
The influence of system calls and interrupts on the performance of a PC cluster
using a remote DMA communication primitive

Olivier Glück, Jean-Luc Lamotte, Alain Greiner
University P. & M. Curie

LIP6 Laboratory
4 place Jussieu, 75252 Paris Cedex 05, France

fOlivier.Gluck, Jean-Luc.Lamotte, Alain.Greinerg@lip6.fr

Abstract

This paper presents an efficient MPI implementation on
a cluster of PCs using a remote DMA communication prim-
itive. For experimental purposes, the MultiPC (MPC) par-
allel computer was used. It consists of standard PCs in-
terconnected through a gigabit High Speed Link (HSL) net-
work. This paper focuses on communication software lay-
ers over the HSL network. Two implementations of MPI
are described. The first one uses hardware interrupts for
network events signaling and system calls in the communi-
cation critical path. The second one is based on full user-
level communications. Measures show a latency of 15 �s
on a Pentium II-350 with this optimized implementation. A
quantitative analysis shows how system calls and interrupts
impact on communication time. To tally performance in a
realistic environment, experiments were run on the Gauss
elimination method using a parallel implementation of a lo-
cal numerical analysis computational package (CADNA).

1. Introduction

The MultiPC (MPC) parallel computer is a low cost, high
performance cluster of PCs. The differentiating and origi-
nal element of this cluster resides in its High-Speed Link
(HSL) network designed at the University P. & M. Curie,
Paris. This packet switched network uses one Gbits/s, point
to point, serial links. From the application software point
of view, the MPC computer provides an optimized Mes-
sage Passing Interface (MPI) library [3]. Efficient software
layers and a specific high-performance implementation of
MPICH [11] has been developed on top of the HSL net-
work.

The MPC parallel computer is a high performance clus-
ter [8] with the following components:
- standard PC main-boards,

- a standard Unix-based operating system (LINUX or
FreeBSD),
- an Ethernet control network,
- a high speed communication network: the gigabit HSL
network,
- a FastHSL network controller on each node implementing
the communication protocol,
- efficient software layers for using the HSL network,
- an efficient implementation of MPICH over the HSL net-
work.

Communication performance is a critical and very im-
portant aspect of cluster computing. From the hard-
ware point of view, gigabit high-speed networks (like
Myrinet [7], SCI [12] or HSL [6]) are now very common.
Nevertheless, an efficient hardware is not sufficient to reach
good performance. The communication software overhead
represents the main part of communication time [13]. The
goal of projects like Active Messages [17] or Fast Mes-
sages [14] is to reduce this software overhead. The critical
factors are well identified. We can quote intermediate data
copies, the crossing of several communication layers, phys-
ical/virtual address translations and the use of system calls
and interrupt signaling during communications.

This paper deals with an efficient implementation of
MPICH over a high-speed network providing a remote
DMA communication primitive, and the impact of using
system calls and hardware interrupts during communica-
tions. Two implementations of MPICH over a basic ”re-
mote write” primitive have been realized: MPI-MPC 1 and
MPI-MPC 2. Section 2 gives a brief description of the MPC
parallel computer and its remote write primitive. Section 3
describes MPI-MPC 1, the first implementation of MPICH
over MPC using system calls and interrupts during com-
munication phases. Section 4 explains how user-level com-
munication is achieved by the MPI-MPC 2 implementation.
Section 5 is a comparison between these two implementa-
tions. Section 6 presents the computation time on the Gauss

elimination method using a parallel implementation of a li-
brary that takes into account the floating point round-off er-
ror propagation: Control of Accuracy and Debugging for
Numerical Applications (CADNA) [2]. Finally, Section 7
concludes and deals with future work aspects.

2. The MPC parallel computer

The MPC computer (MultiPC) is the result of a 6-year
research project at LIP6. The goal was to design a cluster
of PCs using a truly scalable and high speed interconnec-
tion network, providing an efficient remote DMA primitive
to the software. This section gives a brief description of
hardware and low-level software in the MPC computer. It
is clearly a machine that falls within the class of low-cost
Beowulf-like [4] high performance computers. A recent
overview of High Performance Cluster Computing has been
done in [8].

2.1. The MPC hardware

From the hardware point of view, MPC consists of sev-
eral processing nodes interconnected by a custom high-
speed communication network (HSL) which complies with
the IEEE-1355 standard [6]. Processing nodes are standard
PCs.

