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Abstract. Many environments in which people and computer agents interact in-
volve deploying resources to accomplish tasks and satisfy goals. This paper in-
vestigates the way that the context in which decisions are made affects the behav-
ior of people and the performance of computer agents that interact with people
in such environments. It presents experiments that measured negotiation behav-
ior in two different types of settings. One setting was a task context that made
explicit the relationships among goals, (sub)tasks and resources. The other set-
ting was a completely abstract context in which only the payoffs for the decision
choices were listed. Results show that people are more helpful, less selfish, and
less competitive when making decisions in task contexts than when making them
in completely abstract contexts. Further, their overall performance was better in
task contexts. A predictive computational model that was trained on data obtained
in the task context outperformed a model that was trained under the abstract con-
text. These results indicate that taking context into account is essential for the
design of computer agents that will interact well with people.

1 Introduction

Technology has opened up vast opportunities for computer agents to interact with peo-
ple in such increasingly diverse applications as online auctions, elderly care systems,
disaster relief operations, and system administrator groups [1, 10]. While these applica-
tions differ broadly in size, scope, and complexity, they are similar in that they involve
people and computers working together in task settings, in which the participants fulfill
goals by carrying out tasks requiring the use of resources. Participants may need to co-
operate, negotiate, or perform other group actions in order to achieve the goals, requir-
ing their reasoning about the potential and likely behaviors of other participants. For
computer agents to interact successfully with people in such mixed human-computer
task settings, they need to meet people’s expectations of teammates.

For example, in the domain of care of elderly patients, the physical challenges and
health problems of this population typically require a team of caretakers—not only
doctors and nurses, but also home health aides, housekeepers, family members. Current
medical care depends on computer systems for scheduling and tracking prescriptions;
computers, of a very small scale, are also key elements of pacemakers and other im-
plantable medical devices. Thus, the agents involved in elder care are both human and
computer-based; they come from different organizations and have different roles. As the



computer agents involved in such care becomemore sophisticated and more of them be-
come connected to the care of a single individual, the need for abilities to coordinate
and work as team members will become important.

In designing computer agents for such settings, it is thus important to understand the
decision-making strategies people deploy when they interact with others and to evaluate
various computational strategies for interacting with people. Formally modeling the
behavior of people, and in particular their decision-making behaviors, raises significant
challenges for computer-agent design.

To investigate the influence of task contexts on decision-making, we deployed a
conceptually simple but expressive game called Colored Trails (CT) [4]. CT explicitly
manifests goals, tasks, and resources in a way that is compelling to people, yet abstracts
away from a complicated underlying domain. By embedding decision-making within a
task context, CT enables investigators to focus on people’s decision-making strategies,
rather than specifying and reasoning about individual domain complexities.

CT differs significantly from the highly abstracted settings typically used in behav-
ioral economics, such as decision trees or normal form tables. These forms completely
hide the underlying relationship between tasks, goals, and resources and fully specify
payoffs for players from potential strategies. We call this abstract representation a table
context. Game-theoretic tools can be applied in such games to provide an idealized no-
tion of appropriate decision-making behavior. The decisions engendered by CT games
can also be described as a table of payoffs, enabling to contrast between task and table
contexts use to embed the same decision.

We analyzed people’s behavior in terms of various social criteria, for which we
give a precise definition in terms of the CT game. We show that people presented with
identical decision-making problems in the task context and the table context perform
strikingly differently, both qualitatively and quantitatively. When making decisions in
the task context, people are more helpful, less competitive and less game-theoretic than
when making decisions in the table context. Surprisingly, the results also indicate that
the task context improves people’s overall performance.

To evaluate the effects of these differences for computer agents that interact with
people, we trained predictive models on data obtained in both types of contexts. The
models explicitly represented social factors that have been shown to affect people’s
behavior [3]. Most importantly, the model trained on data obtained in the task con-
text outperformed the model trained on data obtained in the table context. In addition,
overall performance was better when the context was task-oriented, rather than payoff-
oriented.

