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Abstract: A mathematical model of amperometric biosensors has been developed. The 
model is based on non-stationary diffusion equations containing a non-linear term related to 
Michaelis-Menten kinetics of the enzymatic reaction. Using digital simulation, the influence 
of the thickness of enzyme membrane on the biosensor response was investigated. The 
digital simulation of the biosensor operation showed the non-monotonous change of the 
maximal biosensor current versus the membrane thickness at the various maximal enzymatic 
rates. Digital simulation was carried out using the finite difference technique. Results of the 
numerical simulation was compared with known analytical solutions. This paper presents a 
framework for selection of the membrane thickness, ensuring the sufficiently stable 
sensitivity of a biosensor in a required range of the maximal enzymatic rate. 
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Introduction 

Biosensors are analytical devices that are based on the direct coupling of an immobilised 
biologically active compound with a signal transducer and an electronic amplifier [1-3]. Starting from 
the publication of Clark and Lyons in 1962 [1], the amperometric biosensors became one of the 
popular and perspective trends of biosensorics [2]. The amperometric biosensors measure the changes 
of the current of indicator electrode by direct electrochemical oxidation or reduction of the products of 
the biochemical reaction [4-6]. In amperometric biosensors the potential at the electrode is held 
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constant while the current is measured. The amperometric biosensors are known to be reliable, cheap 
and highly sensitive for environment, clinical and industrial purposes. 

The understanding of the kinetic peculiarities of the biosensors is of crucial importance for their 
design. Because it is not generally possible to measure the concentration of substrate inside enzyme 
membranes, starting from seventies various mathematical models of amperometric biosensors have 
been developed and used as an important tool to study and optimise analytical characteristics of actual 
biosensors [7-9]. A comprehensive study of the mathematical modelling of amperometric biosensors is 
given in [10]. The goal of this investigation is to make a model allowing an effective computer 
simulation of membrane biosensor as well as to investigate the influence of the physical and kinetic 
parameters on the response of the biosensors. The developed model is based on non-stationary 
diffusion equations, containing a non-linear term related to the enzymatic reaction [11-13].  

One of the most critical characteristic of biosensors is their stability [14]. The operational stability 
of a biosensor response may vary considerably depending on geometry and method of sensor 
preparation, a transducer use and some other parameters. Furthermore it is strongly depend upon the 
response rate limiting factor, i.e. substrate diffusion and enzymatic reaction rate. In this paper the 
influence of the biosensor geometry on the biosensor stability is investigated. A framework for 
selection of the enzyme membrane thickness, ensuring the sufficiently stable biosensor response in a 
required range of the enzymatic rate has been described. 

In this investigation, digital simulation of the biosensor response was carried out using the implicit 
finite difference scheme [15-18]. The software has been programmed in C language [19]. The program 
built was employed to investigate the influence of the enzyme membrane thickness, the substrate 
concentration as well as the maximal enzymatic rate on the biosensor response. The program was used 
also for the numerical investigation of the kinetics of the biosensors response taking place during 
phenols detection in waste waters [20]. 
 
Mathematical Model 

Consider an enzyme-catalysed reaction  

PS E→ .              (1) 

In this scheme the substrate (S) binds to the enzyme (E) and converts to the product (P).  
The biosensor can be considered as an enzyme electrode, having a layer of enzyme immobilised 

onto the surface of the probe. Let us assume the symmetrical geometry of the electrode and 
homogeneous distribution of immobilised enzyme in the enzyme membrane. Coupling the enzyme-
catalysed reaction in enzyme layer with the one-dimensional-in-space diffusion, described by Fick’s 
law, leads to the following equations: 
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where x and t stand for space and time, respectively, S(x, t) is the substrate concentration function, P(x, 
t) is the reaction product concentration function, Vmax is the maximal enzymatic rate attainable with 
that amount of enzyme when the enzyme is fully saturated with substrate, KM is the Michaelis constant, 
d is the thickness of enzyme layer, T is full time of biosensor operation to be analysed, DS and DP are 
diffusion coefficients of the substrate and product, respectively.  