Figure 1. The MPC computer architecture.

Figure 1 presents the architecture of the MPC computer.
Three nodes are represented. They are connected via an
Ethernet control network to a front-end computer. Each
node contains an HSL network controller board designed by
the LIP6 laboratory. The FastHSL board carries 2 ASICs.
The PCI-DDC chip [18] is a PCI controller that implements

a ”remote write” protocol. The RCUBE router [5] is a single
chip 8*8 dynamic crossbar that offers 8 bi-directional HSL
ports. Thanks to the highly integrated RCUBE router, there
is no centralized switch in this architecture, as each node
contains a routing capability. The HSL links are 1 Gbits/s
bi-directional, full duplex, serial links. HSL connections
between CPU1, CPU2 and CPU3 are not represented on fig-
ure 1. More information concerning the MPC hardware can
be found in [10].

2.2. The remote write communication primitive

Each processor node is connected to an RCUBE router
using a dedicated PCI to HSL network controller named
PCI-DDC. This chip implements the Direct Deposit State
Less Receiver Protocol (DDSLRP), developed at LIP6 to
reduce the processor overhead. Classical data transfer pro-
tocols usually require several copies of data in intermediate
buffers before and after transmission through the network.
PCI-DDC can access directly the host memory. In order to
enhance performance, PCI-DDC implements the ”remote
write” primitive described in figure 2. This can be seen as
a DMA request where the local PCI-DDC directly fetches
data from the local host memory and the remote PCI-DDC
writes data directly into the remote memory.

Sender

Memory A

CPU A

LME

��
��

Data

NIC A

Receiver

Memory B

CPU B

LMR

��
��
��Data

NIC B

1

2

3

4

5

6Interrupt

Interrupt

HSL link

Figure 2. The remote write primitive of the
MPC computer.

The descriptors of a message are pushed by the software
into the LME, which is the ”List of Messages to Send”,
located in host memory. This list contains the descriptors
of buffers to be transmitted (local and remote physical ad-
dresses, length, destination node, etc.). A remote write

communication proceeds as follows: (1) NIC A reads the
message descriptor through DMA access on PCI-bus; (2) it
starts data transmission, using again DMA accesses to the
host memory relieving thus the sender processor from data
transmission; (4) on the receiver side, as soon as PCI-DDC
receives a packet, it starts writing incoming data at the cor-
responding memory location; (5) when the last packet is
written, NIC B writes in the LMR, which is the ”List of Re-
ceived Messages” of the destination node; (3) (6) in emis-
sion/reception, the notification is achieved by a hardware
interrupt signal to the host processor.

2.3. The PUT API

Our goal is to provide efficient software layers to access
the HSL network from the application level. The lowest
software layer, called PUT, offers basic kernel communica-
tion services using the remote write primitive described in
section 2.2. This layer provides a kernel API that writes
page descriptors into LME and handles event signaling us-
ing hardware interrupts. A zero-copy strategy is imple-
mented to take advantage of the performance offered by the
HSL network. To let multiple users call PUT simultane-
ously and to handle interrupts, this layer is designed inside
the OS kernel.

The communication primitive supplied by the PUT API
can only transfer a contiguous buffer located in the physical
memory. It needs the following parameters: the receiver
node identifier, the physical address of the local buffer, the
physical address of the remote buffer, the data length and
a set of flags. The latency of this layer is about 5 �s and
the maximum bandwidth is 494 Mbits/s on a Pentium II
350MHz without using interrupts. For more details about
the MPC low-level software layers, please consult [1].

3. MPI-MPC 1: the first implementation of
MPICH on MPC

The MPC parallel computer runs MPI [3] applications.
We have designed an efficient MPICH [11] implementation
for PC clusters using a remote DMA communication prim-
itive.

3.1. Description

This implementation is built over the PUT layer. The
specification of PUT creates two main problems. Firstly,
data transmitted by PUT must be physically located in a
contiguous memory space. Secondly, the sender has to
know where to write data in the remote physical memory.

There are two types of messages in MPICH: control mes-
sages and data messages. In our MPI implementation, con-

trol messages are used to transfer rapidly on the HSL net-
work some control information or limited size user-data.
The maximum size of a control message is set to 16 Kbytes
in the current MPI-MPC implementation. There are four
sub-types of control messages:
- SHORT: user-data (encapsulated in a control message),
- REQ: request of transmission of a large data message,
- RSP: reply to a request,
- CRDT: credits, used for flow control.