For designers of intelligent agents, the important lesson of these experiments is that
the design of computer agents that will operate in mixed human-computer settings must
consider how the decisions presented to people will be contextualized and reflect the
human decision-making process in that context, not merely in a purely idealized (even
if theoretically equivalent) manner. As much as we might like it, there is no way for
computer agents to escape into pure game theory when participating in mixed systems.



2 Empirical Methodology

This section describes the two types of context, task context and table context, we in-
vestigated and the experiments conducted in those settings.

In the task context, a 2-player CT game was played on a 4x4 board of colored
squares with a set of chips. One square on the board was designated as the goal square.
Each player’s icon was initially located in a random, non-goal position. To move to an
adjacent square a played needed to surrender a chip in the color of that square. Players
were issued four colored chips. They had full view of the board and each others’ chips,
and thus they had complete knowledge of the game situation.

Players were designated one of two roles: proposer players could offer some subset
of their chips to be exchanged with some subset of the chips of responder players;
responder players could in turn accept or reject proposers’ offers. If no offer was made,
or if the offer was declined, then both players were left with their initial allocation
of chips. Chip exchanges were enforced by the game controller: after the negotiation
ended, both players were automatically moved as close as possible to the goal square.

The scoring function for players depended solely on their own performance: 100
points for reaching the goal; 10 points for each tile left in a player’s possession; 15
points deducted for any square in the shortest path between player’s final position and
the goal-square. These parameters were chosen so that getting to the goal was by far the
most important component, but if an player could not get to the goal it was preferable
to get as close to the goal as possible. The score that each player received if no offer
was made was identical to the score each player received if the offer was rejected by
the deliberator. We refer to this score as the no negotiation alternative and to the score
that each player received if the offer was accepted by the deliberator as the proposed
outcome score.

Snapshots of the CT GUI of one of the games used in the experiment is shown
in Figure 1. The Main Window panel, shown in Figure 1a, includes the board game,
the goal square, represented by an icon displaying the letter G, and two icons, “me”
and “sun”, representing the location of the two players on the board at the onset of the
game.4 The bottom part of theMainWindow panel, titled “chips”, shows the chip distri-
butions for the players. In the game shown here, both players lack sufficient chips to get
to the goal square. A proposer uses the Propose Exchange panel, shown in Figure 1b, to
make an offer to a responder. The Path Finder panel, shown in Figure 1c, provides de-
cision support tools to be used during the game. It displays a list of path suggestions to
the goal, the missing chips required to fulfill each path, and the best position the agent
can reach relative to its scoring function. Agents can view this information for the chip
set that is currently in their possession, or for any hypothetical chip set for each of the
players.

The table context consisted of a completely abstract representation of a CT game
as a list of potential offers that could be selected by the proposer player. Each offer
was represented as a pair of payoffs for the proposer and the responder. Figure 2 shows
a snapshot of a game in this representation as seen from the point of view of a pro-
poser player. Each cell in the table represents an offer, and selecting a cell corresponds
4 CT colors have been converted to grey scale in this figure.



(a) Main Window Panel
(onset of game)

(b) Propose Exchange
Panel

(c) Path Finder Panel

(d) Message History Panel

Fig. 1: Snapshots of Interaction in a Task Context



to choosing the offer associated with its payoffs. One of the cells represents the no-
negotiation alternative, which is presented as the default outcome of the interaction.

Fig. 2: Snapshot of an Interaction in a Table Context

A total of 32 subjects participated in the experiment, equally divided between the
two conditions. They interacted with each other for 96 rounds. Participants in the task
condition interacted with each other using the CT environment, whereas those in the
table condition interacted with each other using the payoff matrix representation. Par-
ticipants only interacted with others in their condition group; they were not provided
any information about each other. In both conditions, participants were compensated in
a manner that depended solely on their individual scores, aggregated over all rounds of
interaction.

For each CT round that was played in the task condition, an equivalent round was
played in the table condition, in the sense that the payoff pair at the intersection of each
row and column represented the score in the CT round for the corresponding offer and
response. For example, the payoff matrix shown in Figure 2 is equivalent to the CT
game shown in Figure 1.