Let x = 0 represents the electrode surface, while x = d represents the bulk solution/membrane 
interface. The operation of biosensor starts when some substrate appears over the surface of the 
enzyme layer. The initial conditions (t = 0) are 

,)0,(,0,0)0,( 0SdSdxxS =<≤=          (4) 

,0,0)0,( dxxP ≤≤=             (5) 

where S0 is the concentration of substrate in the bulk solution. 
In case of amperometric biosensors, due to electrode polarisation the concentration of the reaction 

product at the electrode surface is being permanently reduced to zero. The substrate does not react at 
the electrode surface. If the substrate is well-stirred and in powerful motion, then the diffusion layer (0 
< x < d) will remain at a constant thickness. Consequently, the concentration of substrate as well as 
product over the enzyme surface (bulk solution/membrane interface) remains constant during the 
biosensor operation. This is used in the boundary conditions (0 < t ≤ T) given by  
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0),(),0( == tdPtP .            (7) 

The measured current is accepted as a response of a biosensor in a physical experiment. The current 
depends upon the flux of the reaction product at the electrode surface, i.e. at border x = 0. 
Consequently, the density i(t) of the anodic current at time t can be obtained explicitly from Faraday’s 
law and Fick’s low using the flux of the product concentration at the surface of the electrode 

0
Pe)(

=∂
∂=

xx
P

FDnti ,            (8) 

where ne is a number of electrons, involved in charge transfer at the electrode surface, and F is Faraday 
constant, F = 96485 C/mol. 
 

Digital Simulation 

Definite problems arise when solving analytically the non-linear partial differential equations with 
complex boundary conditions [12,16]. To obtain an approximate analytical solution, approximation 
and classification of each different condition are usually needed. On the other hand, the digital 
simulation to obtain a numerical solution can be applied almost to any case. Consequently, the problem 
(2)-(7) was solved numerically. 

The finite difference technique was applied for discretization of the mathematical model [15]. We 
introduced an uniform discrete grid in both: x and t directions  [21]. An implicit linear finite difference 
scheme has been built as a result of the difference approximation of Eqs. (2)-(7). The resulting system 
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of linear algebraic equations was solved efficiently because of the tridiagonality of the matrices of the 
systems. Having a numerical solution of the problem (2)-(7), the density of the biosensor current i(t) 
can be calculated easily. 

The mathematical model as well as the numerical solution of the problem was evaluated for 
different values of the maximal enzymatic rate Vmax, substrate concentration S0, as well as the 
membrane thickness d. The following values of the parameters were constant in the numerical 
simulation of all the experiments: 
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The evolution of the biosensor current at the maximal enzymatic rate Vmax of 10-7  mol/cm3s is 
presented in Fig. 1. The biosensor response was modelled for biosensors having four different 
membrane thickness d: 0.001, 0.0015, 0.01, 0.015 cm. One can see in Fig. 1 the biosensor current 
appears with some delay at relatively thick enzyme layers. This delay increases with the increase of the 
enzyme membrane thickness. Comparing the evolution of the biosensor current (Fig. 1) in two cases of 
relatively thin (d =  0.001 and 0.0015 cm) membrane, one can see that the biosensor response is 
notable higher at thicker membrane (d = 0.0015 cm) than at thinner one (d = 0.001 cm). However, 
comparing the biosensor responses in other two cases of ten times thicker  (d = 0.01 and 0.015 cm) 
membranes, we see the opposite tendency: the biosensor of thicker (d = 0.015 cm) membrane generates 
lower response than thinner one (d = 0.01 cm). We discuss the effect of the membrane thickness on the 
biosensor  response in details. 

The maximal biosensor current imax (the biosensor response) as well as the time moment of 
occurrence of the maximal current (response time) were assumed and analyzed as ones of the most 
important characteristics of a biosensor.  

 

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

4

3

1

2

i ,
   

µ A
/c

m
2

t, s  
Figure 1. The dynamics of the biosensor current i at the maximal enzymatic rate Vmax = 10-7 

mol/cm3s and four membrane thickness d: 0.001 (1), 0.0015 (2), 0.01 (3), 0.015 (4) cm, S0 = 
2×10-8 mol/cm3. 



