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The Influence of Surface
Roughness on Nucleate Pool
Boiling Heat Transfer
The effect of surface roughness on pool boiling heat transfer is experimentally explored
over a wide range of roughness values in water and Fluorinert

™
FC-77, two fluids with

different thermal properties and wetting characteristics. The test surfaces ranged from a

polished surface (Ra between 0.027 �m and 0.038 �m) to electrical discharge ma-

chined (EDM) surfaces with a roughness �Ra� ranging from 1.08 �m to 10.0 �m. Dif-

ferent trends were observed in the heat transfer coefficient with respect to the surface
roughness between the two fluids on the same set of surfaces. For FC-77, the heat
transfer coefficient was found to continually increase with increasing roughness. For
water, on the other hand, EDM surfaces of intermediate roughness displayed similar heat
transfer coefficients that were higher than for the polished surface, while the roughest
surface showed the highest heat transfer coefficients. The heat transfer coefficients were
more strongly influenced by surface roughness with FC-77 than with water. For FC-77,
the roughest surface produced 210% higher heat transfer coefficients than the polished
surface while for water, a more modest 100% enhancement was measured between the
same set of surfaces. Although the results highlight the inadequacy of characterizing

nucleate pool boiling data using Ra, the observed effect of roughness was correlated

using h�Ra
m as has been done in several prior studies. The experimental results were

compared with predictions from several widely used correlations in the literature.
�DOI: 10.1115/1.3220144�
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1 Introduction

Surface roughness has long been known to have a significant
impact on the boiling process. In 1936, Jakob �1� reported that
both surface roughness and the level of corrosion and oxidation of
the surface dramatically influence the boiling curve. At the time,
the bubble incipience process was not well understood. By the late
1950s, one of the prevailing theories was that bubbles emanate
from cavities containing entrapped vapor �2�. The experiments by
Clark et al. �3� provided strong evidence for the theory that
bubbles do indeed emanate from cavities and other surface imper-
fections. The theoretical analysis by Bankoff �4� further substan-
tiated the vapor entrapment theory by showing that only unwetted
cavities can serve as nucleation sites, and that only cavities of a
certain shape can serve as vapor traps �5�. The role of cavities was
further elucidated by Griffith and Wallis �6�, who showed that the
cavity radius determines the superheat required for bubble nucle-
ation in a uniformly superheated liquid, with larger cavities requir-
ing lower wall superheats. Hsu �7� extended this analysis to in-
clude the effects of the thermal boundary layer and showed that
only a certain range of cavity sizes can serve as active nucleation
sites.

The realization of the importance of cavities spurred interest in
using roughened surfaces as a means of increasing the number of
nucleation sites and size of cavities, thus enhancing boiling heat
transfer. Several investigations into the effect of surface roughness
were carried out in the 1950s and 1960s. Corty and Foust �8�
investigated a variety of copper and nickel surfaces prepared with
different levels of polishing. They found that the surface rough-
ness not only affected the superheat required for incipience but
also the slope of the boiling curve. Rougher surfaces resulted in

lower superheats for a given heat flux, which was attributed to the

presence of larger unwetted cavities on the rougher surfaces.

Similar conclusions were reached by other researchers: Kurihara

and Myers �9�, who studied a variety of fluids boiling from copper

surfaces with differing levels of polish; Hsu and Schmidt �10�,
who studied the boiling of water from stainless steel surfaces; and

Marto and Rohsenow �11� who studied the boiling of sodium from

surfaces prepared using a variety of different techniques. Beren-

son �12� studied the boiling of n-pentane on surfaces of varying

roughness and found large variations in the heat transfer coeffi-

cient, of up to 600%, due to the differences in surface character-

istics.

The increased understanding of the role of surface condition

has also led to commercially available enhanced surfaces for im-

proved boiling performance. Many of these boiling enhancements

are designed to create re-entrant-type cavity structures which are

more difficult for the liquid to fully wet than simple cavity shapes

and, based on the analysis of Griffith and Wallis �6�, are believed

to serve as more stable nucleation sites. Therefore, these enhanced

surface geometries typically lead to better boiling performance

compared with roughened surfaces produced by conventional ma-

chining processes. A wide variety of industrial applications, how-

ever, still utilize surfaces produced using conventional machining

processes and these surfaces remain the focus of the present work.

Good reviews of enhanced boiling surfaces have been provided by

Webb �13,14�.
For surfaces produced using conventional manufacturing tech-

niques, several researchers have noted the inability of commonly

used surface roughness parameters, such as the rms roughness

�Rq� or average roughness �Ra�, to explain the variation in ob-

served nucleate boiling heat transfer characteristics. Berenson �12�
noted that the rms surface roughness itself was not the best indi-

cator of the resulting performance since lapped surfaces had much

higher heat transfer coefficients than rougher surfaces produced
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with emery paper. Bier et al. �15� reached a similar conclusion
after studying the boiling of R11 and R115 from surfaces prepared
using various techniques over a range of pressures. Chowdhury
and Winterton �16� suggested that rougher surfaces would yield
higher nucleate pool boiling heat transfer coefficients if a consis-
tent method of surface preparation is used, but the results from
other investigators have not shown such a trend. Vachon et al. �17�
investigated boiling from unidirectionally polished and chemically
etched surfaces of varying roughness in water. The results from
the polished surfaces indicated that roughening the surfaces only
improved the boiling performance up to a certain point. The best

heat transfer performance was obtained with an 1 �m rms surface
roughness, and further roughening of the surface yielded no addi-
tional benefit. The results from the chemically etched surfaces
were more varied and showed the inadequacy of using rms rough-
ness to characterize boiling surfaces.

Several researchers have also noted an apparent maximum heat
transfer coefficient with respect to surface roughness as observed
by Vachon et al. �17�. Kravchenko and Ostruovskiy �18� studied
various organic fluids and nitrogen boiling from stainless steel
tubes. Their results indicated that vertical tubes with a roughness

average �Ra� greater than 0.58 �m do not experience any further

improvement in the heat transfer coefficient. Grigoriev et al. �19�
studied the boiling of helium for surfaces of varying roughness
and also noted that once a surface was sufficiently rough, addi-
tional roughening yielded no benefit. Many other researchers,
however, have not observed such an apparent maximum heat
transfer coefficient, and this variety of results may simply indicate
the inadequacy of correlating nucleate boiling heat transfer data
using surface roughness parameters.