The MPC software allocates at boot time, on each node,
an array of contiguous physical memory that is used to im-
plement the destination buffers for the control messages.
Each node gets the physical address of all remote slots that
are allocated to him, through the control network (all nodes
are connected by an Ethernet network for configuration).
The transmission of control messages is done thanks to an
intermediate copy in pre-allocated buffers on the sender and
receiver side. Data messages are used to transfer user-data
that can not be encapsulated in a control message. For those
large messages, we want to keep a zero-copy transfer mode.
This implies a rendezvous between the sender side and the
receiver. The sender first sends a REQ control message to
the receiver. Then, the receiver returns a RSP control mes-
sage containing the physical description of the user desti-
nation buffer. Finally, the sender sends data without any
intermediate copy.

For instance, figure 3 presents the way the user data are
transmitted when the MPI_Send primitive is called by an
MPI application. On the one hand, if the user data size is
less than the maximum size of a control message (16 Kbytes
in the current configuration), user data are encapsulated in
a SHORT control message. Thus, two intermediate copies
of user data are done but just one message is used for the
transmission. On the other hand, if the user data size is
larger than 16 Kbytes (case 2 of figure 3), a zero-copy strat-
egy is used thanks to a rendezvous protocol. In this case,
three messages are necessary to achieve the transmission.

ReceiverSender

user data

REQ

RSP

DATA

MPI_Send / MPI_Recv

case 2 : user data size > 16Kbytescase 1 : user data size < 16Kbytes

user data

SHORT

Sender Receiver

2 copies, 1 message 0 copie, 3 messages

Figure 3. The MPI Send primitive in the MPC
parallel computer.

In the case of the zero copy transfer (case 2 of figure 3:
large message), the Send/Receive operation requires lock-

ing data into memory and address translation on the sender
and receiver side. Indeed, the sender/receiver supplies a vir-
tual process address and the corresponding buffer is not nec-
essarily contiguous in the physical memory. The receiver
sends his buffer description in physical memory through
the RSP control message to the sender. Then, the latter
makes the matching of physical contiguous pieces between
the sender and the receiver buffers. In the case of short mes-
sages (case 1 of figure 3), address translation is not neces-
sary since intermediate pre-allocated buffers are contiguous
in physical memory.

Every call to the PUT layer is done through a system call
and event signaling relies on hardware interrupts in this first
implementation. When an emission or reception is com-
pleted, the FastHSL board interrupts the local processor.
Then, the interrupt handler of the PUT layer updates the
kernel-level flag concerning the ended communication. At
last, MPI-MPC layers have to poll flags to know which com-
munication has completed.

3.2. Results and drawbacks

This section presents the performance obtained for the
MPI-MPC 1 implementation described in section 3.1. The
MPI application is a ping-pong involving two nodes. The
corresponding pseudo code is presented in table 1. Each
node alternatively acts as a sender or a receiver. Time is
measured on node A starting from the MPI_Send call to
the end of the MPI_Receive call. Thus, the resulting de-
lay corresponds to the necessary time for a message to leave
and return to node A. Such a measure is repeated several
thousand times to obtain an average latency. In addition,
this measurement is done for several sizes of message, n
varying from 1 byte to 1 Mbytes.

Node A Node B
Forever do
Start_Timer
MPI_Send(n bytes)
MPI_Receive(n bytes)
Stop_Timer

Next

Forever do

MPI_Receive(n bytes)
MPI_Send(n bytes)

Next

Table 1. MPI ping-pong pseudo code.

Measurements have been performed on a Linux MPC
platform consisting of 2 standard PCs PII-350 connected
through the HSL network. The latency (corresponding to
half measured delay for a message size of one byte) ob-
served with MPI-MPC 1 is 26 �s. The maximum through-
put (obtained for 1 Mbytes messages) is about 419 Mbits/s.

These performances are quite good but are degraded by

the systematic use of system calls and interrupts, as shown
in the next section.

4. MPI-MPC 2: user-level communications

This section presents the MPI-MPC 2 implementation
that achieves communications in user mode, and avoids the
use of interrupts for signaling.