Sensors 2003, 3   
 

 

252 

In digital simulation, the biosensor response time was assumed as the time when the absolute 
current slope value falls below a given small value normalised with the current value. In other words, 
the time needed to achieve a given dimensionless decay rate ε is used 
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Consequently, the maximal biosensor current imax was assumed as the current at the biosensor 
response time TR. We employed ε = 10-6. However, the response time TR as an approximate steady-
state time is very sensitive to the decay rate ε, i.e. TR → ∞, when ε → 0. Because of this we investigate 
the change of a half of steady-state time [12]. The resultant relative output signal function i*(t) can be 
expressed as: 
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where i(t) is the output current density at time t as defined in (8), iR is assumed as the steady-state 
current. Let us notice, that 0 ≤ i*(t) ≤ 1 at all t ≥ 0, i*(0) = 1 and i*(TR) = 0. Let T0.5 be the time at 
which the reaction-diffusion process reaches the medium, called half time of steady-state or, 
particularly, half of the time moment of occurrence of the maximal current, i.e. i*(T0.5) = 0.5. 
 
 
Results and Discussion 

Using computer simulation we have investigated the dependence of the maximal biosensor current 
on the thickness of the enzyme membrane. The maximal biosensor current imax was assumed as steady-
state current i∞, calculated at the response TR time defined by formula (10), imax = i∞ = iR. The 
investigation was carried out at the following values of Vmax: 10-9, 10-8, 10-7 and 10-6 mol/cm3s to get 
results for a wide range of values of the maximal enzymatic rate. Fig. 2 shows the maximal current 
while Fig. 3 presents the half time T0.5 of the maximal current versus the thickness d of the enzyme 
membrane. Fig. 2 presents also values of the stationary current i∞ [22], 
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where σ dimensionless diffusion modulus, Damkoehler number, 
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Formula (12) is valid at substrate concentrations significantly lower than Michaelis constant, S0 << 
KM. In Fig. 2, values of i∞ obtained by (12) are depicted as a function of the membrane thickness d. 
Due to the assumption of imax = i∞ = iR and substrate concentration S0 = 0.2KM < KM, employed in the 
calculations above, the analytical solution (12) compares sufficiently well with the numerical solution 
of the model (2)-(7) at different enzymatic rates Vmax and membrane thickness d. 
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Figure 2. The dependence of the maximal biosensor current imax on the thickness d of the 
enzyme membrane at four maximal enzymatic rates Vmax: 10-9 (1), 10-8 (2), 10-7 (3) and 10-6 (4) 
mol/cm3s, S0 = 2×10-8 mol/cm3. Symbols are numerical solutions, while lines are analytical ones 
(formula 12). 

One can see (Fig. 2) that  the maximal biosensor current imax is a non-monotonous function of d at 
all values of the maximal enzymatic rate Vmax. The higher maximal enzymatic rate Vmax corresponds to 
the greater maximal value of imax. 

From the results, obtained by digital simulation, we determine, that the maximum of imax equals to 
about 7.72 µA/cm2 at Vmax = 10-6 mol/cm3s, while imax ≈ 2.45 µA/cm2 at Vmax = 10-7 mol/cm3s. The 
higher maximum of imax corresponds to thinner enzyme membrane. In the case of Vmax = 10-6 mol/cm3s, 
the maximum of imax(d) is gained at d ≈ 0.0009 cm, while in the case of Vmax = 10-7 mol/cm3s, the 
maximum of imax is gained at d ≈ 0.0028 cm. 

Using (12) we find analytically the membrane thickness d, at which the state-state current i∞ gains 
the maximum at given ne, DS, S0, Vmax, KM and S0 << KM. At first, we calculate a derivative of i∞(d) 
with the respect to the thickness d 
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Then we look for σ at which that derivative gets zero  

0)sinh()cosh()(cosh 2 =++− σσσσ .          (15) 

Eq. (15) was solved numerically. A single solution σ = σmax ≈ 1.5055 was obtained. 
Consequentially, i∞ gains the maximum at the membrane thickness dmax, where  
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Accepting (9), we find, that dmax ≈ 0.000825, imax ≈ 8.1 at Vmax = 10-6; dmax ≈ 0.00261 cm, imax ≈ 2.56 
µA/cm2 at Vmax = 10-7 mol/cm3s etc. These values compare sufficiently well with the corresponding 
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values obtained by the numerical simulation of the biosensor operation. Corresponding values of the 
maximal current imax as well as thickness d varies by about 5%. That variation in values appears 
because of substrate concentration S0 = 0.2KM. The analytical solution (12) is valid at S0 << KM only, 
while the numerical one does not have such kind of restrictions at all. Because of this, values of dmax, 
calculated using the model (2)-(7) are more accurate than analytical ones at S0 = 20 nmol/cm3 and (9). 

