1	The influence of style and origin on mineral composition of beers retailing in the
2	UK
3	S. Rodrigo ^{a,*} , S.D. Young ^b , M.I. Talaverano ^c , M.R. Broadley ^b
4	^a Agricultural Engineering School, University of Extremadura. Avda. Adolfo Suárez s/n,
5	06007 Badajoz, Spain
6	^b School of Biosciences, University of Nottingham, Sutton Bonington Campus,
7	Loughborough, LE12 5RD, UK
8	^c CICYTEX-Technological Institute of Food and Agriculture-INTAEX (Government of
9	Extremadura) Av. Adolfo Suárez, s/n 06071 Badajoz, Spain
10	*Tel: +34 924 289 300; Fax: +34 924 286 201. E-mail: saramrodrigo@gmail.com
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

26 ABSTRACT

27 Beer has high nutritional values in terms of energy, and is also a dietary source of antioxidants, carbohydrates and minerals among others. In Europe, 53 Mt of beer are 28 produced annually, and with an average supply of 68.2 kg *capita*⁻¹ year⁻¹ among adults. 29 In this study, the mineral composition of 125 commercial beer samples retailing in the 30 UK, but originating from 10 countries, was determined; such detailed information is 31 lacking in UK food composition tables. Beer composition data are reported for Al, As, 32 Ba, Ca, Cd, Co, Cr, Cs, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, Se, Sr, U, V and Zn, 33 following analysis by inductively coupled plasma-mass spectrometry. ANOVA results 34 showed higher concentrations of Mo, Pb and Sr (0.160; 491.70×10^{-5} ; 0.38, mg L⁻¹ 35 respectively) for stout/porter style and a significant higher amount of minerals such as 36 Al (3.835 mg L⁻¹), Cd (8.64×10⁻⁵ mg L⁻¹), Mn (1.02 mg L⁻¹) or Ni (0.312 mg L⁻¹) among 37 38 others for lambic beer. Regarding the country of origin, higher Se concentrations were reported from beer brewed in the USA (0.110 mg L^{-1}). It is concluded that beer style 39 40 was determined to have a greater effect on beer mineral composition than origin or container type. 41 42 43 Keywords:

- 44 Alcoholic beverage
- 45 Nutrients
- 46 Chemometrics
- 47 ICP-MS

48

49

51 **1. Introduction**

52 The last data recorded by FAO (2011) stated that Europe produced ~53 Mt of beer, with an average reported supply of 68.2 kg *capita*⁻¹ year⁻¹ for adults. The Russian Federation 53 and Germany (9.9 Mt and 8.9 Mt, respectively) had the highest beer production, 54 followed by UK, Spain, Poland and Ukraine, each with production of 3-4.5 Mt. The 55 Russian Federation, Czech Republic and Ireland have the greatest per capita beer 56 supply in Europe, with >130 kg *capita*⁻¹ year⁻¹. According to the FAO¹ data, the UK and 57 Spain have an annual supply of 75–79 kg *capita*⁻¹ year⁻¹. All these figures highlight the 58 importance of beer in Europe, in both trade and food supply. 59 60 Beer contributes significantly to energy intake due to its ethanol content (7 kcal mL⁻¹ 61

FW) but also due to protein (4 kcal mL⁻¹) and carbohydrate (3.75 kcal mL⁻¹) which 62 includes starch partially degraded in a non-fermentable form². Beer also contains a 63 range of antioxidants, polyphenols, phenolics, folates, carbohydrates, soluble fibre, 64 vitamins and minerals³⁻⁷. There is considerable ongoing debate about potential health 65 benefits arising from moderate alcohol consumption, such as reduced coronary heart 66 disease or ischemic stroke risk⁸ and improved immune response⁹. Moderate alcohol 67 consumption is defined as an alcohol intake of 10-12 mL d⁻¹ for women and 20-24 mL 68 d^{-1} for men according to Díaz et al.¹⁰, which is equivalent to 1 - 3 drinks d^{-1} for studies 69 carried out in the UK by Rimm et al.¹¹. Currently, there is limited information in the 70 literature regarding the influence of beer style or origin on beer mineral profiles⁷. In the 71 UK, the Food Standards Agency¹² periodically publishes Food Composition tables, with 72 information about beer among other foods and beverages. In these tables some entries 73 74 correspond to ale, stout or lager, the beer types most widely consumed in the UK. For these entries, concentrations of Ca, Cl, Cu, Fe, I, K, Mg, Mn, Na, P, Se and Zn are 75

reported, but not all minerals are reported for all beer types. Therefore, the aim of this
study is to determine a wider mineral composition of a range of domestic and imported
beers currently retailing in the UK.

79

80 2. Materials and methods

81 *2.1. Beer samples*

82 Beers (n = 125) were purchased from UK-based stores or obtained directly from UKbased breweries. Beers originated from 10 countries (Belgium, China, Czech Republic, 83 Germany, Holland, Ireland, Italy, Mexico, UK and USA), according to the label. 84 85 Alcohol contents given in the label ranging between 2.8 and 10.1%. Ale style was represented by 67 samples, lager style by 58 samples including 4 specifically classified 86 as pilsner. Within ale style, 7 beers were specifically classified as bitter, 6 as India pale 87 88 ale (IPA), 4 as lambic and 10 as stout/porter. More information about the samples can be found in Rodrigo et al.¹³. Sample containers were bottles (n=104), aluminium cans 89 90 (n=16) or brewery barrels of varying capacities (n=5).

91

92 2.2. Elemental analysis

93 Concentrations of Al, As, Ba, Ca, Cd, Co, Cr, Cs, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb,

Se, Sr, U, V and Zn in the beers were determined by ICP-MS (X-Series^{II}, Thermo

95 Fisher Scientific Inc., Waltham, MA, USA), using a H₂ reaction cell to enhance

resolution of Se, and diluting the samples 1-in-6 with 1% Trace Analysis Grade (TAG)

97 HNO₃. Samples in duplicate were introduced from an autosampler (Celtac ASX-520,

- 98 Omaha, ME, USA) at 1 mL min⁻¹ through a concentric glass venturi nebuliser and
- 99 Peltier-cooled (3 °C) spray chamber (Thermo Fisher Scientific Inc.). The instrument
- 100 (Thermo XSeries(II)) has a hexapole with 'kinetic energy discrimination in order to

101	reduce polyatomic interferences. The XSeries(II) uses a 7% hydrogen in helium gas as
102	the 'collision-reaction' gas in the hexapole chamber. Internal standards were introduced
103	to the sample stream via a T-piece and included Sc (50 ng mL ⁻¹), Rh (10 ng mL ⁻¹) and Ir
104	(5 ng mL ⁻¹) in 2% TAG HNO ₃ . An acid-digested wheat flour standard (NIST 1567a;
105	National Institute of Standards and Technology, Gaithersburg, MD, USA) was used as
106	reference material. Two sets of multi-element standards were used: 0, 10, 20, 30 ppm
107	(mg/L) for Ca, Mg, Na and Mg (PlasmaCAL, SCP Science, France) 0, 20, 40, 100 ppb
108	for all other elements (Claritas-PPT grade CLMS-2 from Certiprep/Fisher, UK). The
109	limit of detection (LOD) for the analysis was calculated by substituting three times the
110	standard deviation of the blank into the equation operational blank samples (ten
111	replicates).