Recognizing the deficiencies of characterizing boiling surfaces
with surface roughness parameters, several researchers have at-
tempted to characterize the surfaces in a more mechanistic fashion
by measuring cavity sizes and shapes using optical or electron
microscopy �20–23�. Using an optical microscope, Wang and Dhir
�23,24� characterized the cavity structures on polished copper sur-
faces and developed a wetting criterion for determining the active
cavity size distribution. Their theoretical analysis agreed well with
experimental results. However, such an approach is only tractable
on very smooth surfaces on which the number of cavities is rela-
tively small. Attempts to characterize stochastically rough sur-
faces have been met with marginal success. Qi et al. �25� and
Luke �26,27� have developed methods for determining active cav-
ity size distributions from 3D profilometry data of boiling sur-
faces. However, the simplistic treatment of the surface structure
and the wetting phenomenon used in the analyses has limited the
utility of such predictions.

While numerous investigators have reported on the inefficacy
of correlating nucleate boiling data using surface roughness pa-
rameters, some researchers have reported success in correlating
the general trend of increasing heat transfer coefficients with in-
creased roughness. Stephan �28�, in his investigation of boiling of
R11 from copper surfaces of varying roughness, found that the
influence of surface roughness on the heat transfer coefficient at a

fixed heat flux could be represented with h�Rp,old
0.133, where Rp,old is

the German “Glättungstiefe” defined by DIN 4762/1:1960. Da-
nilova and Bel’skii �29� found a somewhat different dependence

of h�Rz
0.2 when studying R12 and R113 boiling from tube sur-

faces prepared using various techniques. Both these studies
�28,29� were conducted at low reduced pressure. Nishikawa et al.
�30,31� extended the study of roughness to a wide range of re-
duced pressure and found that the effect of surface roughness on
the heat transfer coefficient diminishes as the pressure approaches

the critical pressure. They found that the relation h�R
p,old

0.2�1−Pr� best
represented their experimental data.

A relationship of the form h�Rm does not adequately explain
many of the previously discussed anomalies when correlating
nucleate pool boiling data using surface roughness parameters.
Nonetheless, it does provide a simple framework for incorporating

the influence of surface roughness into nucleate pool boiling cor-
relations; and indeed several correlations have accounted for the
surface roughness effect using such relationships, including the
popular Cooper �32,33� and Gorenflo �34� correlations.

Due to the importance of accurately accounting for the influ-
ence of surface roughness when correlating nucleate boiling data,
and given the wide variety of conclusions that have been reached
in previous investigations, further research is warranted. The goal
of the present work is to provide additional insights into the role
of surface roughness on nucleate pool boiling with an experimen-
tal exploration using two fluids with widely differing thermal
properties and wetting characteristics: water and FC-77, a perflu-
orinated dielectric fluid. Widely used nucleate pool boiling corre-
lations are evaluated against the experimental results. In particu-
lar, the capability of the correlations to account for the effect of
surface roughness is of prime interest in this study.

2 Experimental Setup

2.1 Test Facility. The pool boiling test facility is shown in

Fig. 1�a�. The 25.4�25.4 mm2 test surface is prepared on top of
an aluminum test block. Heat is supplied through 12 cartridge
heaters embedded in the test block. The arrangement of the car-
tridge heaters is shown in Fig. 1�b�. Numerical simulations were
performed to ensure that the cartridge heaters supplied heat uni-
formly to the test surface. Six thermocouple taps were drilled into
the test block at two different vertical and three horizontal loca-
tions as shown in Fig. 1. Surface temperature measurements were
determined by extrapolating the thermocouple readings. Type-T,
0.8 mm diameter sheathed thermocouples were used. All thermo-

couples were referenced to 0°C using a dry-block ice point ref-
erence chamber and the thermocouples were calibrated using a
dry-block thermocouple calibration unit. The estimated uncer-

tainty in the thermocouple measurements is 0.3°C, while the es-
timated uncertainty in the extrapolated surface temperature ranges

from 0.3°C at low heat fluxes to 0.6°C at higher heat fluxes.
A high temperature thermoplastic, PEEK, was chosen as an

insulation material due to its combination of low thermal conduc-

tivity ��0.28 W /m K�, high temperature resistance �up to

Fig. 1 „a… Schematic of pool boiling facility and „b… top view of
test block showing the locations of thermocouples and car-
tridge heaters
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250°C�, and good machinability. A ceramic �alumina silicate�
sheath served as the insulation material around the hottest portion

of the test block. The liquid pool was enclosed by clear polycar-

bonate walls to allow for direct observation of the boiling process.

A thermocouple located in the pool �see Fig. 1�a�� was used to

measure the liquid pool temperature. Cartridge heaters installed

inside the pool provided additional heat to maintain the liquid at

the saturation temperature. Vapor generated from the boiling pro-

cess flowed into a Graham-type condenser. The vapor inside the

condenser was cooled and condensed using water from a chiller,

with the condensate draining back into the pool, and the outlet

open to the atmosphere in order to maintain atmospheric pressure

inside the pool. Since, under high vapor loads, the condenser can

become clogged with liquid, a pressure transducer monitors the
pool pressure to ensure that it is indeed at atmospheric pressure
throughout the experiments.

Establishing an effective seal between the test piece and the
insulation proved to be difficult. Any gap or crack in this interface
can result in unwanted nucleation sites. A solution to this problem
was devised using an epoxy sealing technique. A very slight
chamfer in the insulation block around the test surface formed a
groove which provided space for a bead of sealant �as shown in
the inset of Fig. 1�a��. A small bead of silicone RTV sealant was
first applied to the bottom of the groove. A low-viscosity, slow-
cure epoxy filled the remaining portion of the groove. The RTV
prevents the epoxy from wicking down the clearance gap between
the test piece and insulation, thus allowing for easier removal of
the test piece. Although undesirable nucleation sites were still
occasionally detected with this technique, repeated testing indi-
cated that these occasional unwanted nucleation sites have little
effect on the results obtained.

The surface heat flux was determined by correcting the electri-
cal power input by the amount of estimated heat loss. Although
the axial pairs of thermocouples in the aluminum block could be
used to measure the surface heat flux directly, this results in un-
acceptable errors in the measurement due to tolerances in the
placement of the thermocouples and the thermocouple measure-
ment uncertainties. Therefore, a 3D numerical simulation was per-
formed to estimate the heat losses. The PEEK and ceramic insu-
lation as well as the test block were included in the model and
boundary conditions representative of the experimental test con-
ditions were applied �uniform boiler surface temperature, uniform
heat generation region for the cartridge heaters, and natural con-
vection boundary conditions for the exterior surfaces�. The nu-
merically estimated heat losses were in reasonable agreement with
the heat losses estimated based on thermocouple readings when
considering the errors associated with this estimate. The heat
losses were found to be less than 15% of the electrical power

input for moderate to high heat fluxes �q�120 kW /m2�.