Using formula (12) we find that the maximal biosensor current as a function of the membrane 
thickness d gains the maximum when the diffusion modulus σ equals to σmax = 1.5055. According to 
(13) and (15) σmax does not depend on the substrate concentration S0. Nevertheless, using the numerical 
simulation we have calculated values of σmax at some more values of S0. We obtained the following 
values: σmax  ≈ 1.51 at S0 = 2×10-11, σmax ≈ 1.55 at S0 = 2×10-9 mol/cm3 and σmax ≈ 2.5 at S0 = 2×10-7 
mol/cm3. The modulus σmax is approximately constant at S0 << KM, so that it is about coincident with 
the value obtained from the analytical solution (12). σmax increases with increase of substrate 
concentration S0. The increase is especially notable at substrate concentrations S0 > KM. The 
dependence of σmax on Vmax is practically insignificant: σmax varies by less than 3.5% while Vmax 
changes from 10-9 to 10-6 mol/cm3s at any concrete S0.  

The stability of the response is one of the most critical characteristics of biosensors [14]. It is very 
important to have biosensors keeping their analytical capability for a long period. Usually the maximal 
enzymatic rate Vmax decreases permanently due to enzyme inactivation. In general, the biosensor 
response is sensitive to changes of Vmax. Fig. 2 shows, that the maximal biosensor current can differ by 
some dozens, changing Vmax. The variation is especially notable in cases of relatively thin enzyme 
membranes. In case of relatively thick enzyme membrane, imax practically does not vary by changing 
Vmax. Consequently, a biosensor containing thicker enzyme layer gives more stable response than a 
biosensor with thinner layer. However, the thick membrane-based biosensors have very durable 
response time (Fig. 3). It is possible to notice (Fig. 3), that the half time T0.5 of the maximal biosensor 
current is about 18.5 s when the membrane thickness d equals to 0.02 cm and Vmax = 10-6 mol/cm3s. 
The half time is even more durable at thicker enzyme membrane as well as lower enzymatic rate, so 
that biosensors of such thickness is of limited applicability in flow injection systems, which are widely 
used for determination of  various compounds [23]. 

Thus, a problem of the membrane thickness optimisation arises. The task is to find the thickness of 
membrane so small as possible, ensuring the stability of the biosensor response at a range of Vmax as 
wide as possible. Let V1 and V2 be two values of the maximal enzymatic rate (V1 < V2) such as we need 
to have stable biosensor response to substrate of concentration of S0. Then we describe the minimal 
membrane thickness dδ(V1, V2, S0), at which the relative difference R(d, V1, V2, S0) between the 
biosensor response (the maximal biosensor current imax) at d = dδ, Vmax = V1  and another one response 
at d = dδ, Vmax = V2  is less than dimensionless decay rate δ 
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where imax(d, Vmax, S0) is the maximal biosensor current at the membrane thickness of d, maximal 
enzymatic rate Vmax and substrate concentration S0. 
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Figure 3. The dependence of the half time T0.5 of the maximal biosensor current on the 
membrane thickness d at four maximal enzymatic rates Vmax: 10-9 (1), 10-8 (2), 10-7 (3) and 10-6 
(4) mol/cm3s, S0 = 2×10-8 mol/cm3. 
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Figure 4. The dependence of the maximal biosensor current imax on the substrate concentration S0 
at five maximal enzymatic rates Vmax: 10-10 (1), 10-9 (2), 10-8 (3), 10-7 (4) and 10-6 (5) mol/cm3s, d 
= dδ(10-7, 10-6, 2 ×10-8) = 0.008 cm, calculated by formula (18) assuming δ = 0.02. 