112

113 *2.3. Statistical analysis*

114 Mineral element concentrations and alcohol content were subjected to two 1-way 115 analysis of variance (ANOVA) including beer style (ale, bitter, India pale ale, lager, 116 lambic, pilsner and stout/porter) and country of origin (Belgium, China, Czech Republic, Germany, Holland, Ireland, Italy, Mexico, UK and USA) in the models. 117 Moreover, the influence of the container type (barrel, bottle and can) on mineral 118 119 elements concentration was also assessed using a 1-way ANOVA. When significant 120 differences were found in ANOVA, means were compared using Fisher's protected least significant difference (LSD) test at $p \le 0.05$. Pearson correlation tests were 121 122 performed between the different parameters. Principal component analysis (PCA) and discriminant analysis (DA) were conducted on the 22 elemental composition traits for 123 124 each beer style and country of origin with the aim of determining the most explanatory

variables in the method. All these analyses were performed with the XLStat (Addisoft, 125 126 USA) 'add-on' for Microsoft Excel.

127

3. Results and discussion 128

3.1. Beer mineral content 129

The elements present at highest concentrations in beers were K, Mg, Ca and Na (means 130 of 451, 78, 52 and 41 mg L⁻¹ respectively) (Table 1), fact that perfectly agrees with the 131 results given by Montari et al.¹⁴. Most elemental concentrations in the current survey are 132 similar to data reported in the literature, except K and Mg, whose values are lower than 133 those reported by Rubio et al.¹⁵ and Alcázar et al.¹⁶, in their surveys with 28 and 32 beer 134 samples respectively. In the UK food composition tables, Ca, Cu, Fe, Mn, Na and Zn 135 concentrations are smaller than those in our survey¹², that could be explained by the 136 137 higher number of entries of the survey here presented with reference to the one done by 138 the Food Standard Agency (FSA). Moreover, FSA survey does not reflect any 139 classification by beer styles or origin, while this paper presents all the complete data for 140 describing any beer including in the study. These two reasons could explain the differences found between the FSA data and the presented data. 141 142 Alcázar et al.¹⁶ also found lower Zn values in Portuguese beers than the values obtained 143 144 from our survey. As expected, toxic elements were present at the lowest concentrations; the average concentrations of Cd, Cs, Pb and U were $<0.1 \text{ mg L}^{-1}$. 145 146

The Food and Nutrition Board of the Institute of Medicine has established the TUL 147

148 (Tolerable Upper Intake Level) for Cu, Fe, Mn, Mo, Se and Zn, as 10, 45, 11, 2, 0.4 and

40 mg day⁻¹, respectively and the RDA (Recommended Dietary Allowance) for Cu, Fe, 149

Mo and Se as 0.9, 18, 0.045, 0.055 respectively and for Zn, 11 and 8 mg day⁻¹ for males 150 and females, respectively. The AI (Adequate Intake) for Cr is 0.025 and 0.035 mg day⁻¹ 151 152 for males and females respectively, while the NOAEL (No-Observed Adverse Effect Level) is 1.468 mg kg⁻¹ day⁻¹. Meanwhile, AI is established for Mn in 2.3 mg day⁻¹. If 153 we compare literature values with our results, drinking 1 L day⁻¹ of beer (all styles 154 excluding lambics), could cover between 10% - 50% and 20% - 50% of the RDA for Fe 155 and Zn respectively, while 100% of the RDA for Mn, Se and Cr would be 156 accommodated. The Cu RDA could be achieved from consumption of just 100 mL day⁻¹ 157 of beer. In the case of lambic beers, Fe intake could exceed the TUL when drinking 1 L 158 day⁻¹. 159

160

161 *3.2. Effect of beer style and place of origin on mineral and alcohol contents*

162 There was a significant effect of beer style on mineral composition for all elements 163 except Na, Cu, Se and Cs ($p \le 0.05$; Table 1). The IPA beers had the highest, and lager 164 beers the lowest, concentrations of Ca, K and Mg (Table 1). One hypothesis that could 165 explain this fact could be the use of various yeasts to brew the varied beer styles; thus, as explained previously in another matrixes¹⁷ different fungal strains could behave 166 167 completely different regarding to the same raw material having contrary tendencies in 168 the uptake of the minerals contained in the matrix. Lambic beers had the highest Al, Cd, Co, Cr, Fe, Mn, Ni and Zn concentrations; stout/porter beers had the highest Sr and Mo 169 concentrations. Bacteria (i.e. lactic acid bacteria) growth in lambic beer worts produce 170 higher concentrations of amine derivate compounds¹⁸, which probably increases the 171 amine-based ligands and accordingly heavy metal concentration¹⁹ in lambic beer. It 172 173 should be noted that all the lambic beers analyzed in this study were brewed in 174 Belgium, so the higher concentration of heavy metals could be not completely defined

by beer style but also by the mineral profile of the raw material. Ale, IPA and

176 stout/porter beers typically had higher alcohol contents than bitter, lager, pilsner and

177 lambic beers, which confirms the influence of beer style in beer alcohol content stated

178 previously by Willaert and Nedovic²⁰.

179

180 There was a significant effect of geographical origin on beer mineral concentration for 181 half of the elements, except Ba, Ca, Cd, Co, Fe, Mn, Mo, Ni, Pb and V (p≤0.05; Table 182 2). Beers from USA typically had higher Mg and K concentrations, while Mexican beers had lower concentrations of these elements. Arsenic concentrations were higher in 183 184 beers from Mexico and the USA, while USA beers had the highest concentrations of Se (Table 2). Previous studies have reported the relationship between Se availability in soil 185 and Se content of cereal grains^{13, 21-23} which could explain the higher Se concentration 186 187 in beers coming from the USA. Regarding to the alcohol content, significant differences 188 were only detected between beers originated in Czech Republic, Mexico and UK, 189 showing the beer originated in the two first countries a lower alcohol content that the 190 one registered from beers brewed in UK (Table 2).