2.2 Test Surfaces. A total of six test pieces of varying surface
roughness were fabricated. Separate test pieces were manufac-
tured with a polished surface for use in the water and FC-77
experiments. In both cases, the polishing was achieved using suc-
cessively finer grits of sandpaper. The other test pieces were
manufactured with surfaces roughened to varying degrees. The
surfaces were first fly-cut and then roughened using ram-type
electrical discharge machining �EDM�. In the EDM process, the
machine parameters can be controlled to produce surfaces with
different roughness. Enough surface material was removed with
EDM so that the final roughness was solely due to the EDM
process rather than the original machining operation.

The surface roughness of the test surfaces was measured with
either a probe-type surface profilometer or an optical profilometer.
Several scans were performed in different locations on each sur-

face. The roughness average �Ra�, RMS roughness �Rq�, maxi-

mum profile peak height �Rp�, and five-point average maximum

height �Rz� were evaluated according to ASME B46.1-1995 stan-

dards and are reported in Table 1. No single roughness parameter

has been shown to be superior for characterizing boiling surfaces
and several surface parameters are being reported simply to allow
an easier comparison to previous studies. However, it should be
noted that the definition of some of these surface parameters has

changed over time. For example, Rp currently has congruent defi-
nitions in the ASME, ISO, and DIN standards, although the cur-

rent definition differs from Rp,old in DIN 4762/1:1960, which has
been used by Stephan �28� among many other researchers. For the

remainder of this paper, the roughness average �Ra� will be used

to identify the different surfaces under study.
The surface topography of four of the surfaces, as measured

with the optical profilometer, is shown in Fig. 2. The polished
surface �Fig. 2�a�� is seen to be quite smooth with a few small
cavities distributed across the surface. EDM tends to form an
irregular pattern of cavities on the surface �Figs. 2�b�–2�d��. The
cavities are larger and more numerous on the EDM surfaces com-
pared with the polished surface. The EDM surfaces with larger
roughness form larger cavities than those with smaller RMS
roughness.

2.3 Experimental Procedure. Deionized water and FC-77
were used as the test fluids; relevant thermophysical properties of

the FC-77 are as follows: Tsat�100.3°C, �=1592 kg /m3, �
=4.42�104 kg /m s, kl=0.057 W /m K, h fg=89 kJ /kg, cp,l

=1.170 kJ /kg K, and �=0.0057 N /m �35,36�. The liquid was
degassed by boiling for approximately 2 h prior to each experi-
ment, either using the immersed cartridge heaters in the pool �for
the FC-77 experiments� or in an external degassing reservoir �for
the water experiments�. During the experiments, heat losses from
the pool required additional heat to be supplied through the im-
mersed cartridge heaters to maintain the liquid at the saturation
temperature. To mitigate undesirable convective currents induced
by the immersed heaters, the power setting for the cartridge heat-
ers was maintained as low as possible while maintaining the pool

to within 0.5°C of the saturation temperature. At high heat fluxes,
the pool cartridge heaters were turned off as the test piece pro-
vided enough heat by itself to maintain the desired pool
temperature.

The thermocouple readings were recorded with a data acquisi-
tion system. All reported values of the surface temperature repre-
sent the average over an interval of at least 1 min, after the surface
temperature had reached equilibrium. Experiments were con-
ducted both in order of increasing and decreasing heat flux to
check for boiling hysteresis. The boiling process was observed
through the front polycarbonate wall using a high-speed camera
system with a macro lens. Illumination was provided by two fiber-
optic illuminators and a halogen light source in the water experi-
ments. A green laser light sheet served as the illumination source
for the FC-77 experiments as this light source provided higher
intensity and more uniform illumination that was necessary to
resolve the smaller and more numerous vapor bubbles observed in
the FC-77 experiments compared with the experiments in water.
Images were recorded at frame rates between 8000 and 12,000
fps.

Table 1 Surface roughness measurements

Surface preparation

Surface roughness parameters

Ra

��m�
Rq

��m�
Rp

��m�
Rz

��m�

Polished �water� 0.038 0.062 0.81 0.58
Polished �FC-77� 0.027 0.039 0.18 0.35
EDM 1.08 1.37 6.09 8.24

2.22 2.81 12.0 16.7
5.89 7.37 24.5 37.1

10.0 12.5 32.4 56.5
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3 Experimental Results

The boiling curves for water are shown in Fig. 3. The results
are shown for data obtained in order of increasing heat flux �i.e.,
traversing “up” the boiling curve�. As seen in Fig. 3�a�, the rough-

est EDM surface �10.0 �m� resulted in the lowest superheat at a

given heat flux while the polished test piece �0.038 �m� was

associated with the highest superheat. The other EDM test sur-

faces of intermediate roughness �1.08 �m, 2.22 �m, and

5.89 �m� performed similarly, resulting in lower superheats than
the polished test piece but higher superheats than the roughest

EDM surface. The 5.89 �m surface had slightly higher super-

heats than the 1.08 �m and 2.22 �m surfaces at lower heat
fluxes but the results show negligible difference in superheat at
higher heat fluxes. Boiling incipience occurred at a superheat of

approximately 5°C for the roughest EDM surface �10.0 �m�,
7°C for the other EDM surfaces �1.08 �m, 2.22 �m, and

5.89 �m�, and 11°C for the polished surface. This may be attrib-
uted to the rougher surfaces having larger active cavity sizes,
which result in lower wall superheats at incipience. The heat
transfer coefficients show a similar trend �Fig. 3�b��. The roughest

EDM surface achieved the highest heat transfer coefficient for a

given heat flux while the polished test piece resulted in the lowest.

The 1.08 �m, 2.22 �m, and 5.89 �m surfaces showed approxi-

mately a 60% improvement in the heat transfer coefficient over

the polished surface at a given heat flux, while the 10.0 �m EDM

surface provided approximately a 100% improvement.

As discussed earlier, several researchers have concluded that

once a surface is sufficiently rough, there is no benefit to addi-

tional roughening �17–19�. If the 10.0 �m surface is excluded,

the current study would support this conclusion as there is no

additional enhancement beyond Ra=1.08 �m. It is possible that if

the roughness were increased significantly in the past studies, a

trend similar to the findings in the current study may have held

true. However, it is currently unclear why the 10.0 �m surface

performs markedly better than the other EDM surfaces �in re-

peated tests�, and it is difficult to conclusively address this issue.