4.1. Description

MPI-MPC 1 implementation described in section 3 was
built over the low-level PUT software layer of the MPC
computer, that is implemented in the kernel. Thus, the MPI
communications of this implementation used to involve sys-
tem calls through a specific driver for accessing the HSL
network interface. The MPI-MPC 2 implementation mini-
mizes this overhead by performing user-level communica-
tions. Figure 4 illustrates how MPI-MPC 1 and MPI-MPC
2 access to the network interface.

Processus in
user space

Processus in
user space

Driver for
accessing

the network
interface

Kernel space

Network interface

MPI-MPC 1 MPI-MPC 2

Figure 4. Differences between MPI-MPC 1 &
MPI-MPC 2 implementations.

There are three major problems to solve in order to
achieve communications in user mode. The first issue is
related to the shared network resources such as the LME
and LMR lists or some specific FastHSL registers. In a
multi-task environment, those resources must be protected
for exclusive accesses. The second issue is related to the
signaling network events. In the first implementation, sig-
naling is done by hardware interrupts. The drawback is that
interrupts imply a switching context. Therefore, MPI-MPC

2 has to poll directly network resources in user mode. The
third issue concerns virtual to physical address translations
that are used for large messages.

Regarding the shared network resources, the adopted so-
lution is to keep in the kernel the shared objects and to map
them to the user space at starting time. The possible com-
peting accesses are managed by the use of atomic locks (one
per shared resource). Regarding network events, the idea is
to poll directly in user mode the LME and LMR lists. This
is possible because these lists are mapped to the user space
of every MPI processes. This polling is not done on the
whole list but only on the last modified entries. The polling
can be very efficient, because MPI-MPC uses active polling
only for blocking MPI calls (such as MPI Recv). In case
of non-blocking MPI calls (such as MPI_Irecv), MPI-
MPC makes a non-blocking polling on both the LMR and
LME lists. Moreover, when MPI-MPC has to poll a network
event, all the completed communications are acknowledged
at once.

Regarding the virtual/physical address translations, a so-
lution to avoid system calls during communications is being
studied and will be presented in a future paper. The gen-
eral idea is to map the virtual memory of each process to a
contiguous space of physical memory at application starting
time.

There are no more system calls and signaling interrupts
during the communication phases in MPI-MPC 2 (excepted
address translations that are used for large message trans-
fers). Of course, the initialisation phases still use system
calls but only at starting time.

4.2. Results

This second implementation of MPI-MPC shows a la-
tency of 15 �s and a throughput of 421 Mbits/s using the
same MPI ping-pong as in section 3.2. From the latency
point of view, MPI-MPC 2 is 11 �s better than MPI-MPC
1, which represents an improvement of more than 40%.

5. MPI-MPC1 / MPI-MPC2 comparison

The first part of this section analyzes both MPI-MPC im-
plementations in terms of system calls, interrupts and inter-
mediate copies. The second part shows the MPI-MPC 2
speed-up regarding MPI-MPC 1.

5.1. Recapitulative table

Table 2 recapitulates the number of system calls, inter-
rupts and intermediate copies in both MPI-MPC implemen-
tation presented in section 3 & 4. Counting is carried out
during a message transfer between two MPI tasks: one is
doing a MPI_Send call and the other a MPI_Recv call.

Case 1 & case 2 of figure 3 are taken into account. Case
1 involves one control message transfer whereas case 2 in-
volves two control message and one data message transfers.

For instance, with MPI-MPC 1, a control message trans-
fer generates one system call on the sender side, two inter-
mediate copies and two interrupts (one on the sender & one
on the receiver). In the same way, a data message trans-
fer causes two interrupts, five system calls (one for adding
entries in the LME list, four for address translations and
locking data into memory on the sender & receiver) and no
intermediate copy.

MPI-MPC 1 MPI-MPC 2
System calls Case 1 1 0

Case 2 7 4
Interrupts Case 1 2 0

Case 2 6 0
Intermediate copies Case 1 2 2

Case 2 0 0

Table 2. Number of system calls, interrupts
and intermediate copies during communica-
tions in both MPI-MPC implementations.

As expected, the main MPI-MPC 2 improvement will
concern short messages (case 1): there is zero system call
and zero signaling by interrupt. For long messages (case
2), there remain still system calls due to virtual/physical ad-
dress translations. A solution has just been studied to avoid
this overhead but it will be presented in a future paper.

5.2. User-level communications speed-up

Table 3 summarizes the latency and maximum through-
put performances of both implementations.