191

192 *3.3. Influence of container type on beer mineral contents*

193 There was relatively little effect of container type on beer mineral composition for most

elements. Only the concentrations of As ($p\leq0.001$), Mg ($p\leq0.01$), Na ($p\leq0.01$) and V

195 $(p \le 0.01)$ in beer were significantly affected by container type (Table 3). Concentrations

196 of As and Na were highest for beers stored in metal barrels and V concentrations were

197 lowest when stored in cans. It is known that metallic elements can be extracted from the

198 container surface due to complex formation between metal ions and chelating agents.

199 Thus, Al^{24} and Sb^{25} were reported to be transferred from cooking or storage container

surfaces into food. However, the common use of inox containers, except in the case of
lambic beers, where other materials are used, reduces considerably the possibility of
transferring constituents from the container to the beer²⁶. This suggests that the trends
seen in our work could reflect ingredients, mainly water, characteristics and quality
(every barrel is from the same area) rather than the use of different containers.

205

206 *3.4. Principal Component Analysis (PCA)*

PCA was applied to evaluate trends in the data taking into account both the beer style
and its origin. Only elements significantly affected by beer style or beer origin were
included in PCA studies.

210

In the first application of PCA (style), two principal components (PCs) explained 75% 211 212 of the total variance; PC1 explained up to 54% and PC2 up to 21% (Fig. 1). In Fig. 1 it 213 can be seen that Al, Ba, Cd, Co, Cr, Fe, Mn, Ni and Zn and, are located at positive 214 values of PC1, and Mo, Pb and Sr, at positive values of PC2; these elements had the 215 highest loadings (> 0.85; data not shown). Elements in the first group (+ve PC1) are 216 clustered very tightly suggesting that they provide similar information, reflecting a similar underlying cause, such as similar water characteristics²⁷, meanwhile V appeared 217 218 opposite this first group (in -ve PC1), which was expected due to the opposite relation between Mn and Ni with V reported by Fargašová and Beinrohr²⁸ in metal accumulation 219 in plants. Manganese, Mg and K were identified by Alcázar et al.²⁹ as the most 220 221 important variables for beer classification purposes but only Mn shows a strong 222 underlying trend in the present study. There is greater variability in Mg and K values in our survey because of the inclusion of different beer styles, whereas in Alcázar et al.²⁹ 223 224 most of analyzed beers were lager.

226 At the bottom-left in the observations plot (Fig. 1), a group of four out of the seven beer 227 styles appear together, suggesting some similar characteristics, due to the slight 228 separation between observations. Lambic and stout/porter beers appear in the bottomright side and the upper-left part of the figure respectively, showing a clear separation 229 from the other beer styles. Differences between beers arise from different methods of 230 processing raw material³⁰ (i.e. fermentation). This could explain the differences found 231 232 between beer styles in this study regarding the mineral profile, due to the different behavior of the mineral elements during brewing process showed by Kayodé et al.³¹ for 233 Zn and Fe. 234

235

In the second PCA (origin), variables are more poorly explained than in the first PCA
(style); there was a lower two principal components (PCs) explanation of the total
variance (56%). PC1 explained up to 35% and PC2 explained 21% of the variance (Fig.
1). Chromium, Mn, Fe, Co and Cd, with loadings higher than 0.83 (data not shown) and
at positive values in PC1, seem to be the most dominant variables, together with U and
Cs, at positive values of PC2 (Fig. 1) and loadings higher than 0.84, respectively (data
not shown).

243

Belgium, USA and Italy, appear clearly separated in the observations plot (Fig. 1), a
group of seven out of the ten places of origin studied are clustered together, showing
some kind of consistent trend, due to the slight separation between observations.
Recognition of Belgian beers based on multivariate analysis was previously described
by Cajka et al.³²; this arose due mainly to unusual traditional brewing practices such as

225

249 Trappist and lambic monastic brewing recipes and spontaneous fermentation

250 respectively.

251

252 3.5. Supervised learning methods: Discriminant Analysis (DA)

Discriminant analysis (DA) to identify differences between beers was undertaken both 253 for beer style and beer origin. DA regarding beer style (Fig. 2) showed a prediction 254 ability higher than 81%, while DA for beer origin place showed a lower prediction 255 256 ability (76%) which means that only 76% of the beers are placed by the method in the correct style group (Fig. 2). For the first DA (beer style) five out of the seven beer styles 257 258 were predicted with a success rate higher than 70% (ale 78%, lager 90%, lambic 100%, pilsner 75% and stout/porter 70%) while bitter and India pale ale showed success rates 259 260 of 57% and 50% respectively. IPA beers re-categorized by the analysis were placed in 261 the Ale group. Lambic beers, with a 100% of the success rate (every lambic beer was 262 included by the method in the correct beer group), reveal special characteristics of this 263 beer style in terms of its mineral profile, probably due to its unique fermentation using wild yeast and uncontrolled amounts of bacteria³³. Unlike our results, significant 264 differences were not found by Blanco et al.³⁴ when analyzing Al in different beer types. 265 266 267 The second DA (beer origin) produced prediction success rates for the origin place, 268 higher than 63%, except beers brewed in Belgium (42%), whose characteristics made the analysis place them in Germany or Holland groups, among others. Alcázar et al.¹⁶ 269 270 found in their study about beer chemical descriptors higher predictions success rate (99%), although only three countries were studied in their work. 271

