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1. Introduction. Let Xu X2, • • • be independent random variables hav-

ing the common distribution function F(#)=Pr {X¿<x}, and let Sn = Xi

+X2+ ■ ■ ■ +Xn. If there exist constants an and bn such that anSn+bn has

a nondegenerate limiting distribution function G(x), then G(x) is necessarily

a stable (or quasi-stable) distribution (Levy [4]). Necessary and sufficient

conditions on F(x) for this result to obtain were given by Doeblin [2, Theo-

rem 3.1], and as far as linear normalizations are concerned the subject has

been completely exhausted.

It is still meaningful however to ask about the nature of Sn when the

conditions of Doeblin's theorem are not met. In particular there may exist a

suite of nonlinear functions <p„(x) such that <pn(Sn) has a nondegenerate

limiting distribution. Of course, to avoid trivial results some restriction will

have to be put on the 0„—for instance if F(x) is continuous and <pn(x)

= Pr {Sn<x}, then (pn(S„) is uniformly distributed over the interval (0, 1)

for every n. It seems natural to require, among other things, that <f>„(x) does

not involve the distribution of Sn, if we are to get any intelligible asymptotic

information.

One case when this procedure might be helpful is when the variables X,

have infinite moments of all orders: Pd-ST,!") = oo for p>0. In this case, as

noted by Levy [3], every linear normalization leads to a degenerate limiting

distribution. Levy stated that here the largest term in Sn is the primary

factor, outshadowing the contribution of all the rest of the terms. The present

paper treats this matter in some detail, and in general attempts to give

precise information on the role played by the largest term in the sum S„.

In §2 the main analytical tool is developed. Letting X%

= max {Xi, X2, ■ ■ • , Xn] we obtain in Lemma 2.1 the characteristic func-

tion of the random variable Z„ = S„/X* under certain conditions on F(x),

the distribution function of the X,. This enables us to find conditions under

which 5„~X*, which is our main theorem. In §4 we obtain two theorems

on the limiting distribution of Sn (in the sense given above) when the Xi

have moments of no finite order, analogous to the theorem of Doeblin for the

stable distributions.

In §5 there are three theorems devoted to assessing the influence of X*
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96 D. A. DARLING [July

on Sn when Sn has a limiting stable distribution. As is well known, unless Sn

has a limiting Gaussian distribution, the maximum term has a non-negligible

contribution to Sn. It turns out that there is a rather intimate asymptotic

connection between S„ and X* which reveals some new aspects of the ap-

proach to the stable distribution^).

2. The principal lemma. Let A^i, X2, ■ ■ -, Xn and X% be the random

variables described in §1. For convenience we put the further restriction that

Xi^O and that F(x), the distribution of the X{, is absolutely continuous.

These two requirements are not essential for some of the asymptotic theorems

to follow, as will be noted in the sequel.

For notational simplicity we shall often use the complementary distribu-

tion function f(x) = 1 — F(x) = Pr {Xïïx} and we denote by fax) the cor-

responding density, so that/(x) =f"<p(z)dz.

Lemma 2.1. Letting Zn = Sn/X* we have

Xco  /        /» 1 \ n—1
Iß I    eitafaaß)da)     dF(ß).

Proof. There is no loss in generality in assuming X\ = X% since each Xi

has a probability of 1/n of being the largest term, and Pr {Xi = Xj} =0 for

Í5¿j since F(x) is presumed continuous.

The joint density of Xi, X2, • • ■ , Xn, given Xi = Jf*, is

(«^(jSiMfo) • • • 4>(ßn)   if   ßi = max {ßi\,

g(ßu ßt, • • • , ft) f\ .
{ 0 otherwise.

Thus

E(eitZn) =   I  i       • • •   I ei"-:ci+x:i+---+Xn),xlg(x1, x2, ■ ■ ■ , xn)dx1dx2 • • • dxn

/.  CO      n ß pßj      • • ■    I     ei'(ci+ca+- ■ ■+"n)lßfaa2)faa3) . . .
o    J o Jo

■<t>(an)<j>(ß)da2 ■ ■ ■ dandß

/» m  r   p ß s   n-1

= neu I     <   I    eita^faa)da>      faß)dß

which yields the lemma.

3. The main theorem. Let us denote by y the "exponent" of the random

variable, i.e., y is the supremum of all values of p^O for which JS(|-X"|")

< oo.

(') The author is indebted to the referee for a simplification of the proof of Lemma 2.1

as well as other valuable emendations.
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If 7>2, then Sn has a linear normalization to a limiting Gaussian dis-

tribution. For 0<7<2 we have the following basic theorem of Doeblin [2].

Theorem 3.1 (Doeblin). If 0<y<2 and if anSn + bn has a nondegenerate

limiting distribution, it is a stable or quasi-stable distribution. The necessary

and sufficient conditions for this are that

h\(x) h2(x)
F(-x)=^±,        l-F(x) =

xf xy

where hi(ax)/hi(x)—>l for all a>0, i=l, 2, and hi(x)/(hi(x) +h2(x)) tends to a

limit when x—> oo.