3 Results and Analysis

We use the term table proposers and task proposers to refer to the participants that
were designated with the proposer role in the table or task condition respectively and
similarly for the responder role. We use the term offer benefit to refer to the difference
between the proposed outcome for an offer and the no-negotiation alternative score of
the round. We measured proposers’ behavior in terms of two features: The degree to



which proposers were selfish or helpful was defined in terms of the average offer ben-
efit they proposed for themselves or for responders, respectively; the degree to which
proposers were competitive was defined in terms of the difference between the average
offer benefit they proposed for themselves and the offer benefit they provided to respon-
ders. Although we have given a psychological interpretation to these features, we do not
imply that they are independent. For example, proposers can exhibit both a degree of
selfishness and a degree of helpfulness based on the average benefit of their offers.

3.1 The Effect of Contexts on Human Behavior

Table 1 presents the average offer benefit to participants in both task and table con-
dition for each role designation. Table proposers offered significantly more benefit to

Table 1: Average Benefit of Offer

Offer Benefit to Num.
Proposer Responder acceptances

Task 82.3 47.6 62 (77%)
Table 98 36 69 (77%)

themselves than did task proposers (t-test p < 0.05). Also, table proposers offered sig-
nificantly less benefit to table responders than task proposers offered to task responders
(t-test p < 0.01). Thus, the task context had the effect of making proposersmore helpful
and less selfish when interacting with responders.

The difference between the average offer benefit to proposers and to responders is
positive in both conditions (t-test p < 0.05). Although in both conditions proposers are
competitive, the offer difference was larger in the table condition than in the task con-
dition (t-test p < 0.05). Thus, on average table proposers were more competitive than
task proposers. We hypothesized that table proposers made competitive offers more of-
ten than did task proposers. To test this hypothesis, we performed a within-round com-
parison of the offer benefit in both conditions. Table 2 presents the number of rounds
in which the difference between the proposed benefit for proposers and responders was
positive (column “Proposer> Responder”) and the number of rounds in which this dif-
ference was negative (column “Proposer < Responder” ). As shown by the table, table
proposers made offers that benefited themselves over responders significantly more of-
ten than task proposers (chi-square p < 0.05). These results confirm that table proposers
are more likely to be competitive than proposers.

Table 2 also shows that 62% of all offers made by table proposers benefited them-
selves more than table responders, while 60% of all offers made by task proposers ben-
efited task responders more than themselves (chi-square p < 0.05). This striking result
indicates that task proposers were helpful more often than they were selfish, whereas
table proposers were selfish more often than they were helpful.

Having established that the context in which decisions are made affected the behav-
ior of proposers, we investigated whether it affected the behavior of responders. It is



Table 2: Frequency of Competitive Offers

Proposer > Responder Proposer < Responder
Task 26 (27%) 51 (60%)
Table 60 (62%) 24 (28%)

more difficult to perform within-round comparisons of responder behavior across task
and table conditions, because the decision of whether to accept or reject an offer de-
pends on the exchange offered by proposers. For the same round, this exchange may
be different for task and table conditions. As shown in Table 1, there was no difference
in the ratio of exchanges accepted by responders (77%) between conditions. However,
this result does not mean that responders were not affected by context; as also shown
in Table 1, they were responding to exchanges that were more helpful to them in the
task condition. We expected this pattern to hold for accepted offers as well; thus, we
expected that the offers that were accepted by responders were more helpful to them in
the task condition than in the table condition.