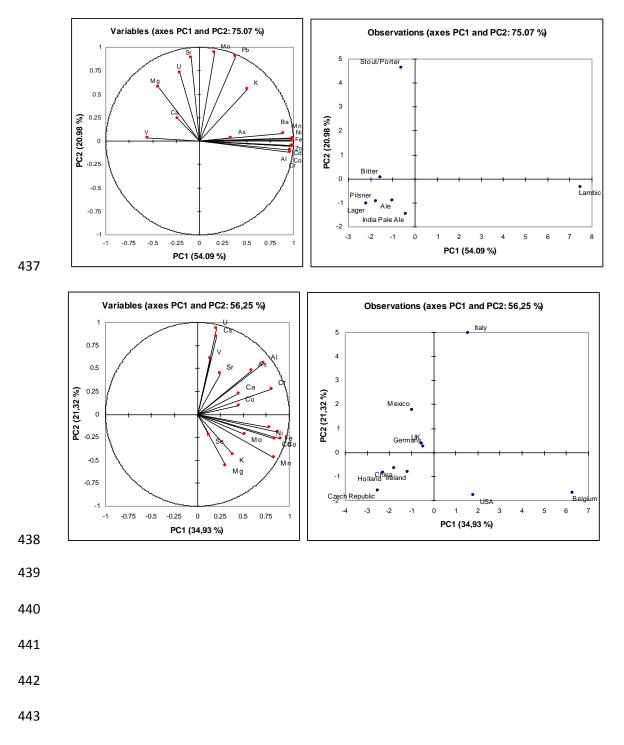
273 As expected by the multivariate analysis results presented in sections above, average 274 data for each beer style and mineral element (Table 1), showed the highest Mg, Mo, Pb and Sr in stout/porter and Al, Ba, Cd, Co, Fe, Mn, Ni and Zn values in lambic beers, 275 276 which was expected due to the correlation (r > 0.60 in the first group and r > 0.64, in the second group respectively) between the element except for Fe with Ba, Cd, Mn, Ni and 277 278 Zn. Regarding stout/porter beers, their higher Mg content could be explained by the correlation existing between Mg and polyphenols described by Vitali et al.³⁵, where 279 280 polyphenols decrease the mineral binding to fermentable compounds and thus the yeast's mineral consumption. This leads to an increase in the Mg concentration in beer 281 after fermentation³⁶. The higher amount of polyphenols in stout/porter beer can be 282 inferred by the fact of including in the brewing process a slightly higher amount of 283 hops³⁷, which contains important concentration of polyphenols according to Nagasako-284 Akazome et al.³⁷ study. 285

286

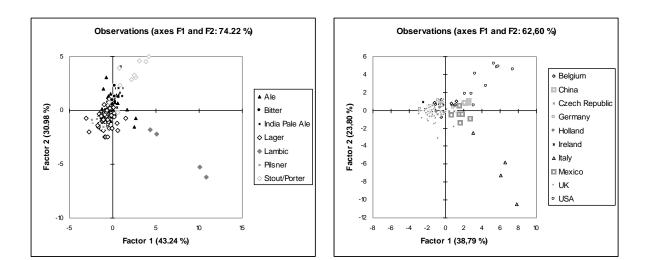
287 The most important result to highlight regarding the DA with respect to the country of 288 origin is found in the relationship between Se and beers brewed in the USA. USA beers showed the highest Se values in the whole survey. Moreover, high Ni and Fe 289 290 concentration were detected for Belgian beers, and high Cs concentration in beers 291 manufactured in Italy (Table 1). Several elements such as U and Cs are well explained 292 by factor 1 (data not shown) with loadings of -0.72 for U and-0.89 for Cs. Selenium, on the other hand is very well explained by factor 2 with loading of 0.92. Aluminium, Cd, 293 Co, Mn, Ni and Zn are correlated ($r^2 > 0.50$) to each other, but their loadings are lower 294 than 0.18 in both factor 1 and 2. However, Al, Cd, Co, Mn, Ni and Zn loadings are 295 296 higher than 0.5 in factor 6 (data not shown), even when the program did not chose this 297 factor as one of the most important ones.

4. Conclusions

300	The mineral concentration of beer can be differentiated by style and place of origin								
301	place using a chemometric approach. Beer style had a greater effect on beer mineral								
302	composition than place of origin; higher Mg, Sr, Mo and Pb concentrations classified								
303	stout/porter beer while higher Al, Mn, Fe, Co, Ni, Zn, Cd and Ba clearly described								
304	lambics. The Se concentration of beers from the USA highlights the likely higher								
305	concentration of this element in USA cereal grains due to prevailing soil geochemical								
306	characteristics.								
307									
308	Acknowledgments								
309	The authors would like to acknowledge the financial support provided by COST FA-								
310	0905 which supported Dr. Rodrigo's stay in the University of Nottingham and for								
311	samples provided by Philip Darby from The Nottingham Brewery.								
312									
313	References								
314	1. FAO (2014) FAOSTAT: Food supply, Available at:								
315	http://faostat3.fao.org/faostat-gateway/go/to/home/E. Accessed 31 December								
316	2014								
317	2. Bamforth CW (2002) Nutritional aspects of beer—a review. Nutr Res 22: 227–								
318	237								
319	3. Forsander OA (1998) Dietary influence on alcohol intake: A review. J Stud								
320	Alcohol 50 (1): 26–31								
321	4. Mayer O, Simon J, Roslova H (2001) A population study of beer consumption								
322	on folate, and homocysteine concentrations. Eur J Clinl Nutr 55: 605-609								


323	5.	Romeo J, Díaz L, González-Gross M, Wärnberg J, Díaz LE, Marcos A (2008)
324		Effect of moderate beer consumption on blood lipid profile in healthy Spanish
325		adults. Nutr Metab Cardiovas 18: 365–372
326	6.	Walker C, Freeman G, Jugdaohsingh R, Powell JJ (2009) Silicon in beer: origin
327		and concentration. In: Víctor R. Preedy (Ed.), Beer in Health and Disease
328		Prevention (pp. 367-371). Academic Press, London
329	7.	Rodrigo S, Santamaría O, Chen Y, McGrath SP, Poblaciones MJ (2014)
330		Selenium speciation in malt, wort, and beer made from selenium-biofortified
331		two-rowed barley grain. J Agr Food Chem 62(25): 5948–5953
332	8.	Movva R, Figueredo VM (2013) Alcohol and the heart: To abstain or not to
333		abstain?. Int J Cardiol 164: 267 – 276
334	9.	Romeo J, Wärnberg J, Nova E, Díaz L, Gómez-Martínez S, Marcos A (2007)
335		Moderate alcohol consumption and the immune system: A review. Brit J Nutr
336		98(1): 111–115
337	10.	Díaz LE, Montero A, González-Gross M, Vallejo AI, Romeo J, Marcos A
338		(2002) Influence of alcohol consumption on immunological status: a review. Eur
339		J Clin Nutr 56: 50-53
340	11.	Rimm EB, Klatsky A, Grobbee D, Stampfer MJ (1996) Review of moderate
341		alcohol consumption and reduced risk of coronary heart disease: is the effect due
342		to beer, wine, or spirits?. Brit J Med 312: 731-736
343	12.	Food Standard Agency (2014) McCance and Widdowson's the Composition of
344		Foods. Seventh Summary Edition. Royal Society of Chemistry, Cambridge
345	13.	Rodrigo S, Young SD, Cook D, Wilkinson S, Clegg S, Bailey EH, Mathers AW,
346		Broadley MR (2015) Selenium in commercial beer and losses in the brewing
347		process from wheat to beer. Food Chem 182: 9-13