The roughest EDM surface had a lower incipience superheat and

higher heat transfer coefficients than the other EDM surfaces. The

surface area in contact with the fluid for the 10.0 �m EDM sur-

face, estimated from the optical profilometer data, was only ap-

Fig. 2 Surface topography of test surfaces over an area of 400Ã300 �m2 as measured by an optical
profilometer: „a… 0.038 �m polished surface, „b… 1.08 �m EDM surface, „c… 2.22 �m EDM surface,
and „d… 5.89 �m EDM surface

Fig. 3 Boiling curves for water: „a… heat flux versus wall superheat and „b… heat transfer coefficient versus heat flux
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proximately 1% greater than for the 5.89 �m surface. Therefore,
a surface area enhancement does not explain the higher heat trans-

fer coefficients observed. It appears that the 10.0 �m EDM sur-
face has larger active cavities and a higher active cavity density
than the other EDM surfaces. These results, as other researchers
have concluded, highlight the inadequacy in using standard sur-
face roughness parameters to characterize boiling surfaces.

The boiling curves for FC-77 are shown in Fig. 4. The results
are shown for data obtained in order of decreasing heat flux �i.e.,
traversing “down” the boiling curve�. Hysteresis effects �i.e., com-
parison of data obtained while traversing “up” the boiling curve
versus “down” the curve� are discussed later in this section. Un-
like the results in water, a trend of continuously increasing heat
transfer coefficients with respect to surface roughness, for a given
heat flux, is observed in the FC-77 experiments. There also ap-
pears to be a larger dependence of heat transfer coefficient on
surface roughness for FC-77 than for water. The improvements in

heat transfer coefficient range from 150% for the 1.08 �m sur-

face to 210% for the 10.0 �m surface above the values obtained
for the polished surface, at a fixed heat flux. The differences in the
observed trends in the heat transfer coefficient between water and
FC-77 may be attributed to the differences in wetting behavior of
the two fluids as well as the cavity size distribution presented by
the surfaces. Since FC-77 is more highly wetting than water,
smaller cavities are preferred for nucleation. For instance, it is

possible that the 1.08 �m and 5.89 �m surfaces have a similar
number of the larger cavities that cause nucleation in water, yet

the 5.89 �m surface may have a greater number of the smaller
cavities that cause nucleation in FC-77. However, evaluation of
the surfaces for cavity size distribution is not straightforward even
when detailed 3D surface profiles are available, and the reasons
for the observed differences between water and FC-77 need fur-
ther study.

The value of critical heat flux, depicted with an � in Fig. 4, was

experimentally determined for the polished, 1.08 �m, and

2.22 �m surfaces in FC-77. It can be seen in Fig. 4�b� that the
boiling curves tend to flatten out as critical heat flux is ap-
proached, as is most apparent with the polished surface. The pol-

ished surface exhibited a critical heat flux of 137 kW /m2, while
higher and nearly identical values of critical heat flux of 189 and

188 kW /m2 were observed for the 1.08 �m and 2.22 �m EDM
surfaces, respectively, showing an almost 40% improvement. Due

to the limit on the condenser capability with respect to maximum

vapor generation rates, the experiments were not run to critical

heat flux values with the two roughest surfaces for FC-77 and for

any of the surfaces in water.

Additional experiments were conducted to check for boiling

hysteresis �see Fig. 5�. For water �Fig. 5�a��, the roughest EDM

test piece showed no discernible hysteresis, with the results ob-

tained during increasing �q↑� and decreasing �q↓� heat flux being

nearly identical. However, some extent of hysteresis was observed

for the polished test piece in water. At the incipience heat flux

��15 kW /m2�, the wall superheat is approximately 10.8°C in

the direction of increasing heat flux �q↑�, while it was only 9.5°C

for decreasing heat flux �q↓�. The maximum disparity in the su-

perheat between the increasing and decreasing curves occurs at a

heat flux of 2.0 W /cm2, corresponding to a temperature over-

shoot of 2.3°C. Hysteresis has generally not been reported in the

literature for water at atmospheric pressure, although such effects

have been observed for water at subatmospheric pressures �37�.
Large hysteresis effects on smooth surfaces have been widely

reported for FC fluids �38–40� and highly wetting fluids in general

�8,41�. Accordingly, a large temperature overshoot of 16.8°C was

observed for the polished surface �see Fig. 5�b��. The EDM sur-

faces also exhibit noticeable hysteresis effects with FC-77. A

maximum temperature overshoot of 16.2°C was measured for the

1.08 �m EDM surface, which is comparable to the measured

overshoot for the polished surface, although much lower surface

temperatures are obtained with the EDM surface. The 10.0 �m

EDM surface had a much reduced, although still significant, tem-

perature overshoot of 5.6°C. It should also be noted that past

boiling history has been shown to have a strong influence on the
observed hysteresis �8,38,42�, although this has not been studied
in detail in the present work.

Photographs of the boiling process taken with the high-speed
camera system are shown in Fig. 6 for water and in Fig. 7 for
FC-77. At low heat fluxes close to the incipience heat flux

�50 kW /m2 for water and 20 kW /m2 for FC-77 as seen in Figs.
6 and 7, respectively�, significantly more active nucleation sites
can be observed in the roughened EDM surface relative to the

polished surface. Furthermore, the 5.89 �m EDM surface has a
smaller bubble departure diameter and a higher bubble emission
frequency than the polished surface. The reasons for the differ-

Fig. 4 Boiling curves for FC-77: „a… heat flux versus wall superheat and „b… heat transfer coefficient versus heat flux
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ences in bubble departure size for the different surfaces were ex-
plained by Hatton and Hall �43�. Hatton and Hall considered all of
the forces acting on a bubble during the growth process. For small
cavity sizes, the bubble departure size is mainly determined by a
balance between the buoyancy and the dynamic inertial forces. As
the cavity size increases, the inertial forces decrease and the
bubble departure diameter decreases, which explains the de-
creased bubble diameters from the EDM surfaces. For large cavi-
ties, a balance between buoyancy and surface tension forces de-
termines the departure size.

At higher heat fluxes, the sizes of bubbles issuing from the

smooth surface are similar to those issuing from the roughened

surface due to a merging of bubbles from adjacent nucleation

sites. This is most clearly seen in Fig. 6 at a heat flux of

100 kW /m2 for water and in Fig. 7 at a heat flux of 80 kW /m2

for FC-77. As the heat flux is further increased, vapor slugs and

columns are formed, as can be observed in the last row of photo-

graphs in Fig. 6. For water at 210 kW /m2, it is still apparent that

the roughened surface has a greater number of active nucleation

Fig. 5 Boiling curves showing the hysteresis effect for „a… water and „b… FC-77, where q_ indicates data obtained in order
of increasing heat flux and q` indicates those in order of decreasing heat flux. It is noted that a smaller heat flux increment
was used experimentally than is indicated in „b…; only a fraction of the data are included to improve readability of the figure.