Table 3: Average Benefit for Accepted Exchanges

Proposer Responder Total
Task 79.5 56.4 135.9
Table 85.6 40.7 126.3

Table 3 shows the exchange benefit to proposers and responders averaged over all
accepted proposals, as well as the total accumulated benefit in each condition. The ben-
efit to responders from accepted proposals was significantly higher in the task condition
than in the table condition, and conversely for the proposers (t-test p < 0.05). These
results indicated that task responders outperformed table responders, whereas table pro-
posers outperformed task proposers. Interestingly, as the rightmost column shows, the
total performance (combined proposers and responders scores) was higher in the task
condition than in the table condition. The benefit for accepted exchanges is a mea-
surement of performance, because the outcome of each round of interaction was fully
determined by the action of the responder (t-test p < 0.1). Although this result was not
significant at the p < 0.05 confidence interval, the trend it indicates suggests that task
context has a positive effect on the combined performance of participants.

To compare between the benefits of proposed and accepted exchanges, we plotted
the average benefit to proposer and responder from these offers in both conditions, as
shown in Figure 3. We define the discrepancy between two offers to be the Euclidean
distance between the two points representing the benefits of the offers to proposers
and responders. As apparent from the figure, the discrepancy between proposed and
accepted offers was significantly smaller in the task condition than in the idealized
condition (t-test p < 0.05). This result suggests that on average, task proposers were
more accurate at estimating the offers that were likely to be accepted by responders.
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Fig. 3: Benefit for Proposed Exchanges vs. Accepted Exchanges

Also shown in Figure 3 is that in both conditions, accepted offers were more bene-
ficial to responders than proposed offers; also in both conditions, accepted offers were
less beneficial to proposers than proposed offers. This result suggests that responders
expected proposers to be more helpful and less selfish in both conditions; this aligns
with our findings that players were competitive across task and idealized contexts. How-
ever, the difference between the benefit to responders from proposed and accepted offers
was significantly greater in the task condition than in the idealized condition. Similarly,
the difference between the benefit to proposers from proposed and accepted offers was
significantly greater in the idealized condition than in the task condition. This implies
that in the idealized condition, responders expect proposers to be less selfish, while in
the task condition, responders expect proposers to be more helpful. A possible expla-
nation is that the task context induced responders to expect more help from proposers
than the idealized context.

3.2 Discussion of Alternative Explanations

To address the question of whether the difference in behavior can be explained by the
lack of an explicit representation of payoff in the task condition, we ran an experiment
that used the CT game, but allowed subjects to view the payoffs for potential offers
for all players. This intermediate representation preserves the task context as well as
displaying the payoff function for both players. Results using the same set of games as
in the original experiment show that there was no significant difference in the average
benefit allocated to proposers and responders in this intermediate representation than in
the task condition.

In addition, we ruled out the effect of cognitive demands on subjects by includ-
ing decision support tools for both modes of decision representation. In the CT game,
subjects could use the PathFinder panel, shown in Figure 1c to query the system for
suggestions about the best paths to take given any hypothetical chip distribution. When
presented with a table of payoffs in the table condition, subjects could sort the table
by their own, or the others’ benefit. In this way, subjects were allowed to focus on the
interaction rather than on the cognitive complexity of the decision-making.



3.3 Comparison with Game Theoretic Strategies

We now turn to a comparison between the offers that were made in each condition and
the offers dictated by the exchange corresponding to the Nash equilibrium strategy. We
use the term NE exchange of a round to refer to the exchange prescribed by the Nash
equilibrium strategy profile for the round. This exchange offers the maximumbenefit for
the proposer, out of the set of all of the exchanges that offer non-negative benefits to the
responder. In our scenarios, the NE exchange generally amounted to selfish, unhelpful,
competitive offers.

We expected table proposers to be more likely to offer NE exchanges than task pro-
posers. Table 4 shows the number of NE offers made by proposers in both conditions.
The proportion of NE offers was significantly higher in the table condition (59%) than
in the task condition (15%) (chi-square t < 0.01).