348	14. Montari L, Mayer H, Marconi O, Fantozzi P (2009) Minerals in beer. In: Beer in
349	Health and Disease Prevention. Ed. Victor R. Preedy. Academic Press,
350	California, USA
351	15. Rubio C, Ravelo A, Gutiérrez AJ, González Séller D, Hardisson A (2013)
352	Nutricional interest of Na, K, Ca, Mg, Fe, Mn, Cu, Zn, Cr and Mo levels in dark
353	beers. Ann Nutr Metab 63 (suppl.): 1475–1476
354	16. Alcázar A, Jurado JM, Palacios-Morillo A, de Pablos F, Martín MJ (2012)
355	Recognition of the geographical origin of beer based on support vector machines
356	applied to chemical descriptors. Food Control 23: 258-262
357	17. Lledó S, Rodrigo S, Poblaciones MJ, Santamaría O (2015) Biomass yield,
358	mineral content, and nutritive value of Poa pratensis as affected by non-
359	clavicipitaceous fungal endophytes. Mycol Progress 14:67
360	18. Izquierdo-Pulido M, Mariné-Font A, Vidal-Carou MC (2000) Effect of tyrosine
361	on tyramine formation during beer fermentation. Food Chem 70: 329-332
362	19. Obuseng V, Nareetsile F, Kwaambwa HM (2012) A study of the removal of
363	heavy metals from aqueous solutions by Moringa oleifera seeds and amine-
364	based ligand 1,4-bis[N,N-bis(2-picoyl)amino]butane. Anal Chim Acta 730: 87-
365	92
366	20. Willaert R, Nedovi VA (2006) Primary beer fermentation by immobilised yeast:
367	a review on flavour formation and control strategies. J Chem Technol Biot
368	81(8): 1353–1367
369	21. Broadley MR, Alcock J, Alford J, Cartwright P, Foot I, Fairweather-Tait SJ,
370	Hart DJ, Hurst R, Knott P, McGrath SP, Meacham MC, Norman K, Mowat H,
371	Scott P, Stroud JL, Trovey M, Tucker M, White PJ, Young SD, Zhao F-J (2010)


Solonium historification of high violding winter what (Triticum gestimm I)
Selenium biofortification of high-yielding winter wheat (<i>Triticum aestivum</i> L.)
by liquid or granular Se fertilization. Plant Soil 332: 5–18
22. Rodrigo S, Santamaría O, López-Bellido FJ, Poblaciones MJ (2013) Agronomic
selenium biofortification of two-rowed barley under Mediterranean conditions.
Plant Soil and Environment 59 (3): 115–120
23. Joy EJM, Broadley MR, Young SD, Black CR, Chilimba ADC, Ander EL,
Barlow TS, Watts MJ (2015) Soil type influences crop mineral composition in
Malawi. Sci Total Environ 505: 587-595
24. Veríssimo MIS, Oliveira JABP, Gomes MTSR (2006) Leaching of aluminium
from cooking pans and food containers. Sensors Actuator B 118: 192-197
25. Jiang X, Wen S, Xiang G (2010) Cloud point extraction combined with
electrothermal atomic absorption spectrometry for the speciation of
antimony(III) and antimony(V) in food packaging materials. J Hazard Mater
175: 146–150
26. Repetto M (1995) Toxicología avanzada. Ediciones Díaz de Santos, Madrid,
Spain
27. Szabó E, Sipos P (2014) Mineral and polyphenol contents of self-brewed and
commercial beer samples. J MacroTrends Appl Sci 2 (1): 1-9
28. Fargašová A, Beinrohr E (1988) Metal-metal interactions in accumulation of
V ⁵⁺ , Ni ²⁺ , Mo ⁶⁺ , Mn ²⁺ , and Cu ²⁺ in under- and above-ground parts of <i>Sinapsis</i>
alba. Chemosphere 36: 1305-1317
29. Alcázar A, Pablos F, Martín MJ, González AG (2002) Multivariate
characterisation of beers according to their mineral content. Talanta 57: 45-52
30. Bamforth CW (2000) Beer: an ancient yet modern biotechonolgy. The Chemical
Educator 5 (3): 102–112

397	31. Kayodé APP, Hounhouigana JD, Noutb MJR (2007) Impact of brewing process
398	operations on phytate, phenolic compounds and in vitro solubility of iron and
399	zinc in opaque sorghum beer. LWT 40: 834–841
400	32. Cajka T, Riddellova K, Tomaniova M and Hajslova J (2010) Recognition of
401	beer brand based on multivariate analysis of volatile fingerprint. J Chromatog A
402	1217:, 4195–4203
403	33. De Keersmaecker J (1996) The mystery of lambic beer. Sci Am, Aug. 74–80
404	34. Blanco CA, Sancho D, Caballero I (2010) Aluminium content in beers and
405	Silicon sequestering effects. Food Res Int 43: 24432–2436
406	35. Vitali D, Vedrina Dragogević I, Ševečić B (2008) Bioaccesibility of Ca, Mg, Mn
407	and Cu from whole grain tea-bicuits: impact of protein, phytic acid and
408	polyphenols. Food Chem 110: 62–68
409	36. Edney MJ, Rossnagel BG, McCaig R, Juskiw PE, Legge WG (2011) Reduced
410	phytate barley malt to improve fermentation efficiency. J I Brewing 117(3): 401-
411	410
412	37. BJCP Style Guidelines (2008). <u>http://www.bjcp.org/2008styles/style13.php</u>
413	38. Nagasako-Akazome Y, Honma D, Tagashira M, Kanda T, Yasue M, Ohtake Y
414	(2007) Safety evaluation of polyphenols extracted from hop bracts. Food Chem
415	Toxicol 45: 1383–1392
416	
417	
418	
419	
420	
421	

422	
423	
424	
425	
426	
427	
428	
429	
430	
431	Figure captions
432	Fig. 1. Correlation between loadings and factors (up-left) and observations plot (up-
433	right) regarding the effect of style on beer mineral composition in the Principal
434	Components Analysis (PCA), and correlation between loadings and factors (down-left)
435	and observations plot (down-right) regarding the effect of place of origin on beer
436	mineral composition in the Principal Components Analysis (PCA).

444 Fig. 2. Discriminant Analyses (DA) of beer mineral composition data for 22 elements,

445	regarding the style (left) and the place of origin (right)
446	
447	
448	
449	
450	
451	
452	
453	
454	
455	
456	
457	
458	

Table 1. Mean mineral content (mg L⁻¹) and alcohol content (%) of beer samples as affected by beer style. Different letters mean significant

461 differences (p ≤ 0.05).