Let us assume S0 = 20 nmol/cm3s, V1 = 10-7, V2 = 10-6 mol/cm3s and δ = 0.02. From the numerical 
results, presented in Fig. 2, we found dδ ≈ 0.008 cm. We have calculated the response of a biosensor, 
based on the membrane of thickness d = dδ(V1, V2, S0) = 0.008 cm, at wide range of the substrate 
concentration S0 to evaluate the biosensor stability at that range. Fig. 4 shows imax versus S0 at five 
values of Vmax: 10-10, 10-9, 10-8, 10-7 and 10-6 mol/cm3s. No notable difference (Fig. 4) is observed 
between values of imax, calculated at two values of Vmax: 10-7 and 10-6 mol/cm3s, when the substrate 
concentration S0 is less than about 10-6 mol/cm3. Fig. 4 expressively shows the stable response of the 
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biosensor, based on the enzyme membrane of thickness d = 0.008 cm, when the maximal enzymatic 
rate reduces ten times: from 10-6 to 10-7 mol/cm3s. Although the membrane thickness dδ was calculated 
at the substrate concentration S0 = 2×10-8 mol/cm3, the biosensor response is sufficiently stable to the 
substrate of concentration being up to about 10-6 mol/cm3. The dependence of dδ on the substrate 
concentration was noticed before. The biosensor response is very sensitive to changes of Vmax at high 
concentration of substrate. Fig. 4 shows that the response of the biosensor of thickness of 0.008 cm is 
approximately constant at the concentration higher than about 10-5 mol/cm3. Because of this, such 
biosensor is practically unuseful to determinate larger substrate concentration.  

Fig. 5 presents an effect of substrate concentration S0 on the half time T0.5 of the maximal biosensor 
current. The thickness d of the enzyme membrane is the same as above, i.e. d = dδ = 0.008 cm. One can 
see in Fig. 5, T0.5 is a monotonous decreasing function of S0 at Vmax = 10-10, 10-9 and  10-8 mol/cm3s, 
and T0.5 is a non-monotonic function of S0 at Vmax = 10-7 and 10-6 mol/cm3s. The effect of non-
monotonous behaviour of the half time of maximal biosensor current versus substrate concentration 
has been discussed recently for the cases when the biosensor response is under diffusion control [21]. 
However, the most important feature for this investigation is the sufficiently short time of the biosensor 
response. One can see, T0.5 does not exceed 8 s. The biosensor, based on enzyme membrane of 
thickness of 0.008, gives very stable response in a sufficiently short time when Vmax is between 10-7 
and 10-6 mol/cm3s as well as the substrate concentration S0 is less than about 10-6 mol/cm3.  
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Figure 5. The dependence of halftime T0.5 of the maximal biosensor current on the substrate 
concentration S0 at five maximal enzymatic rates Vmax: 10-10 (1), 10-9 (2), 10-8 (3), 10-7 (4) and 10-

6 (5) mol/cm3s, other parameters are the same as in Fig. 4. 

The concept of the minimal membrane thickness dδ(V1, V2, S0), at which the relative difference R(d, 
V1, V2, S0) of the biosensor response is less than the decay rate δ, can be considered as a framework to 
be used for determination of the membrane thickness in a design of biosensors producing highly stable 
response to the substrate of concentration S0 while the enzymatic rate changes from V1 to V2. In this 
case the minimal thickness dδ needs to be calculated at the concrete characteristics of biosensor 
operation: the diffusion coefficients DS, DP, number of electrons ne, Michaelis constant KM and the 
substrate concentration S0 approximate to expected one. Rather often the concentration of analyte to be 
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analysed varies within a known interval. Since the biosensor response is usually more stable at lower 
concentrations of the substrate (Fig. 4) than at higher concentrations, a larger value of the range of 
expected concentrations should be employed in calculation of dδ to ensure the stable response in the 
entire interval of the expected concentrations. In cases when S0 << KM, the imax may be calculated 
analytically from (12), otherwise the model (2)-(7) is preferable for calculation of imax(d, Vmax, S0), used 
in the framework, expressed by formulas (17), (18). 

To be sure, that the framework, based on definition (17) and (18), really helps to find the membrane 
thickness at which the biosensor gives relatively stable response, we calculate the biosensor response 
also in a case of significantly thinner membrane. Fig. 6 shows imax versus S0 at the same values of Vmax 
as in Fig. 4, however the enzyme membrane is eight times thinner, d = 0.001cm. One can see in Fig. 6, 
the biosensor response is very sensitive to changes of Vmax. For example, in a case of S0 = 10-9 mol/cm3, 
the maximal current imax at Vmax = 10-6 mol/cm3s is about 4.7 times higher than imax at Vmax = 10-7 

mol/cm3s (Fig. 6), while the corresponding values of imax are approximately the same in the case when 
the membrane is of thickness dδ(10-7, 10-6, 2×10-8) = 0.008 cm (Fig. 4). 
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Figure 6. The dependence of the maximal biosensor current imax on the substrate concentration S0 
at five maximal enzymatic rates Vmax: 10-10 (1), 10-9 (2), 10-8 (3), 10-7 (4) and 10-6 (5) mol/cm3s, d 
= 0.001cm. 