MPI-MPC implementation Latency Throughput
(�s) (Mbits/s)

MPI-MPC 1 26 419
MPI-MPC 2 15 421

Table 3. Latency and maximum throughput of
both implementations.

Figure 5 shows that the MPI-MPC 2 implementation im-
proves the latency, especially for short messages. The la-
tency being the key point for short messages, this is a good
result. Figure 6 presents the MPI-MPC 2 latency speed-up
with regard to MPI-MPC 1 results. The MPI-MPC 2 im-
provement does not depend on the data size. The latency
improvement is 11 �s per message sent. Thus, the MPI-
MPC 2 speed-up decreases when the data size increases.

Figure 5. Latency comparison of MPI-MPC 1
& MPI-MPC 2 for short messages.

Figure 6. The MPI-MPC 2 latency speed-up
with regard to MPI-MPC 1 latency.

6. A realistic application

To tally performance with a realistic application, experi-
ments on the solving of a linear system by the Gauss elim-
ination method are presented. The particularity of this ap-
plication is to take into account the floating-point round-off
error propagation with the CADNA software that is based
on the CESTAC method, developed in the LIP6 laboratory
of the University Paris 6. Regarding the communication
scheme, this application generates a lot of short MPI mes-
sages.

6.1. The CESTAC method and the CADNA software

When a programmer creates a new numerical algorithm,
he or she uses mainly arithmetic based on real numbers.

The main difference between the mathematical and the
computer implementation of an algorithm is due to the rep-
resentation of real numbers. Given that most real numbers

cannot be exactly represented in computer memory, each el-
ementary operation creates a little round-off error because
of the limited coding of real numbers. Thus, the fundamen-
tal properties underlying the exact arithmetic (for example
the associativity) are no longer satisfied. What are the ef-
fects of the round-off error propagation on the results? Is
the trace of the mathematical algorithm equal to the trace of
the computer algorithm?

6.1.1. The CESTAC method. Based on the probabilis-
tic approach, the CESTAC method created in 1974 by M.
La Porte & J. Vignes proposes a new method to control
and estimate the round-off error propagation. We briefly
present its principles. More information can be found
in [16] [9] [15].

Practically, this is achieved by using a random arithmetic
which rounds with a probability of 0.5 to the value by excess
or by default after each elementary operation. Running N

times the same program with this new arithmetic yields N
different results: R1; :::; RN . Then, the computed result R
is the average of the Ri and its number of significant digits
is CR:

R =
1

N
�

NX
i=1

Ri and CR = log
10

 p
N �

��R��
s� t�

!

with s2 = 1

N�1
�
PN

i=1

�
Ri �R

�2
where t� is a statistical

constant.
A new theoretical arithmetic [9] based on the CESTAC

method and named the stochastic arithmetic has been de-
fined. It proposes new definitions for the equality and order
relations taking into account the accuracy of each operand
and a new definition for the zero number. In this arithmetic,
a computed zero is a number with no significant digit or that
is a mathematical zero (all the values of a number are equal
to zero) [15].

The advantage of the CESTAC method is the value of N ,
which can be small. Practically, N is equal to three.

6.1.2. The CADNA software for sequential architectures.
The Control of Accuracy and Debugging for Numerical Ap-
plications (CADNA) [2] [9] library is a SYNCHRONOUS
implementation of the CESTAC method.

The control of the round-off error propagation is
only performed on variables of stochastic types with
N=3. CADNA implements two new types: single_st
(stochastic single precision), double_st (stochastic dou-
ble precision). Every arithmetic operator and every order
relation have been overloaded for the stochastic types. With
these new definitions, CADNA allows to provide the num-
ber of significant digits of all the intermediate or final results
and to control the branching. If a result has no significant

digit, @.0 is printed. Typically, all the floating-point types
of a code are replaced with the stochastic types.

The CADNA implementation uses special functions
that can change the round-off mode of the IEEE
floating point arithmetic. With a probability 0.5,
CADNA selects randomly the rounding mode towards
�1 or +1. An operation consists in performing:
for i=1 to N
choose randomly the rounding mode
compute the operation result with the field i
end

With these new possibilities, CADNA also allows a nu-
merical debugging of any code written in Fortran, C or
C++. All the instabilities that appear during the running
are recorded in a log file and can be traced with a classical
debugger.