Style	Al ***	As^*	Ba***	Ca***	Cd***	Co***	Cr***	Cs	Cu	Fe***	K***]
Ale(n=35)	0.492 ^b	0.076 ^a	0.321 ^b	56.1 ^b	2.83×10 ^{-5b}	23.81×10 ^{-5b}	0.044 ^b	26.58×10-5	0.512	0.884 ^b	474.3 ^b	
Bitter(n=7)	0.655 ^b	0.092 ^a	0.364 ^b	86.0 ^a	1.40×10 ^{-5b}	22.76×10-5b	0.038 ^b	28.71×10-5	0.289	0.467 ^b	455.5 ^{bc}	
IPA(n=6)	0.455 ^b	0.082ª	0.478 ^{ab}	76.1 ^{ab}	2.87×10 ^{-5b}	32.02×10 ^{-5b}	0.044 ^b	35.93×10-5	0.395	0.264 ^b	647.8 ^a	
Lager(n=59)	0.598×10 ^{-3b}	0.063 ^a	0.192°	41.7°	2.40×10 ^{-5b}	18.95×10-5b	0.048 ^b	135.06×10-5	0.428	0.461 ^b	379.9°	
Lambic(n=4)	3.835 ^a	0.042 ^a	0.674 ^a	39.3°	8.64×10 ^{-5a}	279.85×10 ^{-5a}	0.141 ^a	98.35×10-5	0.482	1.3 ^a	677.4 ^a	
Pilsner(n=4)	0.395 ^b	0.007^{b}	0.230 ^{bc}	25.4°	1.93×10 ^{-5b}	12.30×10-5b	0.046 ^b	78.60×10-5	0.576	0.208 ^b	462.6 ^{bc}	
Stout/Porter	0.411 ^b	0.064 ^a	0.380 ^b	74.2 ^{ab}	3.66×10 ^{-5b}	26.49×10 ^{-5b}	0.040 ^b	21.75×10-5	0.432	0.15 ^b	592.6 ^a	
(n=10)												
Mean	0.977	0.061	0.501	56.9	3.39×10 ⁻⁵	59.45×10-5	0.057	60.71×10 ⁻⁵	0.445	0.329	527.2	
Style	Mg^{***}	Mn***	Mo***	Na	Ni***	Pb**	Se	Sr**	\mathbf{U}^{*}	\mathbf{V}^{*}	Zn***	Alcohol content***
Ale	84.8 ^{bc}	0.18 ^b	0.053 ^b	44.9	0.061 ^b	41.90×10 ^{-5b}	0.039	0.15 ^c	4.06×10 ^{-5b}	0.174 ^b	0.443 ^b	5.35 ^a
Bitter	73.7 ^{cd}	0.17 ^b	0.040 ^b	52.7	0.041 ^b	48.19×10 ^{-5b}	0.013	0.23 ^b	11.87×10 ^{-5a}	0.209 ^{ab}	0.200 ^b	7.06 ^{bc}
IPA	95.3 ^{ab}	0.28 ^b	0.022 ^b	51.2	0.067 ^b	41.30×10 ^{-5b}	0.049	0.19 ^c	1.88×10 ^{-5b}	0.105 ^b	0.464 ^b	7.55 ^{ab}
Lager	67.9 ^d	0.10 ^b	0.055 ^b	33.0	0.045 ^b	36.99×10 ^{-5b}	0.022	0.14 ^c	10.24×10 ^{-5a}	0.386 ^a	0.178 ^b	5.11 ^{bc}
Lambic	63.6 ^d	1.02 ^a	0.074 ^b	53.3	0.312 ^a	263.73×10 ^{-5ab}	0.014	0.15 ^c	5.45×10 ^{-5ab}	0.109 ^b	3.545 ^a	4.25°
Pilsner	92.7 ^{abc}	0.10 ^b	0.039 ^b	32.4	0.059 ^b	55.73×10 ^{-5b}	0.011	0.09 ^c	3.75×10 ^{-5b}	0.199 ^{ab}	0.251 ^b	5.05 ^{bc}
Stout/Porter	103.5 ^a	0.27 ^b	0.160 ^a	51.9	0.084 ^b	491.71×10 ^{-5a}	0.029	0.38 ^a	13.90×10 ^{-5a}	0.208 ^{ab}	0.428 ^b	4.93 ^{ab}
Mean	83.1	0.30	0.063	45.6	0.096	139.94×10 ⁻⁵	0.025 ^b	0.19	7.31×10 ⁻⁵	0.1.99	0.787	5.65

462 *, ** and *** significance at $p \le 0.05$, 0.01 and 0.001 respectively following one-way ANOVA.

Table 2. Mean mineral composition (mg L⁻¹) and alcohol content (%) in the analyzed beer samples as affected by beer origin place. Different

470 letters mean significant differences ($p \le 0.05$)