Let us notice (Fig. 4), that at d = 0.008 cm, the relative difference R (formula 17) between imax at 
Vmax = 10-8 and another one imax at Vmax = 10-7 mol/cm3s is about 0.86 when S0 = 2×10-8 mol/cm3. This 
difference keeps approximately unchanged at all S0 less than about 10-7 mol/cm3. Let us reduce that 
difference. Using definition (18) and results, presented in Fig. 4, we find dδ(V1, V2, 2×10-8) to be equal 
to about 0.017 cm when V1 = 10-8, V2 = 10-6 mol/cm3s, assuming δ = 0.1. 

Fig. 7 plots imax versus S0 at d = 0.017 and the same values of Vmax as above. No notable difference 
is observed between values of imax, calculated at three values of Vmax: 10-8, 10-7 and 10-6 mol/cm3s, 
when the substrate concentration S0 is less than about 5×10-7 mol/cm3. Fig. 7 presents the stable 
response of the biosensor, based on the enzyme membrane of thickness d = 0.017 cm, when the 
maximal enzymatic rate reduces 100 times: from 10-6 to 10-8 mol/cm3s while analysing substrate of 
concentration less than 5×10-7 mol/cm3. 
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Figure 7. The dependence of the maximal biosensor current imax on the substrate concentration S0 
at five maximal enzymatic rates Vmax: 10-10 (1), 10-9 (2), 10-8 (3), 10-7 (4) and 10-6 (5) mol/cm3s, d 
= dδ(10-8, 10-6, 2 ×10-8) = 0.017 cm, calculated by formula (18) accepting δ = 0.1. 

In the high substrate concentration case, S0 >> KM, the stationary current can be expressed as 
follows [25],  

2
maxe dFVn

i =∞ .             (19) 

In the all cases of the investigation of the effect of the substrate concentration on the biosensor 
response, values of imax, obtained by digital simulation at S0 =10-4 mol/cm3, were compared with the 
corresponding values, calculated by formula (19). The difference between two corresponding values 
varies less than 0.1%. Consequentially, in the high substrate concentration case, S0 >> KM, the maximal 
biosensor current can be successfully calculated from formula (19), while (12) may be used in the low 
substrate concentration case, S0 << KM. However, the digital simulation, based on the model (2)-(7), 
may be successfully applied in the entire domain of substrate concentration, and the simulation is 
especially reasonable in the middle substrate concentration case, S0 ≈ KM. 

The sensitivity is one of the most important characteristic of biosensors. The sensitivity BS 
(Acm/mol) of a biosensor can be expressed as a gradient of the maximal biosensor current density imax 
(A/cm2) with respect to the substrate concentration S0 (mol/cm3) 

0

0max
S

)(
S

Si
B

∂
∂

= .             (20) 

Fig. 8 shows the biosensor sensitivity BS versus the substrate concentration S0 at the same five 
maximal enzymatic rates as above in the case of membrane thickness d of 0.017 cm. No notable 
difference is observed between the sensitivity BS, calculated at two values of Vmax: 10-7 and 10-6 
mol/cm3s, when the substrate concentration is less than about 2×10-6 mol/cm3. The biosensor 
sensitivity at Vmax = 10-8 mol/cm3 is about 10% less than in two cases of higher Vmax: 10-7 and 10-6 
mol/cm3s. Let us remind, that the membrane thickness of 0.017 cm has been calculated requiring the 
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relative difference R(d, 10-8, 10-6, 2×10-8) be less than δ = 0.1, i.e. 10%. Because of a large scale that 
minimal difference (0.1) is not practically notable in Fig. 7. However, this easy seems in Fig. 8, which 
represents the biosensor sensitivity. Comparing Figs. 7 and 8 we see direct relation between the 
maximal biosensor current imax as a function of S0 and the function BS of S0.  
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Figure 8. The dependence of the biosensor sensitivity BS (formula 20) on the substrate 
concentration S0 at five maximal enzymatic rates Vmax: 10-10 (1), 10-9 (2), 10-8 (3), 10-7 (4) and 10-

6 (5) mol/cm3s. Other parameters are the same as in Fig. 7. 