The use of CADNA in a numerical code has a cost. The
computation time is multiplied by a factor from 5 to 10
when only the estimation of accuracy is performed with
N = 3 (i.e. without the numerical debugging functions).
The memory size of the data is multiplied by a factor 3.

CADNA is copyrighted and is the property of the Uni-
versity Pierre and Marie Curie, Paris.

6.1.3. The parallel implementation of the CESTAC
method. The aim of the parallel implementation of the
CESTAC method on the MPC parallel machine is to de-
crease the computation time of the validation tool, which
concerns only the estimation of the round-off error propa-
gation. The simple synchronous implementation of the se-
quential version involves a simple parallel implementation:
three processors performing each one a computation. Thus,
the application is divided into three processes. Most of
arithmetic operators do not use communication between the
three processes excepted four kinds of functions that need
to exchange their results to be sure that the executions take
the same way on the three processes:
- the test functions: the three tests should give the same
answer TRUE or FALSE,
- the absolute value: the three parts of code should take the
same value�a or a,
- the conversion of the stochastic type to IEEE type: the
result is the mean value of the three values,
- the printing functions: the result is the mean value of the
three values printed only with the significant digits.

A distributed algorithm is used to synchronize and
exchange data between the three processes. Each
process sends its value (less than 32 bytes) to the
two others (brother1 & brother2). The correspond-
ing pseudo-code is the following on each process:
Local variable T1, T2
Send A to my brother1
Send A to my brother2
Receive T1 from my brother1
Receive T2 from my brother2
Compute a result RES with A, T1, T2

To test the parallel implementation of the CESTAC
method, a program for solving linear systems using the
Gauss elimination method has been used. Such a program
is interesting because the problem is easily scalable and the
algorithm can perform with or without complete pivoting.
In the first case, the three processes exchange a lot of data
due to the search of the maximum pivot (test and absolute
value functions). In the second case, the estimation of the
round-off error propagation does not need communication
between the processes.

6.2. Results and speed-up

Experiments have been run on the same MPC parallel
computer as the one used in section 3 (three Pentium II-
350 with 128 MB of memory). The goal of these tests is
to compare MPI-MPC 1 & MPI-MPC 2. The computation
time for solving a linear system with the Gauss elimination
method has been measured for the following system sizes
(800, 1200, 1600, and 2000 equations), with and without
pivoting. When solving the system without pivoting, the
computation of the system solution with CADNA does not
involve communications at all, because there are no test and
absolute value functions used. The pivoting algorithm adds
a lot of communications and CADNA computation due to
the search of the maximum pivot and line permutations (in-
significant cost in time compared to communication times).
The measured results are presented in table 4.

As expected, there is no difference between MPI-MPC
1 and MPI-MPC 2 in the non-pivoting case. In presence of
communications, the global computation time is better with
MPI-MPC 2 than MPI-MPC 1 whatever the system size.

Gauss Gauss With pivoting
without with minus without
pivoting pivoting pivoting

System Execution Execution Pivoting time
size time (s) time (s) including com.

No com. MPI- MPI- MPI- MPI-
MPC 1 MPC 2 MPC 1 MPC 2

800 100 151 131 51 31
1200 348 449 414 101 66
1600 786 977 914 191 128
2000 1580 1868 1757 288 177

Table 4. Computation time (in seconds) for
solving linear systems using the Gauss elim-
ination method with the parallel version of the
CESTAC method on the MPC parallel com-
puter.

A more precise analysis of these computation times has
been done. The number of distributed exchanges has been

counted. The mean time of one exchange has been calcu-
lated in table 5.

System Number With pivoting One exchange
size of minus without time

exchanges pivoting (s) (�s)
MPI- MPI- MPI- MPI-

MPC 1 MPC 2 MPC 1 MPC 2
800 646682 51 31 79 48
1200 1450450 101 66 70 46
1600 2574140 191 128 74 50
2000 4018285 288 177 72 44

Mean value 74 47

Table 5. Cost of one distributed exchange.

One exchange includes two communications (see dis-
tributed algorithm above) and one CADNA computation.
The mean time of one exchange is 74 and 47 microseconds
respectively on MPI-MPC 1 and MPI-MPC 2. Thus, the
mean speed-up is 36%. By dividing these two numbers by
two (two communications), the result is 37 and 23.5 mi-
croseconds for one communication and a part of CADNA
computation. The difference between these two values is
13.5 microseconds that is coherent with the latency mea-
surements presented in section 5.

