%), as men-

tioned in Sect. 4.4. These results, therefore, also suggest that

the runoff from the near saturated riparian zone was likely

the major source of runoff during small events with dry an-

tecedent moisture conditions but that the hillslopes must con-

tribute to runoff during small events with wet antecedent con-

ditions. A clear threshold in the relationship between total

stormflow and total precipitation was not apparent for events

with wet antecedent conditions. The slope of the linear re-

lationship between storm total precipitation and total storm-

flow was 0.43 (R2 = 0.85) for all events with wet antecedent

conditions, except the large October 2005, suggesting that

total stormflow increased linearly with precipitation, that al-

most half of the precipitation was converted to stormflow,

and that hillslopes must thus contribute to stormflow when

antecedent soil moisture is high. The slope of the relation-

ship increased to 0.70 (R2 = 0.94) when the large October

2005 event was included.

5 Towards a conceptual model of hydrological

behaviour at BCC

In alpine basins with complex terrain, hydrological processes

result from the interaction of several factors, including topo-

graphic, geological, pedological and climatic properties. The

analyses carried out in this study helped us to better under-

stand the dominant processes and runoff generation mecha-

nisms controlling the hydrological response to summer rain-

fall events at BCC. We observed similar behaviours at BCC

as those described in Sidle et al.’s (2000) conceptual hy-

drogeomorphic model for steep headwater catchments based

on results obtained at Hitachi Ohta Experimental Watershed,

Japan:

(i) During dry conditions (soil moisture at 0–30 cm in the

35%–45% range), streamflow and hillslope water table were

low. Small storms resulted in low runoff coefficients (Fig. 4)

and stormflow generation was likely related to the response

of the near-stream riparian zone that was prone to satura-

tion and reactive to precipitation. The increase in stormflow

with precipitation was 9% of the precipitation, which sug-

gested that stormflow could volumetrically be explained by

the contribution of the entire riparian zone (representing ap-

proximately 9% of the total catchment area). Streamflow and

soil moisture were very sensitive to rainfall inputs whereas

groundwater was less reactive (Fig. 3). Streamflow response

was faster than soil moisture measured on the hillslope, re-

sulting in a clockwise hysteretic relationship between the two

variables (Fig. 8a).

(ii) As wetness increased, saturation in the riparian zone

likely expanded laterally to the lower parts of hillslopes that

are characterized by gentle slopes and shallow soils. Exper-

imental evidence is not available to support this view but

such a behaviour could be assumed based on a comparison

of the topographic and geomorphologic properties of BCC

with those of the Hitachi Ohta Watershed (e.g., incised mor-

phology, shallow soils, steep slopes).

(iii) With further increasing wetness, a moisture thresh-

old was exceeded, resulting in a marked increase of stream-

flow (Fig. 5a) and likely the triggering of transient lateral

subsurface flow on the hillslopes (Fig. 5b) as suggested by

the abrupt increase in runoff coefficients above the 45% soil

moisture threshold (Fig. 4) and the much larger increase in

runoff depth with increasing precipitation (Fig. 9). A con-

nection was likely established between the riparian area and

hillslopes, which became hydrologically active zones. Re-

sponse times changed compared to dry conditions: hillslope

soil moisture peaked before streamflow, resulting in an anti-

clockwise hysteretic loop (Fig. 8b). Saturation overland flow

over the hillslopes was not observed in the field during rain-

fall events and is assumed to be a negligible contribution to

total catchment runoff. Therefore it is concluded that hills-

lope contributions to streamflow were most likely in the form

of subsurface flow.

The information gathered in this study represents a first

step toward the development of a conceptual model able to

describe the hydrological behaviour of this catchment. Fur-

ther investigations using isotope data and/or geochemical

data (which are currently not available) will be carried out

to confirm this conceptual model.