Using formula (12) we can calculate also the derivative of the stationary current i∞ with respect to 
S0. In that way we obtain a constant biosensor sensitivity BS for S0 << KM. This stagnancy of BS can be 
also noticed in Fig. 8. One can see in Fig. 8, at high enzymatic rates, e.g. Vmax = 10-7 and 10-6 mol/cm3s, 
the biosensor sensitivity remains approximately constant even at S0 greater than KM. However at low 
enzymatic rates (Vmax = 10-10 and 10-9 mol/cm3s), the sensitivity starts to decrease notable already at S0 
< KM. 

In the high substrate concentration case, S0 >> KM, value of BS can be obtained also from the 
formula (19) as BS = 0, which compares favourably with  the results of digital simulation (Fig. 8). 

Fig. 2 shows the significant influence of the membrane thickness on the biosensor response. 
However, the significance of the influence is different at the different membrane thickness. We 
introduce a resistance BR of the membrane-based biosensors to changes of membrane thickness. The 
resistance BR (A/cm3) of a biosensor is expressed as a gradient of the maximal biosensor current 
density imax (A/cm2) with respect to the membrane thickness d (cm) 

d
di

B
∂

∂
=

)(max
R .             (21) 

Fig. 9 plots the biosensor resistance BR versus the membrane thickness d. The substrate 
concentration S0 as well as other parameters are the same as in Fig. 2. Since the resistance BR varies in 
orders of magnitude, BR was normalised with Vmax. So, Fig. 9 shows the resistance BR divided by Vmax. 
versus the membrane thickness d. In Fig. 9, symbols are numerical solutions of the model (2)-(7), 
while lines are analytical ones (formula 14). One can see (Fig. 9) the interval (from –2.5 to 19.2 
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mAs/mol) of variation of BR/Vmax is approximately the same at all four values of the maximal 
enzymatic rate Vmax. It means that the maximal as well as minimal biosensor resistance BR is directly 
proportional to Vmax. Since the shape of curves of the normalised resistance considerably differs (Fig. 
9), the dependence of BR on Vmax is non-linear in entire domain of d. The relative difference between 
numerical solutions and analytical ones reaches about 20%. The largest difference is notable at thinnest 
enzyme membranes.  
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Figure 9. The biosensor resistance BR (formula 21), normalised with the maximal enzymatic rate 
Vmax, versus the membrane thickness d. Symbols are numerical solutions, while lines are 
analytical ones (formula 14). All parameters are the same as in Fig 2. 

Conclusions 

The mathematical model (2)-(7) of amperometric biosensor operation can be successfully used to 
investigate the kinetic regularities of enzyme membrane-based sensors.  

The maximal biosensor current imax is a non-monotonous function of membrane thickness d at 
various values of the maximal enzymatic rate (Fig. 2). When the substrate concentration S0 is 
significantly less than the Michaelis constant KM, S0 << KM, the function imax(d) gains the maximum at 
the membrane thickness d of which the diffusion modulus σ  equals to 1.5055. The diffusion modulus, 
maximising imax(d), increases with increase of S0. Consequently, the maximal current imax increases 
with increase of the membrane thickness d when the enzyme kinetics predominate in the biosensor 
response, while imax decreases when the response is significantly under diffusion control. The higher 
maximal enzymatic rate Vmax corresponds to a greater maximum of imax(d).  

In the high substrate concentration case, S0 >> KM, the maximal biosensor current can be 
successfully calculated from formula (19), while formula (12) may be used in the low substrate 
concentration case, S0 << KM. However, the digital simulation, may be successfully applied in the 
entire domain of substrate concentration. The simulation is especially reasonable in the intermediate 
case of the substrate concentration, S0 ≈ KM. 

The mathematical model (2)-(7) together with definition (17) and (18) describe a way for selection 
of the membrane thickness, ensuring the stable biosensor response. In cases when S0 << KM, the 
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maximal current imax to be used in formula (17), may be calculated analytically from (12), otherwise 
the model (2)-(7) is preferable for the calculation. 
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