7. Conclusion and future work

In this paper, two implementations of the MPI communi-
cation library on a remote DMA communication primitive
have been presented. The first implementation is built on
top of the kernel-level PUT API of the MPC parallel com-
puter. As a consequence, system calls and network events
signaling by interrupts are used during the communication
phases generating a significant latency overhead. The sec-
ond implementation achieves the MPI communications in
user mode on the same hardware platform, avoiding the use
of system calls and interrupts for signaling network events.
An important improvement on the communication time has
been shown with this optimized implementation. A latency
reduction greater than 40% has been measured for the short
messages. This performance improvement has been con-
firmed for a real application as presented in section 6.

System calls and interrupts have a significant impact on
the performances, but we described a method to avoid them,
without compromising the sharing of the network between
several processes running on the same node.

The presented mechanisms have been run on the LIP6
MPC computer, but can be implemented on any cluster of
PCs using a remote DMA primitive, such as Myrinet clus-
ters for example.

References

[1] A. Fenÿo. Conception et réalisation d’un noyau de commu-
nication bâti sur la primitive d’écriture distante, pour ma-
chines parallèles de type ”grappe de PCs”. PhD. thesis of
University Pierre et Marie Curie, Paris, France, July 2001.

[2] The CADNA software: http://www-anp.lip6.fr/
chpv/english/cadna/.

[3] The MPI forum: http://www.mpi-forum.org.
[4] The Beowulf project: http://www.beowulf.org.
[5] V. Reibaldi. Conception et réalisation d’un routeur de pa-

quets à hautes performances. PhD. thesis of University
Pierre et Marie Curie, Paris, France, 1997.

[6] IEEE Standards Department. IEEE 1355 Standard for Het-
erogeneous Interconnect (HIC) Low Cost Low Latency
Scalable Serial Interconnect for Parallel System Construc-
tion. August 1994.

[7] N. Boden et al. Myrinet: A Gigabit-per-Second Local-Area
Network. IEEE Micro, 15(1):29–36, February 1995.

[8] R. Buyya. High Performance Cluster Computing. Prentice
Hall, NJ, USA, 1999.

[9] J.-M. Chesneaux. Study of the computing accuracy by using
probabilistic approach. In contribution to Computer Arith-
metic and Self-Validating Numerical Methods, ed. C. Ulrich,
(J.C. Baltzer), pages 19–30, 1990.

[10] O. Glück et al. Protocol and Performance Analysis of
the MPC Parallel Computer. Proceedings of 15th In-
ternational Parallel & Distributed Processing Symposium
(IPDPS’2001), page 52, San Francisco, CA, USA, April
2001.

[11] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-
Performance, Portable Implementation of the MPI Message
Passing Interface Standard. Parallel Computing, 22(6):789–
828, September 1996.

[12] D. B. Gustavson. The Scalable Coherent Interface and Re-
lated Standards Projects. IEEE Micro, 12(1):10–22, Febru-
ary 1992.

[13] R. P. Martin, A. M. Vahdat, D. E. Culler, and T. E. Anderson.
Effects of Communication Latency, Overhead, and Band-
width in a Cluster Architecture. Proceedings of 24th Annual
International Symposium on Computer Architecture, pages
85–97, Denver, CO, USA, June 1997.

[14] S. Pakin, V. Karamcheti, and A. A. Chien. Fast Messages
(FM): Efficient, Portable Communication for Workstation
Clusters and Massively-Parallel Processors. IEEE Concur-
rency, 5(2):60–73, April-June 1997.

[15] J. Vignes. A stochastic arithmetic for reliable scientific
computation. Mathematics and Computers in Simulation,
35:233–261, July 1993.

[16] J. Vignes and M. La Porte. Error analysis in computing.
Information Processing 74, North Holland, 1974.

[17] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E.
Schauser. Active Messages: a Mechanism for Integrated
Communication and Computation. Proceedings of 19th An-
nual International Symposium on Computer Architecture,
20(2):256–266, Gold Coast, Australia, May 1992.

[18] F. Wajsbürt, J. Desbarbieux, A. Greiner, C. Spasevski, and
S. Penain. An Integrated PCI component for IEEE 1355 Net-
works. Proceedings of EMMSEC’97, Florence, Italy, 1997.