Table 4: Frequency of Nash Equilibrium Offers

Num.. offers
Task 13 (15%)
Table 57 (59%)

To compare the extent to which the exchanges made by proposers in the two type of
contexts differed from the NE exchange, we plotted the average benefit offered by NE
exchanges and by proposed exchanges for both task and table conditions, as shown in
Figure 4.
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Fig. 4: Benefit from Proposed Exchanges vs. NE Exchanges

The difference between the average benefit to responders from the NE offer and
the average proposed exchange was close to zero in the table condition, and large and
positive in the task condition (t-test p < 0.05). Similarly, the difference between the
benefit to proposers from the NE offer and the average proposed exchange was close



to zero in the table condition, and large and negative in the task condition (t-test p <

0.05). The Euclidean distance between the two points representing the NE benefit to
proposers and responders was significantly larger in the task condition than in the table
condition. In fact, there was no statistically significant difference between offers in the
table condition and NE offers. These results are strikingly significant, showing that
participants who make decisions in the table condition are more likely to follow the
game-theoretic paradigm.

There is a discrepancy between these findings and those of the behavioral economic
studies, which show that people do not generally adhere to game theoretic equilib-
ria, and display variance within their play. Several differences between the structure of
the negotiation scenario used in our experiments and the games traditionally used in
behavioral economics may explain this difference. First, our scenario presented partic-
ipants with some guaranteed reward (the no-negotiation alternative) if agreement was
not reached at the end of the interaction. Traditional behavioral economic games do not
provide such reward. (For example, if no agreement is reached in the ultimatum game,
both players end up empty handed.) It is possible that in table contexts, proposers saw
fit to make selfish exchanges, because they could always fall back on their guaranteed
outcome if that offer was rejected.5 Second, each interaction in our experiment varied
which player needed the other to get to the goal. In some rounds, both players were mu-
tually dependent on each other. In traditional behavioral economic experiments, play-
ers’ dependencies are static. A possible hypothesis, worthy of further investigation, is
that table participants were more likely to follow game theoretic equilibria in one type
of dependency but not in others.

4 The Effect of Contexts on Learner Agents

This section presents results that indicate the effects of task contexts on the performance
of computer systems that learn a model of people’s negotiation behavior. Using the
data collected from the task and table contexts, we trained a computational model for
predicting the actions of human proposers. We adopted the model proposed by Gal
and Pfeffer [2] for predicting people’s bidding behavior in multi-attribute negotiation.
In this model, proposals are generated by converting people’s utility functions into a
stochastic function that assigns a probability to each potential exchange at each round
of interaction.

At each round of interaction k, the inputs to the model were NNk
P and NNk

R,
the no-negotiation alternative scores for the proposer and responder, and POk

P (x) and
POk

R(x), the proposed outcome scores for the proposer and responder for a poten-
tial exchange x. We omit the superscript k when it is clear from context. Using these
features, we can define the following social factors for the proposer agent, denoted
s1, s2, s3 that match the features we used to analyze human behavior in Section 3.
– Selfishness measures the extent to which proposers cared about their individual
benefit.

s1(x) = POP (x) − NNP

5 This phenomenon, deemed the “endowment effect”, has been documented in the psychology
literature [6]).



– Helpfulness measures the extent to which proposers were interested in the welfare
of the group as a whole, as well as their own benefit.

s2(x) = (POP (x) + POR) − (NNP + NNR)

– Competitiveness measures the extent to which proposers cared to do better than
others. Such participants were willing to sacrifice some of their own benefit in
order to increase this difference.

s3(x) = (POP (x) − NNP ) − (POR(x) − NNR)

For each potential exchange xj , we defined a “social” utility function u(xj) for a
general proposer player that is a weighted sum of the features defined above:

u(xj) =
3∑

i=1

wi · si(xj)

where wi denotes the weight associated with social factor si.
This utility function is transformed into a stochastic model that assigns a probability

to each possible exchange at each round of interaction. A soft-max function is used to
make the likelihood of each exchange proportional to the likelihood of other possible
exchanges. This model is well suited for capturing certain aspects of human behavior:
The stochasticity of the soft-max function allows for proposers to deviate from choosing
the action associated with the highest utility, but in a controlled way. In addition, the
likelihood of choosing an exchange that incurs a high social utility will increase if there
are few other similar exchanges that incur high utility, and will decrease if there are
many other similar exchanges.