Fig. 6 Photographs of the boiling process in water for varying heat flux
and surface roughness. The physical width of each image is approximately
25 mm.
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sites than the polished surface. For FC-77 at 140 kW /m2, both
the polished and rough surfaces are close to being blanketed by
the vapor as the heat flux is approaching the critical value.

Some other interesting visual differences in the boiling behav-
ior between water and FC-77 were also observed. For water,
bubbles first nucleated from a single site and as the heat flux was
incrementally increased, additional nucleate sites became active,
more or less randomly distributed across the test surface. For FC-
77, however, nucleation sites tended to spread from the initial
bubble-generating site as the heat flux was increased while the rest
of the surface remained free of active centers �although this is not
evident in Fig. 7 since only a small portion of the surface is
shown�. The boiling patch would continue to grow until the heat
flux was sufficient to activate sites across the entire surface. This
patchwise boiling phenomenon has been previously reported by
other investigators such as Corty and Foust �8� and Bergles and
Chyu �42�.

4 Discussion

4.1 Influence of Surface Roughness on the Boiling Curve.
It is well known that nucleate boiling heat transfer can be well

represented by an exponential relationship given by h�qn, where

n is a function of pressure and surface characteristics. As was
mentioned earlier, several researchers have also noted that the
dependence of heat transfer coefficient on surface roughness �at a

fixed heat flux� can be modeled by an exponential relation, h

�Rm, where R is some measure of the surface roughness. Putting
these two relationships together yields

h = CRmqn �1�

where C is a constant. As Eq. �1� indicates, surface roughness can
both change the magnitude of the heat transfer coefficient and
change the slope of its variation with heat flux since the exponent

n is also dependent on roughness. In this section, the h�Rm rela-
tionship is first examined, followed by the influence of surface

roughness on the slope of the h versus q variation.
The effect on heat transfer coefficient of the surface roughness

at different heat fluxes is illustrated in Fig. 8. An exponential

curve represents the experimental results reasonably well, with

some deviation from the trend exhibited in Fig. 8�a� by the

5.89 �m surface in water. The roughness exponent m changes

only mildly with heat flux. For water, the roughness exponent is

0.09 at 50 kW /m2 and 100 kW /m2 and increases slightly to m

=0.11 at a heat flux of 300 kW /m2. With FC-77 �see Fig. 8�b��, a

greater dependence of surface roughness on the heat transfer co-

efficient is seen than with water, resulting in higher roughness

exponents ranging from m=0.21 at 20 kW /m2 to m=0.19 at

80 kW /m2. The EDM surfaces for FC-77 seem to be better rep-

resented by a different slope than the overall curve �the latter

includes the polished surface�. The roughness exponents for the

EDM surfaces alone range from m=0.15 at 20 kW /m2 to m

=0.09 at 80 kW /m2.

The results indicate that the surface roughness exponent is not a

constant across different fluid-surface combinations. Since it is

well known that the wettablity of the fluid has important conse-

quences on the nucleation behavior �23�, it is reasonable to hy-

pothesize that m is also a function of the contact angle. Although

contact angles were not measured in the current study, FC-77 is

highly wetting on most metal surfaces while water is moderately

wetting. Therefore, it may be proposed that highly wetting fluids

are well represented by a roughness exponent m=0.2 while for

moderately wetting fluids, m=0.1 is more appropriate. However,

it is noted that the difference in slopes between the overall curves

and the EDM-only curves for FC-77 and the anomalously low

value of the heat transfer coefficient for the 5.89 �m surface in

water cannot be reconciled if m is simply a function of contact

angle ���. This further illustrates the weakness in using Ra to

correlate the nucleate boiling data and highlights the deficiencies

in models of the form h�Rm. That said, although the model does

not account for all of the inconsistencies that numerous other au-

thors have observed when trying to correlate the effects of rough-

ness, it does serve as a useful basis for developing nucleate boil-

ing correlations, as will be further discussed later.

Table 2 provides a summary of findings in the literature regard-

ing the dependence of heat transfer coefficient on surface rough-

ness. Most of the studies were conducted using refrigerants with

Fig. 7 Photographs of the boiling process in FC-77 for varying heat flux
and surface roughness. The physical width of each image is approximately
7.3 mm.
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the exception of Fedders �44� and the current study, where water
is considered. Moreover, most past studies were conducted at low
reduced pressure and only in the study by Nishikawa et al. �30,31�
was a wide range of reduced pressures investigated. As stated

earlier, Nishikawa et al. found that m=0.2�1− Pr�, which reduces

to m�0.2 at low reduced pressures. This seems to agree well with
the findings of Danilova and Bel’skii �29� and Ribatski and Jab-
ardo �45�, but conflicts with the value proposed by Stephan �28�.
A surface roughness exponent of m=0.2 also agrees with the cur-

rent results in FC-77. If the hypothesis that m= f��� holds, this is

not entirely surprising since most refrigerants are highly wetting

on metal surface. Of the results in water, Fedders �45� found m to

range from 0.10 to 0.133, which agrees reasonably well with the

present m values �0.09 to 0.11� for water. However, these m values

in water also agree with Stephan’s �28� m=0.133 in R11, which

does not support the claim that m is a function of �. Thus, more

experimental investigations are needed to clarify whether m

= f��� is an adequate generalization of the influence of surface

roughness.

Fig. 8 Dependence of heat transfer coefficient on surface roughness for „a… water and „b… FC-77. The solid lines represent
a curve fit through all five experimental data points „one polished surface and four EDM surfaces…. The dashed lines in „b…
represent a curve fit to only the four EDM surfaces „excluding the 0.027 �m polished surface….

Table 2 Dependence of heat transfer coefficient on surface roughness

Author�s� Dependence Pressure

Heat flux

�W /m2� Fluid�s�
Heater
type

Surface
material

Surface
preparation

Roughness

��m�

Stephan �28� h�Rp,old
0.133 Pr=0.023 5�104 R-11 horizontal

cylinder,
horizontal

plate

copper not specified 0.15�Rp,old�7.9

Danilova and
Bel’skii �29�

h�Rz
0.2 0.118� Pr�0.155 104 R-12, R-114 horizontal

cylinder
cooper,

steel
sandpaper,

sandblasted,
turning, etc.