Country of origin	Al*	As*	Ba	Ca	Cd	Со	Cr*	Cs***	Cu*	Fe	K***	
Belgium(n=19)	0.13 ^a	0.080^{ab}	0.423	54.8	20.63×10-5	79.77×10-5	0.070 ^a	46.41×10 ^{-5b}	0.633ª	4.073	504.2 ^b	
China(n=4)	0.04 ^b	0.039 ^{bc}	093	35.1	1.23×10-5	13.30×10-5	0.038 ^{ab}	20.58×10 ^{-5b}	0.365 bc	0.252	298.9 ^{cd}	
Czech Republic	0.03 ^b	0.024 ^c	0.155	2.4.1	1.05×10-5	9.95×10 ⁻⁵	0.042^{ab}	80.80×10 ^{-5b}	0.532 ^{abc}	0.198	416.8 ^{bc}	
(n=4)		0.074^{ab}										
Germany(n=13)	0.05 ^b	0.055 ^{bc}	0.219	41.7	2.11×10 ⁻⁵	18.02×10-5	0.051 ^{ab}	35.68×10 ^{-5b}	0.400 ^{bc}	0.579	450.2 ^b	
Holland(n=4)	0.04 ^b	0.061 abc	0.089	29.7	1.95×10 ⁻⁵	19.83×10 ⁻⁵	0.033 ^{ab}	24.30×10 ^{-5b}	0.476 ^{abc}	0.487	506.0 ^{ab}	
Ireland(n=3)	0.03 ^b	0.091 ^a	0.240	55.2	2.63×10 ⁻⁵	18.95×10 ⁻⁵	0.027 ^b	17.20×10-5b	0.232 ^c	0.850	475.3 ^b	
Italy(n=4)	0.17 ^a	0.093 ^a	0.304	44.0	1.50×10-5	20.82×10-5	0.071ª	1616.62×10 ^{-5a}	0.521 ^{abc}	0.843	412.8 ^{bc}	
Mexico(n=7)	0.04 ^b	0.060^{bc}	0.262	50.4	5.57×10-5	22.29×10-5	0.032 ^b	68.30×10 ^{-5b}	0.677 ^a	0.332	239.8 ^d	
UK(n=53)	0.05 ^b	0.088^{a}	0.268	61.5	2.36×10 ⁻⁵	22.29×10-5	0.043 ^{ab}	21.36×10 ^{-5b}	3.49×10 ^{-3c}	0.554	436.5 ^b	
USA(n=14)	0.05 ^b		0.307	38.7	3.66×10 ⁻⁵	28.60×10-5	0.059^{ab}	39.22×10 ^{-5b}	5.85×10 ^{-3ab}	0.489	626.2 ^a	
	0.00		0.507	50.7	5.00/(10	20.00/(10	0.057	37.22.010	5.05 ×10	01.102	020.2	
Country of	Mg**	Mn	Мо	Na**	Ni	Pb	Se***	Sr*	U***	V	Zn	Alcohol content
Country of origin	Mg ^{**}	Mn 0.35		Na**		Pb	Se***	Sr*	\mathbf{U}^{***}	V		content
Country of			Мо		Ni						Zn	
Country of origin Belgium China	Mg ** 83.3 ^b	0.35	Mo 0.070	Na ** 49.7 ^a	Ni 0.111	Pb 94.03×10 ⁻⁵	Se *** 0.017 ^d	Sr * 0.14 ^{ab}	U*** 4.28×10 ^{-5c}	V 0.200	Zn 0.987	content 4.99 ^{ab}
Country of origin Belgium China Czech Republic	Mg ** 83.3 ^b 76.4 ^b	0.35 0.14	Mo 0.070 0.023	Na ** 49.7 ^a 53.2 ^a	Ni 0.111 0.779	Pb 94.03×10 ⁻⁵ 51.75×10 ⁻⁵	Se *** 0.017 ^d 0.058 ^b	Sr * 0.14 ^{ab} 0.23 ^a	U*** 4.28×10 ^{-5c} 1.73×10 ^{-5c}	V 0.200 0.093	Zn 0.987 0.145	content 4.99 ^{ab} 4.82 ^{ab}
Country of origin Belgium China	Mg** 83.3 ^b 76.4 ^b 89.1 ^{ab}	0.35 0.14 0.10	Mo 0.070 0.023 0.019	Na ** 49.7 ^a 53.2 ^a 20.8 ^{ab}	Ni 0.111 0.779 0.547	Pb 94.03×10 ⁻⁵ 51.75×10 ⁻⁵ 53.92×10 ⁻⁵	Se*** 0.017 ^d 0.058 ^b 0.012 ^d	$\begin{array}{c} {\bf Sr}^{*} \\ 0.14^{ab} \\ 0.23^{a} \\ 0.07^{b} \end{array}$	U*** 4.28×10 ^{-5c} 1.73×10 ^{-5c} 1.70×10 ^{-5c}	V 0.200 0.093 0.069	Zn 0.987 0.145 0.234	$\begin{array}{c} \hline \\ 4.99^{ab} \\ 4.82^{ab} \\ 4.00^{b} \end{array}$
Country of origin Belgium China Czech Republic Germany	Mg** 83.3 ^b 76.4 ^b 89.1 ^{ab} 79.5 ^b	0.35 0.14 0.10 0.13	Mo 0.070 0.023 0.019 0.082	Na ** 49.7 ^a 53.2 ^a 20.8 ^{ab} 19.1 ^b	Ni 0.111 0.779 0.547 0.445	Pb 94.03×10 ⁻⁵ 51.75×10 ⁻⁵ 53.92×10 ⁻⁵ 33.61×10 ⁻⁵	Se **** 0.017 ^d 0.058 ^b 0.012 ^d 0.009 ^d	$\begin{array}{c} {\bf Sr}^{*} \\ \hline 0.14^{ab} \\ 0.23^{a} \\ 0.07^{b} \\ 0.09^{b} \end{array}$	U*** 4.28×10 ^{-5c} 1.73×10 ^{-5c} 1.70×10 ^{-5c} 6.30×10 ^{-5bc}	V 0.200 0.093 0.069 0.487	Zn 0.987 0.145 0.234 0.162	$\begin{array}{c} \hline \\ 4.99^{ab} \\ 4.82^{ab} \\ 4.00^{b} \\ 5.34^{ab} \end{array}$
Country of origin Belgium China Czech Republic Germany Holland	Mg** 83.3 ^b 76.4 ^b 89.1 ^{ab} 79.5 ^b 68.5 ^{bc}	0.35 0.14 0.10 0.13 0.09	Mo 0.070 0.023 0.019 0.082 0.032	Na ** 49.7 ^a 53.2 ^a 20.8 ^{ab} 19.1 ^b 20.5 ^{ab}	Ni 0.111 0.779 0.547 0.445 0.345	Pb 94.03×10 ⁻⁵ 51.75×10 ⁻⁵ 53.92×10 ⁻⁵ 33.61×10 ⁻⁵ 25.00×10 ⁻⁵	Se **** 0.017 ^d 0.058 ^b 0.012 ^d 0.009 ^d 0.014 ^d	$\begin{array}{c} {\bf Sr}^{*} \\ \hline 0.14^{ab} \\ 0.23^{a} \\ 0.07^{b} \\ 0.09^{b} \\ 0.05^{b} \end{array}$	U*** 4.28×10 ^{-5c} 1.73×10 ^{-5c} 1.70×10 ^{-5c} 6.30×10 ^{-5bc} 2.22×10 ^{-5c} 7.27×10 ^{-5bc} 42.30×10 ^{-5a}	V 0.200 0.093 0.069 0.487 0.160	Zn 0.987 0.145 0.234 0.162 1.073	$\begin{array}{c} {\rm content} \\ 4.99^{\rm ab} \\ 4.82^{\rm ab} \\ 4.00^{\rm b} \\ 5.34^{\rm ab} \\ 5.58^{\rm ab} \end{array}$