The model parameters, represented by the feature weights w1, . . . , w3 were trained
using supervised learning. The labeled training set consisted of the exchanges made by
proposers in the task and table conditions. Each instance consisted of pairs of possible
exchanges (x∗, xj), where x∗ was the offer made by the proposer, and xj is any other
possible exchange. To estimate the feature weights of the utility function, we used a
gradient-descent technique that learned to predict the probability of a chosen offer x∗

given any other offer xj as follows:

P (x∗ chosen | x∗ or xj chosen, s∗, sj) =
1

1 + eu(x∗)−u(xl)

Here, s∗ denotes the social factors associated with the offer that was proposed. This
probability represents the likelihood of selecting x∗ in the training set, given xj . The
error function to minimize is defined as the extent to which the model is not a perfect
predictor of this concept,

errj = 1 − P (x∗ chosen | x∗ or xj chosen .s∗, sj)

Taking the derivative of this function, we obtain the following update rule for the fea-
turesw, where α is a constant learning rate, and d = s∗ − sj .

w = w + α(errj)
2 · (1 − errj) · d



We learned separate models for the task and table contexts. In both cases, we trained
and tested the algorithms separately, using ten-fold cross validation. We obtained the
following average posterior parameter values for the features selfishness, helpfulness
and competitiveness in each condition.

Condition Learned weights
Task (5.20, 3.2, 0.40)
Table (8.20, 1.3, 8)

As shown in the table, both task proposers and table proposers are selfish, in the sense
that they place high weight on their own benefit. However, table proposers assign higher
weight to their own benefit than do task proposers, suggesting they are more selfish than
task proposers. Task proposers also assign a higher weight to helpfulness and signifi-
cantly lower weight to competitiveness than table proposers. These values align with
the trends reported in the Results and Analysis section.

We evaluated both models on test sets comprised of held out data from both task
and table conditions. We report the average negative log likelihood for all models in
the following table as computed using ten-fold cross validation. A lower value for this
criteria means that the test set was given a higher likelihood by the model.

Training / Testing Average Log
Condition Likelihood
Task / Task 0.144
Table / Task 1.2
Table / Table 0.220
Task / Table 1.2

As shown by the table, the model trained and tested on the task condition was able to
fit the data better than the model trained and tested in the table condition, indicating
that computer agents participating in mixed human-computer task settings must model
human performance in a way that reflects the context under which the decision was
made.

In addition, the model trained in the task condition outperformed the model trained
in a table context when both models were evaluated in task contexts. (And conversely
for the model trained in the table condition.) The extent to which both models under-
performed when evaluated in the context they were not trained on was similar for both
conditions. These results clearly imply that the context in which decisions are placed
affects the performance of computer models that learn to interact with people.

5 Related Work

A series of studies spawned by the seminal work of Tversky and Kahneman [11, 7]
show that the way decisions, outcomes, and choices are described to people influence
their behavior, and these different “framings” fundamentally affect people’s perceptions
and conceptualizations. For example, people’s decision-making is sensitive to the pre-
sentation of outcomes as losses or wins and to the presence of alternative choices [12].
In addition, decisions are influenced by the labeling of interactions with terms that carry



cultural or social associations [8]. Some of these framing effects (e.g., presence of al-
ternatives) abstract away from domain specifics, while others (e.g., social associations)
typically rely on real world or domain knowledge and experience, sometimes quite sub-
tly. Both types of framing effect may be investigated using CT. For example, we have
conducted a preliminary study of the effects of social relationships on decision-making
in CT [9].

Our work is fundamentally different from work that addresses the effects of graph-
ical versus tabular representations on people’s decision-making [13, 5]. This work has
shown that performance on particular tasks is enhanced when there is a good match
between the mode used to represent a task and the cognitive resources required to com-
plete it. It aims to present information in a way that provides good “cognitive fit”, a
vivid representation that overcomes the constraints of human information processing.
In contrast, we examine whether the structural features that are inherent in task contexts,
such as the relationship between goals and resources, affect people’s decision-making.
We do not address the cognitive-load implications of different contexts or with their
mode of representation. In fact, we control for the effects of cognitive load in both task
and table settings by providing participants with decision-support tools.