0.3�Rz�58

Nishikawa
et al. �30,31�

h�R
p,old

0.2�1−Pr� 0.08� Pr�0.9 105 R-12, R-113,
R-114

horizontal
plate

copper emery cloth 0.022�Rp,old�4.31

Fedders �44�

h�Rp,old
0.133 0.012� Pr�0.089 5�104

water
horizontal
cylinder

stainless steel
sandpaper,
sandblasted

0.18�Rp,old�3.6h�Rp,old
0.12 Pr=0.012

106

h�Rp,old
0.10 Pr=0.089

Ribatski and
Jabardo �45�

h�Ra
0.2 0.008� Pr�0.260 not specified R-11, R-123,

R-12, R-134a,
R-22

horizontal
cylinder

copper, brass,
stainless steel

sandpaper,
sandblasted

0.02�Ra�3.3

Current work
h�Ra

0.1 Pr=0.0046 5�104 to 3�105 water
horizontal

plate
aluminum

sandpaper,
EDM

0.038�Ra�10.0

h�Ra
0.2 Pr=0.064 2�104 to 8�104 FC-77 0.027�Ra�10.0
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From Table 2 it does not appear that heater type �horizontal
cylinder versus horizontal flat plate� has a discernible effect on the
surface roughness exponent. Stephan �28� studied both horizontal
cylinders and flat surfaces and found that a roughness exponent of

m=0.133 was representative of both heater types. Few studies
have investigated the effects of surface roughness on vertical cyl-
inders and flat plates. Although Chun and Kang’s �46� study of

surfaces over a small range of surface roughness �Rq between

0.0151 �m and 0.0609 �m� found that vertical tubes are affected
by surface roughness to a greater extent than horizontal tubes,
there is no further confirmation in the literature of this trend, and
it is currently unclear that a modification in surface roughness

exponent m is needed to account for tube orientation.
The role of the surface material on the surface roughness expo-

nent is not conclusive. In Danilova and Bel’skii’s �29� study, both
copper and steel surfaces were used and no noticeable difference
in the trend of heat transfer coefficient with surface roughness was
noted for the two surface materials. While Ribatski and Jabardo
�45� also studied a variety of surface materials, most of their work
on the effects of surface roughness dealt with copper surfaces.
Since the surface material and other surface characteristics �de-

gree of oxidation, coatings, etc.� influence the contact angle �, the

choice of material may influence m if it is indeed a function of �.
However, to the authors’ knowledge, this has not been experimen-
tally explored in detail.

The present results show that the heat flux exponent n changes

with roughness since the exponent m in the relationship h�Rm

was found to change with heat flux. The relationship between n

and Ra thus warrants a closer investigation. As shown in Fig. 9,

the exponent n is found to vary linearly with surface roughness
from 0.80 for the polished to 0.87 for the roughest EDM surfaces

in water; the corresponding variation in n for FC-77 is from 0.83
to 0.71.

The findings from the present work may be compared with a
number of studies in the literature. The data provided by Vachon
et al. �17,47,48� for water at atmospheric pressure suggest expo-

nents n in the relationship h�qn in the same range as the present
study. However, data by Vachon et al. for chemically etched sur-

faces exhibit higher exponents n than their data for the unidirec-
tional polished surfaces despite having similar surface roughness.
The experimental data for water by Kurihara and Myers �9,49�

show a much stronger dependence on surface roughness on the
slope of the boiling curve than observed in the current study. As

determined from the data provided in Ref. �49�, the exponent n

varies from 0.76 to 0.95 from the smoothest to the roughest sur-
face. Although Kurihara and Myers �9� did not state the surface
roughness, it was implied that the rms roughness was less than

1.2 �m. Based on these comparisons, it does not appear that n

can be adequately correlated with surface roughness. However for
the current results, the ability to predict the change in the expo-

nent n with roughness is of secondary importance since only small

changes in the slope were noted �n ranging from 0.80 to 0.87 for

Ra ranging from 0.038 �m to 10.0 �m, respectively, in water�.

4.2 Nucleate Boiling Correlations. The complex liquid-
vapor-surface phenomena involved in nucleate pool boiling heat
transfer has rendered the development of a predictive model dif-
ficult, as is evident from the large number of nucleate boiling
correlations that have been proposed over the past several decades
�see Table 3�. Many of these correlations have theoretical under-
pinnings, such as the correlation by Forster and Zuber �50�; how-
ever, their utility is limited by the failure to adequately account for
surface effects. One of the earliest correlations developed specifi-
cally to handle a wide variety of fluids and surfaces is the Rohse-
now �51� correlation, which uses empirical factors to account for
the surface-fluid combination. Constants for several surface-fluid
combinations have been provided by various authors �52,53�.
However, the usefulness of the Rohsenow correlation is also lim-
ited as it requires experimental data on the fluid-surface combina-
tion of interest as inputs.

Several correlations have been formulated in terms of nucle-
ation site densities to represent the influence of different surface
characteristics on heat transfer. These include the correlations by
Tien �54�, Leinhard �55�, and Mikic and Rohsenow �56�. How-
ever, since the nucleation site densities are generally not known a
priori, most of these correlations require empirical fits to deter-
mine these parameters and other associated constants. Although
these correlations are still of some theoretical significance, their
utility in many engineering environments is limited.

As noted earlier, several investigators have observed a h�Rm

dependence and correlations adopting a form similar to Eq. �1�
have been proposed. These include the correlations by Danilova
�57�, Nishikawa et al. �31�, Cooper �32,33�, Gorenflo �34�, Leiner
�58�, and Ribatski and Jabardo �45�. Most of these correlations
provide predictions of nucleate pool boiling heat transfer coeffi-
cients without the need for experimental data as inputs; thus, these
correlations have proven quite useful in many engineering appli-
cations. The Danilova, Nishikawa, and Ribatski and Jabardo cor-
relations were developed specifically for refrigerants; while the
Cooper, Gorenflo, and Leiner correlations were designed for a
broader range of fluids. Since it is highly desirable to have a
single correlation that provides accurate predictions for a wide
variety of fluid-surface combinations, further discussion in this
work is limited to the Cooper, Gorenflo, and Leiner correlations.
The suitability of each of these correlations for predicting the
nucleate pool boiling heat transfer coefficients from the present
work for two fluids �water and FC-77� with significantly different
wetting characteristics and thermal properties over a wide range
of surface roughness is assessed.