Country of origin Belgium China Czech Republic Germany Holland Ireland	Mg** 83.3 ^b 76.4 ^b 89.1 ^{ab} 79.5 ^b 68.5 ^{bc} 76.4 ^b	0.35 0.14 0.10 0.13 0.09 0.20	Mo 0.070 0.023 0.019 0.082 0.032 0.070	Na** 49.7 ^a 53.2 ^a 20.8 ^{ab} 19.1 ^b 20.5 ^{ab} 21.2 ^{ab}	Ni 0.111 0.779 0.547 0.445 0.345 0.330	Pb 94.03×10 ⁻⁵ 51.75×10 ⁻⁵ 53.92×10 ⁻⁵ 33.61×10 ⁻⁵ 25.00×10 ⁻⁵ 31.57×10 ⁻⁵	Se **** 0.017 ^d 0.058 ^b 0.012 ^d 0.009 ^d 0.014 ^d 0.014 ^d	$\begin{array}{c} {\bf Sr}^{*} \\ \hline 0.14^{ab} \\ 0.23^{a} \\ 0.07^{b} \\ 0.09^{b} \\ 0.05^{b} \\ 0.12^{ab} \end{array}$	U*** 4.28×10 ^{-5c} 1.73×10 ^{-5c} 1.70×10 ^{-5c} 6.30×10 ^{-5c} 2.22×10 ^{-5c} 7.27×10 ^{-5bc} 42.30×10 ^{-5a} 11.76×10 ^{-5b}	V 0.200 0.093 0.069 0.487 0.160 0.246	Zn 0.987 0.145 0.234 0.162 1.073 0.357	$\begin{array}{c} {\rm content} \\ 4.99^{ab} \\ 4.82^{ab} \\ 4.00^{b} \\ 5.34^{ab} \\ 5.58^{ab} \\ 5.10^{ab} \end{array}$
Country of origin Belgium China Czech Republic Germany Holland Ireland Italy	Mg** 83.3 ^b 76.4 ^b 89.1 ^{ab} 79.5 ^b 68.5 ^{bc} 76.4 ^b 72.6 ^{bc}	0.35 0.14 0.10 0.13 0.09 0.20 0.11	Mo 0.070 0.023 0.019 0.082 0.032 0.070 0.036	Na** 49.7 ^a 53.2 ^a 20.8 ^{ab} 19.1 ^b 20.5 ^{ab} 21.2 ^{ab} 15.7 ^b	Ni 0.111 0.779 0.547 0.445 0.345 0.330 0.667	Pb 94.03×10 ⁻⁵ 51.75×10 ⁻⁵ 53.92×10 ⁻⁵ 33.61×10 ⁻⁵ 25.00×10 ⁻⁵ 31.57×10 ⁻⁵ 76.98×10 ⁻⁵	Se **** 0.017 ^d 0.058 ^b 0.012 ^d 0.009 ^d 0.014 ^d 0.014 ^d 0.019 ^{cd}	$\begin{array}{c} {\bf Sr}^{*} \\ \hline 0.14^{ab} \\ 0.23^{a} \\ 0.07^{b} \\ 0.09^{b} \\ 0.05^{b} \\ 0.12^{ab} \\ 0.23^{a} \end{array}$	U*** 4.28×10 ^{-5c} 1.73×10 ^{-5c} 1.70×10 ^{-5c} 6.30×10 ^{-5bc} 2.22×10 ^{-5c} 7.27×10 ^{-5bc} 42.30×10 ^{-5a}	V 0.200 0.093 0.069 0.487 0.160 0.246 0.365	Zn 0.987 0.145 0.234 0.162 1.073 0.357 0.159	$\begin{array}{c} {\rm content} \\ 4.99^{ab} \\ 4.82^{ab} \\ 4.00^{b} \\ 5.34^{ab} \\ 5.58^{ab} \\ 5.10^{ab} \\ 4.95^{ab} \end{array}$
Country of origin Belgium China Czech Republic Germany Holland Ireland Italy Mexico	Mg** 83.3 ^b 76.4 ^b 89.1 ^{ab} 79.5 ^b 68.5 ^{bc} 76.4 ^b 72.6 ^{bc} 57.3 ^c	0.35 0.14 0.10 0.13 0.09 0.20 0.11 0.10	Mo 0.070 0.023 0.019 0.082 0.032 0.070 0.036 0.038	Na** 49.7 ^a 53.2 ^a 20.8 ^{ab} 19.1 ^b 20.5 ^{ab} 21.2 ^{ab} 15.7 ^b 53.1 ^a	Ni 0.111 0.779 0.547 0.445 0.345 0.330 0.667 0.431	Pb 94.03×10 ⁻⁵ 51.75×10 ⁻⁵ 53.92×10 ⁻⁵ 33.61×10 ⁻⁵ 25.00×10 ⁻⁵ 31.57×10 ⁻⁵ 76.98×10 ⁻⁵ 31.03×10 ⁻⁵	Se *** 0.017 ^d 0.058 ^b 0.012 ^d 0.009 ^d 0.014 ^d 0.014 ^d 0.019 ^{cd} 0.042 ^{bc}	$\begin{array}{c} \mathbf{Sr}^{*} \\ \hline 0.14^{ab} \\ 0.23^{a} \\ 0.07^{b} \\ 0.09^{b} \\ 0.05^{b} \\ 0.12^{ab} \\ 0.23^{a} \\ 0.22^{a} \end{array}$	U*** 4.28×10 ^{-5c} 1.73×10 ^{-5c} 1.70×10 ^{-5c} 6.30×10 ^{-5c} 2.22×10 ^{-5c} 7.27×10 ^{-5bc} 42.30×10 ^{-5a} 11.76×10 ^{-5b}	V 0.200 0.093 0.069 0.487 0.160 0.246 0.365 0.294	Zn 0.987 0.145 0.234 0.162 1.073 0.357 0.159 0.189	$\begin{array}{c} {\rm content} \\ 4.99^{ab} \\ 4.82^{ab} \\ 4.00^{b} \\ 5.34^{ab} \\ 5.58^{ab} \\ 5.10^{ab} \\ 4.95^{ab} \\ 4.53^{b} \end{array}$

472 *, ** and *** significance at $p \le 0.05$, 0.01 and 0.001 respectively

Table 3. As, Mg, Na and V concentration as affected by container. Different lower case

	Container	As (mg L ⁻¹)***	Mg (mg L ⁻¹)**	Na (mg L ⁻¹)**	V (mg L ⁻¹)**
	Barrel	0.006 ^b	7.8.1 ^{ab}	82.7ª	0.014 ^b
	Bottle	0.079^{a}	80.1ª	38.9 ^b	0.264 ^b
	Can	0.071 ^a	605 ^b	3670 ^b	0.441 ^a
478	** and *** signifi	cance at $p \le 0.01$ and 0.	001 respectively		
479					
480					
481					
482					
483					
484					
485					
486					
487					
488					
489					
490					
491					
492					
493					
494					
495					
496					

477 letters in the same column mean significant differences ($p \le 0.05$)