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Synopsis 

An expression is derived for the Van der Waals force between two semi-infinite bodies with 
small surface irregularities. Calculations are given both for the plane-plane and the plane-sphere 
configuration. The value of the correction from the surface irregularities upon the Van der Waals 
force is shown to amount easily to lo-50%. 

1. Introduction. During the last decades the subject of Van der Waals forces 

between macroscopic bodies has drawn much attention both from the theoretical 

and experimental point of view. For technical reasons one usually measures 

attractive forces which act between two semi-infinite bodies facing each other with 

a plane and a spherical surface, respectively. To make comparison possible between 

theory and experiment the theories also are concentrated on these configurations. 

The relevance of the comparison however is somewhat influenced by the fact that 

the theories deal with ideal surfaces, while experiments are carried out with real 

surfaces, which are not free from irregularities. 

The present paper will discuss the effect of irregularities on the comparison 

between theory and experiment. We shall discuss both a configuration of two 

nonideal bodies facing each other with plane-parallel surfaces and a configuration 

of a spherical surface facing a plane one. 

2. Plane-parallel surfaces. The two plane surfaces are taken to be mutually 

parallel at a distance d. We shall start the calculation with one surface being ideally 

flat while the other having a roughness characterised by (CT)*, which stands for 
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the r.m.s. of the deviations 5 from an ideal flat plane defined such that the average 

deviation is zero ($ = 0, see fig. 1). 

Starting with the nonretarded situation we shall use the well-known expression 

for the interaction energy U,,(z) of a single harmonic oscillator with a semi-infinite 

body consisting of the same kind of oscillators 

U,(z) = - $iAo@2 (ljZ3)) (1) 

in which z is the distance of the oscillator to the plane surface, g the oscillator 

density, o( the static polarizability and cu,, stands for the resonance frequency of 

the oscillator. In this expression the forces between oscillators are assumed to be 

d 

Fig. 1.’ Van der Waals force in the plane-plane configuration. 

additive and the limitation to the nonretarded situation can be expressed by 

wOz 4 c. The correction to the interaction energy due to the irregularities is con- 

sidered to be made up of contributions from the volume elements dx dy dz near 

the irregular surface, which are to be added or substracted when 5 is negative or 

positive, respectively. For each of these contributions we use dU(z) = U,,(z) 

x Q dx dy dz. The contribution U,(d)/L2 of the irregularities to the interaction 

energy per unit area is given by 

iLJ2 +L/2 

Uc(d)/L2 = -$xtto~,,~~o;~ (1 /L2) j dx r 
-Lj2 

dy ; ( l/z3) dz, 
-L/2 d+5&~) 

(2) 

in which L stands for the dimension of the surface area considered and [ (x, y) 

represents the deviation as a function of the position (x, y) on the ideal plane. 

Carrying out the integration over z and using the approximation 5 6 d, eq. (2) 

becomes 

Uc(d)/L2 = - ~m%wo~2a2 (l/d4) (c (x, y))’ , (3) 

where the averaging is performed over the surface area L. Irregularities on the 

opposite surface can simply be taken into account by repeating the procedure 
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sketched above. By differentiating we then get for the contribution to the 

Waals force per unit area due to the irregularities 

F,(d)/L2 = $&2&Lu2 (l/P) (E + Z), 
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where 5, (x, y) and c2 (x, v) represent the irregularities on the two surfaces. 

This expression for F, is to be compared with an expression for the unperturbed 

Van der Waals force between the semi-infinite half-spaces. As an example we shall 

use the expression for the unperturbed force obtained by summing the pair inter- 

actions over the two media2) 

F(d)/LZ = &rfiW,@%~ (l/P). (3 

Comparing this result to (4) we get 

FJd)/F(d, = 6 (l/d’) (z + 2). (6) 

For the retarded case where o,d g c a similar calculation using the additive 

part of the equation of Nijboer and Renne 6* ‘) for the interaction between a single 

oscillator and a semi-infinite medium we get 

FC(d)/L2 = ~hqj2m2 (1/d6) (2 + 2). (7) 

Comparing this with the expression for the unperturbed force6, ‘) we get 

F,(d)/F(d) = 10 (l/d’) (z + 2). (8) 

Fig. 2. The plane-sphere configuration. 

3. Plane-sphere conjiguration. Actual measurements, however, are usually not 

performed with bodies facing each other with plane surfaces but with a body with 

a plane surface facing a spherical body. We shall start the discussion of the in- 

fluence of irregularities in this case by considering the nonretarded situation. In 
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order to make possible the application of eq. (3) we shall replace thespherical 

surface by a combination of plane rings as shown in fig. 2. The surface area 

referred to as L2 in eq. (4) we therefore replace by 2xR2 sin 0 de. When d,, is the 

shortest distance between plane and sphere, the distance between one of the rings 

and the plane is given by d = do + R (1 - cos 0). When 2 and 2 again represent 

the irregularities of the surface of the sphere and plane, respectively, get by sum- 

mation over the rings and using the restriction R (1 - cos 0,) 9 do (which is 

commonly satisfied in practice): 

F&d,) = &c2hw,,&xZR (l/d:) (g f 2). 

With the expression of the unperturbed force3) we get 

~&,)/F(d,,) = 3 (l/d;) (z + z) . 

The same procedure in the retarded case leads to 

(9) 

(10) 

Fc(do) = ~xhcy ‘aZR (l/d:) (i? + z), 

which together with the unperturbed force results in 

(11) 

~&G/J+&,) = 6 (l/d;) (z + z). (12) 

4. Conclusion. The contribution of the irregularities to the Van der Waals force 

is most relevant for the nonretarded situation. For example in certain measure- 

ments by Tabor and Winterton4) and by Israelachvili and Tabor’) in which the 

distance is smaller than 10 nm, it follows from eq. (6) that surface irregularities 

as small as 2 nm give rise to an effect of at least 50 percent in the plane-plane and 

25 percent in the plane-sphere situation. In the retarded case for distances greater 

than 20 nm similar irregularities give according to eq. (8) rise to a contribution 

smaller than 15 percent in the plane-plane and 10 percent in the plane-sphere 

situation. 

1) London, F., Z. phys. Chemie (B) 11 (1930) 222. 

2) De Boer, J.H., Trans. Faraday Sot. 32 (1936) 10. 

3) Hamaker, H.C., Physica 4 (1937) 1058. 

4) Tabor, D. and Winterton, R.H.S., Proc. Roy. Sot. Al32 (1969) 435. 

5) Israelachvili, J.N. and Tabor, D., Proc. Roy. Sot. A331 (1972) 19. 

6) Renne, M. J., Physica 56 (1971) 125. 

7) Nijboer, B.R. A. and Renne, M. J., Chem. Phys. Letters 2 (1968) 35. 

REFERENCES 