4.3 Cooper Correlation. Cooper �59� noticed that although
many correlations had different algebraic forms, they produced
similar numerical predictions and similar trends. He showed that
many of these correlations could be reformulated using reduced
properties, resulting in a simpler formulation without much loss in
accuracy �32,33�. The Cooper correlation �see Table 3� accounts
for the surface roughness effect using the relation developed by
Nishikawa et al. �30,31�. However, Cooper reformulated the

�8Rp,old�0.2�1−Pr� relationship suggested by Nishikawa et al. into

Pr
0.12−0.2 log10 Rp. Cooper �33� found that the reformulated expres-

sion matched the original expression by Nishikawa et al. within

Fig. 9 Dependence of heat flux exponent n in the relationship
hÊqn on surface roughness
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3% over the pressure �0.08� Pr�0.9� and surface roughness

�0.22 �m�Rp,old�4.31 �m� ranges studied. It should be noted

that Rp,old used in the Cooper correlation is defined by DIN 4762/

1:1960. Gorenflo �34� suggested the conversion Ra�0.4Rp,old,
which is adopted in this work.

A comparison between the experimental data from the present
work and predictions from the Cooper correlation is shown in Fig.
10. The Cooper correlation predicts heat transfer coefficients for
FC-77 with mean absolute errors �MAEs� ranging from 12.9% for
the roughest EDM surface to 33.4% for the polished surface with
an overall MAE of 24.1%. Here, the mean absolute error is de-
fined as

MAE =
1

N
�
i=1

N
�hcorr,i − hexp,i�

hexp,i

�2�

where i represents an experimental data point at a given heat flux.
For water under the given experimental conditions, the predic-

tive capability of the Cooper correlation is poor, with MAEs rang-
ing from 44.4% to 324% for the polished and roughest EDM
surfaces, respectively. The poor predictions result from the refor-
mulation of the roughness relationship of Nishikawa et al. At a
fixed heat flux, the Cooper correlation predicts 13.6 times higher

heat transfer coefficients on the roughest surface �10.0 �m� com-

pared with the smoothest �0.038 �m�, while the original relation-

ship by Nishikawa et al. predicts a more modest increase by a

factor of 3. Cooper did not consider such a low reduced pressure

�Pr=0.0046� as was used in the present study when reformulating

the surface roughness relation of Nishikawa et al. At a reduced

pressure of Pr=0.064 corresponding to the FC-77 experiments,

Cooper’s reformulation matches the relation of Nishikawa et al.

within 20% over the surfaces studied. For this reason, the Cooper

correlation is not recommended for reduced pressures much below

Pr=0.08.

4.4 Gorenflo Correlation. The Gorenflo �34� correlation is

shown in Table 3. Following Stephan’s work �28�, Gorenflo ac-

counted for surface roughness using h�Ra
0.133. The Gorenflo cor-

relation requires knowledge of a reference heat transfer coeffi-

cient, h0, at a given reference heat flux, q0. For water, a reference

value of h0=5600 W /m2 K at q0=20,000 W /m2 was obtained

from the VDI Heat Atlas �34�. For fluids for which no suitable

experimental data are available, such as FC-77, Gorenflo recom-

mended using the Stephan and Preußer correlation �as cited in

Ref. �34��, although greater uncertainties can be expected in the

following prediction.

Table 3 Nucleate boiling correlations

Author�s� Correlation

Forster and Zuber �50�
q = Ckl Prl

b	 hfg�v

cp,l�l

	
l

��P

2�
�0.5��P

�l
�0.25	 �l

�l
��Tcp,l�l


	
l

hfg�v

�2a

Rohsenow �51�
q = �lhfg
g��l − �

v
�

�
	 cp,l�T

Chfg Prl
ba

Tien �54� q=Ckl Prl
0.33N0.5�T

Lienhard �55�
q = Ckl Pr1/3


�g��l − �
v
�/�l

2


�g��l − �
v
�/�l

2�H2O

N1/3��T�5/4

Mikic and Rohsenow �56� q=C�kl�lcp,lf�
1/2d0

2N�T

Danilova �57�
h = C� Rz

Rz0

�0.2

�0.14 + 2.2Pr�q
0.75

Nishikawa et al. �31�
h = �31.4

Pc
0.2

M0.1Tc
0.9��8Rp,old�

�1−Pr�/5	 Pr
0.23

�1 − 0.99Pr�
0.9q0.8

Cooper �32,33� h=C�Pr
0.12−0.2 log10Rp,old��−log10 Pr�

−0.55M−0.5q0.67;

C=55 for horizontal aluminum surfaces

Gorenflo �34� h

h0

= CF�Pr�� q

q0

�n

; C = � Ra

Ra0

�0.133

; Ra0 = 0.4 �m

F�Pr� = 1.73Pr
0.27 + �6.1 +

0.68

1 − Pr

�Pr
2 and n = 0.9 − 0.3Pr

0.15 for water

F�Pr� = 1.2Pr
0.27 + �2.5 +

1

1 − Pr

�Pr and n = 0.9 − 0.3Pr
0.3 for all other fluids

Leiner �58� h

Pc

R/Tc

= 0.6161C0.1512K0.4894	 Ra

�kBTc/Pc�
1/30.133

F��Pr�� q

Pc

RTc

�n

F��Pr� = 43000n−0.75	1.2Pr
0.27 + �2.5 +

1

1 − Pr

�Pr ; n = 0.9 − 0.3Pr
0.3

C =
cp,l

R
�Pr=0.1; K = − Tr ln� Pr

1 − Tr

��Pr=0.1

Ribatski and Jabardo �45� h=CRa
0.2Pr

0.45�−log�Pr��
−0.8M−0.5qn

121009-10 / Vol. 131, DECEMBER 2009 Transactions of the ASME

Downloaded 15 Oct 2009 to 128.46.190.225. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



hd0

kl

= 0.1� q0d0

klTsat

�0.674��
v

�l

�0.156�h fgd0
2


l
2 �0.371�
l

2�l

�d0

�0.350

���lcp,l

kl

�−0.16

�3�

where

d0 = 0.0149�
 2�

g��l − �
v
�

�4�

Gorenflo suggested evaluating h using fluid properties at a pres-

sure Pr=0.03 and then converting to h0 at the reference pressure

of Pr0=0.1 through the use of the F�Pr� equation shown in Table

Fig. 10 Comparison between experimental data and predictions from the Cooper correlation †32,33‡ for „a… water and „b…
FC-77

Fig. 11 Comparison between experimental data and predictions from the Gorenflo correlation †34‡ for „a… water and „b…
FC-77
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3. For FC-77, the estimated reference heat transfer coefficient is

h0=1840 W /m2 K at q0=20,000 W /m2.
A comparison between the Gorenflo correlation and the experi-

mental results for water and FC-77 is shown in Fig. 11. The
Gorenflo correlation predicts the experimental results in water
quite well, with a MAE of only 3.8% for the polished surface and
an overall MAE of 12.2%. For FC-77, the predictions are less
accurate, particularly for the EDM surface with MAEs in the
range of 26–29%, although the predictions for the polished sur-
face are quite good with a MAE of 4.7%.