Lastly, recent work on modeling the social factors that affect people’s decision-
making behavior have concentrated on task contexts only [9, 3]. This work extends
these approaches by comparing models of decision-making in task contexts and table
contexts.

6 Conclusion and Future Work

We have shown that when making decisions placed in the context of a task setting,
people behave more helpfully, less selfishly, and less competitively than when making
decisions in the context of a table of payoffs. Further, people are significantly more
likely to behave according to game theoretic equilibria in table contexts, which has
a negative effect on their performance, compared to their behavior in task contexts.
Moreover, people do not behave differently in task contexts when they are given access
to the possible payoffs for themselves and others. We induced predictive models of
the decision-making processes, showing that when learning in task contexts, computer
players are better at predicting people’s behavior than when learning in completely
abstract contexts.

The results reported in this study suggest that when building a system for human-
computer interaction, placing the decisions in task contexts will improve the perfor-
mance of both people and computer agents that learn from people. Therefore, designers
of systems that involve people and computers interacting together need to decide how
to appropriately contextualize the decisions they present to participants.

While our experiments were performed in a relatively simple and flat task context,
the fact that differences were found in this context suggest that it is likely there will be
even greater ones in more complex settings. Our results provide a guideline for agent
designers, specifically that the right context should be used when investigating human
decision-making processes. We have presented an infrastructure for conducting such an
investigation, and a methodology for how it might be done.



7 Acknowledgments

Development and dissemination of the Colored Trails formalism is supported in part by
the National Science Foundation under Grant No. CNS-0453923 and IIS-0222892.

References

1. Rajarshi Das, James E. Hanson, Jeffrey O. Kephart, and Gerald Tesauro. Agent-human
interactions in the continuous double auction. In B. Nebel, editor, Proc. 17th International
Joint Conference on Artificial Intelligence (IJCAI’01), 2001.

2. Y. Gal and A. Pfeffer. Predicting people’s bidding behavior in negotiation. In P. Stone and
G. Weiss, editors, Proc. 5th International Joint Conference on Multi-agent Systems (AA-
MAS’06), 2006.

3. Y. Gal, A. Pfeffer, F. Marzo, and B. Grosz. Learning social preferences in games. In Proc.
19th National Conference on Artificial Intelligence (AAAI’04), 2004.

4. B. Grosz, S. Kraus, S. Talman, and B. Stossel. The influence of social dependencies on
decision-making. Initial investigations with a new game. In Proc. 3rd International Joint
Conference on Multi-agent Systems (AAMAS’04), 2004.

5. S. L. Jarvenpaa. The effect of task demands and graphical format on information processing
strategies. Management Science, 35(3):285–303, 1989.

6. D. Kahneman, J.L. Knetsch, and R.H. Thaler. The endowment effect, loss aversion, and
status quo bias. Journal of Economic Perspectives, 5:193–206, 1991.

7. D. Kahneman and A. Tversky, editors. Choices, Values, and Frames. Cambridge University
Press, 2000.

8. V. Liberman, S. Samuels, and L. Ross. The name of the game: Predictive power of reputation
vs. situational labels in dertermining prisoners’ dilemma game moves.

9. F. Marzo, Y. Gal, B. Grosz, and A. Pfeffer. Social preferences in relational contexts. In
Fourth Conference in Collective Intentionality, 2005.

10. M.E. Pollack. Intelligent technology for an aging population: The use of AI to assist elders
with cognitive impairment. AI Magazine, 26(9), 2006.

11. A. Tversky and D. Kahneman. The framing of decisions and the psychology of choice.
Science, 211:452–458, 1981.

12. A. Tversky and I. Simonson.
13. I. Vessey. Cognitive fit: A theory-based analysis of the graphs versus tables literature. Deci-

sion Sciences, 22(2):219–240, 1991.