The results from the experimental data presented in this

study can be useful for future research in the Dolomitic re-

gion. For instance, the assimilation of ground-based soil

moisture observations, possibly coupled with remote sens-

ing based estimates, can improve the conceptualization, the

parameterization and the prediction capabilities of rainfall-

runoff models (Brocca et al., 2010) developed for alpine

headwater catchments. Furthermore, in mountain watersheds

with hydrological behaviour similar to BCC, where a mois-

ture threshold controls the storage-runoff relationship, the

concept of competitive state variables (Duffy, 1996) might

be applied and verified. In this context, the competitive in-

verse dependence between unsaturated and saturated mois-

ture storage might become more important for rainfall events

with increasing wetness conditions and could lead to a bet-

ter comprehension of the rainfall-runoff dynamics in these

www.hydrol-earth-syst-sci.net/15/689/2011/ Hydrol. Earth Syst. Sci., 15, 689–702, 2011



700 D. Penna et al.: The influence of soil moisture on threshold runoff

catchments. The highly non-linear phenomena which char-

acterize the BCC response represent a challenge for most

hydrological models based on linearity assumptions. More-

over, the switching direction of the hysteretic loops accord-

ing to antecedent moisture conditions, which reflects com-

plex hydrological processes generated under different water-

shed conditions, seems to disagree with the hypothesis of

catchments as simple dynamic systems (Kirchner, 2009).

6 Conclusions

This paper focused on the hydrological response of a small

headwater catchment in the Italian Alps with a humid cli-

mate, shallow soils and a clear distinction between riparian

and hillslope areas. Particularly, the critical role exerted by

near-surface soil moisture on runoff generation and its in-

fluence on threshold runoff processes was assessed by ex-

amining 40 rainfall-runoff events that occurred during two

summer periods. In summary, the following results were

obtained:

– A clear response of soil water content and streamflow

to almost any precipitation input was observed whereas

the hillslope-averaged water table was less reactive, es-

pecially during dry conditions.

– A clear threshold relationship between soil moisture

prior to the event and runoff was found. Above 45%

volumetric soil moisture content runoff coefficients,

streamflow and water table level abruptly increased re-

vealing the strong influence exerted by initial wetness

conditions on both surface and subsurface runoff. The

low runoff ratios could volumetrically be explained by

saturation overland flow in the riparian zone whereas

the higher runoff ratios observed during wet periods

required an increased contribution of hillslopes, which

likely became hydrologically active once the soil mois-

ture threshold was exceeded.

– Analysis of response times showed a quick reaction

of streamflow and soil moisture while water table rise

lagged behind. During dry conditions, hillslope soil

moisture reacted and peaked after streamflow whereas

during wet conditions hillslope soil moisture peaked be-

fore streamflow. This distinct timing difference led to a

hysteretic behaviour in the soil moisture-streamflow re-

lationship with a switch in the hysteretic loop direction

based on the wetness conditions prior to the event.

– Total stormflow values showed the combined effects

of antecedent conditions and precipitation. During

dry conditions, small storms generated low stormflow

amounts that could volumetrically be explained by con-

tributions from the riparian zone whereas during wet

conditions small storms produced more stormflow, sug-

gesting a significant hillslope contribution.
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Controls on event runoff coefficients in the eastern Italian Alps,

J. Hydrol., 375, 312–325, doi:10.1016/j.jhydrol.2009.06.044,

2009.

Ocampo, C. J., Sivapalan, M., and Oldham, C.: Hydrological con-

nectivity of upland-riparian zones in agricultural catchments: im-

plication for runoff generation and nitrate transport, J. Hydrol.,

331, 643–658, 2006.

Onorati, B., Margiotta, M. R., Carriero, D., Manfreda, S.,

and Fiorentino, M.: Experimental evidence on runoff genera-

tion mechanisms. Proceedings of the AMHY-FRIEND Interna-

tional Workshop on Hydrological Extremes, Cosenza (Italy), 6–

8 June 2007: Variability in space and time of extreme rainfalls,

floods and droughts, 2007.

Penna, D., Borga, M., Norbiato, D., and Dalla Fontana, G.: Hills-

lope scale soil moisture variability in a steep alpine terrain, J. Hy-

drol., 364, 311–327, doi:10.1016/j.jhydrol.2008.11.009, 2009.

Penna, D., Borga, M., Sangati, M., and Gobbi, A.: Dynamics of

soil moisture, subsurface flow and runoff in a small alpine basin.

IAHS Publications, Red Book Series 336, ISBN 978-1-907161-

08-7, 96–102, 2010.

Penna, D., Norbiato, D., Borga, M., and Dalla Fontana, G.: Anal-
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