4.5 Leiner Correlation. The reliance on reference values re-
duces the utility of the Gorenflo correlation as reference values are
only available for a limited number of fluids. Leiner �56� ad-
dressed this issue by using the principles of thermodynamic simi-
larity to further develop the Gorenflo correlation by removing the
need for reference values �see Table 3�. It should be noted that the

pressure function, F��Pr�, was specifically developed for fluids

other than water, and so the Leiner correlation is not expected to
offer accurate predictions of boiling in water. In this case, the
Gorenflo correlation should provide better predictions.

The comparison between the Leiner correlation and experimen-
tal results is shown in Fig. 12. As expected, the Leiner correlation
is not particularly accurate for water, with MAEs of approxi-
mately 50%. The Leiner correlation fares much better with FC-77
with MAEs around 5% for the EDM surfaces, but the correlation
significantly overpredicts heat transfer coefficients for the pol-
ished surface with a MAE of 46.6%. Although the Leiner corre-
lation has a lower overall MAE than the Gorenfo correlation for
FC-77 �13.2% versus 23.1%�, this is probably influenced by the
fact that four EDM surfaces �where the Leiner correlation pro-
vides the best predictions� and only one polished surfaces �where
the Gorenflo provides the best predictions� were considered in the
present work. Thus, despite the lower overall MAE of the Leiner
correlation, it is inconclusive whether much additional accuracy is
provided by the Leiner correlation over the Gorenflo correlation
for FC-77.

The main problem with the Gorenflo and Leiner correlations’
predictions for FC-77 is that neither accurately accounts for the
influence of surface roughness. Both correlations use Stephan’s

recommendation of m=0.133, which is closer to the m=0.1 found

for water in this study, but differs from the m=0.2 found for
FC-77. If the Gorenflo correlation in Table 3 is modified so that

factor C becomes

C = � Ra

Ra0

�0.2

�5�

then the overall MAE for FC-77 is reduced from 23.1% to 15.8%.

If a reference heat transfer coefficient h0=2160 W /m2 K at q0

=20,000 W /m2, which more closely matches the experimental

results, is used instead of h0=1840 W /m2 K as estimated by the
Stephan and Preußer correlation �34�, the MAE is further reduced
to 6.7%. Modifying the Leiner correlation to account for a surface

roughness exponent m=0.2 requires more manipulation, but it can
be shown that

h

Pc

R/Tc

= 0.6161C0.1512K0.4894F��Pr�

�� q

Pc

RTc

�n� Ra
0.2

Ra0
0.067��kBTc/Pc�

1/3�0.133� �6�

The overall MAE for FC-77 increases from 13.2% to 18.2% when
using Eq. �6� instead of the original Leiner correlation, although
the predictions are notably improved for the polished surface, with
an MAE of 21.1%.

For water, the Gorenflo correlation clearly provides the best
predictive capabilities. From the discussion above, the modified
Gorenflo correlation provided the lowest errors for FC-77. How-
ever, given the limited number of surfaces tested, and considering
the wide range of conclusions from other researchers regarding
the influence of roughness on nucleate boiling, it is unclear
whether a modification to the Gorenflo correlation for FC-77 will
lead to a general improvement in accuracy. Further, it is unclear
whether any general improvement in predictive capability can be
achieved when using standard surface roughness parameters to
account for the effects of surface characteristics on boiling heat

transfer. Although it has been proposed that the relationship h

�Rm where m= f��� may lead to an improvement in predictions,

more experimental data are needed to conclusively establish this
dependence. Moreover, the current experimental data indicate

Fig. 12 Comparison between experimental data and predictions from the Leiner correlation †59‡ for „a… water and „b… FC-77
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general weaknesses in using h�Rm to account for surface rough-
ness, and it is therefore recommended that future research focus
on developing new methods of characterizing boiling surfaces.

5 Conclusions

Pool boiling at atmospheric pressure from surfaces with a wide
range of surface roughness in two fluids with differing wetting
characteristics was experimentally explored. For water, the results
indicate little improvement in heat transfer coefficient for rough-

ness beyond Ra=1.08 �m, except for a very rough 10.0 �m sur-
face, which had significantly higher heat transfer coefficients. On
the same set of surfaces, FC-77 exhibited a different trend with
continuously increasing heat transfer coefficient with respect to
surface roughness, at a fixed heat flux. The general trend of in-
creasing heat transfer coefficient with surface roughness was cor-

related using h�Rm. The results indicate a stronger dependence

on surface roughness for FC-77 with m=0.2 compared with m

=0.1 for water.
The experimental results were compared with predictions from

widely used nucleate boiling correlations. Due to differences in
the surface roughness exponent for the two fluids, no single cor-
relation provides entirely satisfactory predictions. The Gorenflo
correlation provided the lowest errors for water. For FC-77, the
lowest errors were obtained using a modified Gorenflo correlation

with a surface roughness exponent of m=0.2. Due to the numer-
ous deficiencies associated with correlating nucleate boiling data
using surface roughness parameters, it is recommended that future
research focus on developing new techniques for characterizing
boiling surfaces.
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Nomenclature

a, b, C, K � empirical constants

cp � specific heat

d0 � bubble departure diameter

F, F� � pressure functions

f � bubble emission frequency

g � acceleration due to gravity

h � heat transfer coefficient

h fg � heat of vaporization

k � thermal conductivity

kB � Boltzmann constant, kB=1.3807�10−23 J /K

M � molecular weight

m � surface roughness exponent

N � active nucleation site density

n � heat flux exponent

P � pressure

�P � excess pressure corresponding to wall super-

heat, �P= Pw− Psat

Pr � Prandtl number, Pr=cp� /k

R � universal gas constant, R=8.314 kJ /K kmol

R � specific gas constant, R=R /M

Ra, Rp, Rq,

Rz � roughness parameters according to ASME
B46.1–1995

Rp,old � “Glättungstiefe” according to DIN 4762/1:1960

q � heat flux

T � temperature

�T � wall superheat, �T=Tw−Tsat

Greek


 � thermal diffusivity, 
=k /�cp

� � contact angle

� � dynamic viscosity

� � density

� � surface tension

Subscripts

c � critical
corr � correlation
exp � experiment

l � liquid

r � reduced
sat � saturation

v � vapor

w � wall
0 � reference
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