Thus the tails of F(x) are of decisive importance, and must asymptotically

possess the character of the corresponding stable law. This is because, as

pointed out by Levy [3], the largest term in Sn is not asymptotically neg-

ligible, and in point of fact Sn is determined essentially by a finite number of

its larger terms, the rest being asymptotically negligible in comparison. The

term X% is said to be "asymptotically negligible" if X*/Sn-^0 in probability

when n—» ». Or instead we might say that the terms Xi, X2, • • • , Xn are

uniformly negligible compared with 5„.

When 7 = 0, the remaining case not covered by Doeblin's theorem, there

are moments of no order, and as mentioned before no linear normalization

can be obtained (of course in this case, as in the case of 7>0, there may exist

subsequences SK¡, which are linearly normalizable to limiting infinitely di-

visible distributions). The following theorem shows that for distributions of

this nature which have a certain regularity at infinity, S„ is completely

dominated by its largest term, all the rest being asymptotically negligible.

Let us suppose that -X\ = 0 and as before put f(x) = 1 — F(x). Then we

have the following theorem.

Theorem 3.2. Suppose that X.àO. Then S„/X*—>1 in the mean of order one

if for every a>0 we have

f(ax)
(3.1) lim^—-=1.

*-. /(*)

Proof. If we put Z„ = S„/X*, it is sufficient to prove that E(Zn)—*l since

Znàl. Assume initially that F(x) is absolutely continuous, so that Lemma

2.1 is applicable. Since, in the lemma, £„(i) is the characteristic function of a

bounded random variable, it is analytic, and it is simple to see that we can

differentiate under the integration sign. Differentiating with respect to it, and

putting t = 0, we obtain after some simplification

pn = E(Z„) m x

(3.2) =l + n(n-l) f™ ¡F(ß)} -2f(ß) j f   (^- - l) <faj dF(ß).
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We first show that if we put

(3.3, ÁV>-S,\-m "O*
then lim^J00 A (ß) = 0. From the hypothesis of the theorem it is plain that for

every e>0

lim r-^—L - \)du = 0,
j-.- Jt   \f(ß) )f(ß)

and it will be sufficient to dominate the integrand by a function, integrable

and independent of ß.

If f(x) satisfies (3.1), the function q(x) =xf(x), e>0, is said to be of

"regular growth," and if we let Q(x) =max0 s*ái<z(z), we have from a theorem

of Karamata (cf. Knopp [5, No. 20]) the result that Q(x)/q(x)-^l, x—»oo.

This implies that

max {u'f(uß)}
OSuSl
—--»1, iS-^oo.

m
Since the expression on the left is bounded for ß < oo, we obtain

max {u'f(uß)\
Ogugl f(Uß)
-< C, ^—- < Cw-, O^uèl,

f(ß) M

for all ß, the constant C depending only on e. Choosing e = l/2, say, we have

dominated the integrand of (3.3) by an integrable function independent of ß.

Thus A OS) -K).
Now

M„ = E(Zn) = 1 + n(n - 1)  f"(F(ß))»~2f(ß)A(ß)dF(ß) = 1 +  f 'I(ß)dF(ß).
J o Jo

Choose€>0 arbitrary, and chooseß0such tha.tA(ßo) <efor ß>ßo, then choose

Mo such that n(n — 1)F(ß)n~2A(ß) <e for n>n0 and all ß<ß0. This can clearly

be accomplished for F(ß) < 1 for all ß < oo. Then if n > na,

Mn = 1 +  f   I(ß)dF(ß) = 1 +  f    +  f   IdF(ß)
Jo J o Jß0

g 1 + e f °f(ß)dF(ß) + t f "»(» - l)(F(ß)Y-2f(ß)dF(ß)
J 0 J ßo

e r1 3
g 1 + — + e I    n(n - l)w"-2(l - u)du = 1 -j-e,

J o 22
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1952] ADDITION OF INDEPENDENT RANDOM VARIABLES 99

and since e was arbitrary, ju„—>1.

The condition that F(x) be absolutely continuous may be waived, for

continuity is needed only to ensure that the maximum term is unique. But

X*—>oo with probability 1, and thus the limiting probability is 1 that the

maximum term is assumed by only one summand X,. Also the condition

-X"l = 0 can be relaxed to Pr{X,<— x} =o(f(x)), x—><n.

4. The distribution of Sn. From Theorem 3.2 we should expect the limit-

ing distribution of S„ and X* to be related, and this turns out to be the case

if condition 3.1 is met.

Theorem 4.1. Let X, = 0 and

f(ax)
lim ^— =1, a > 0.
i-.» f(x)

Then

(4.1) lim Pr {nf(Sn) < y] = 1 - e~K
«—»a

Proof. Choose e>0, 8>0 arbitrary, and then n0 such that n>n0 implies

Pr {S„/X*>l+e} <S. This is possible by virtue of Theorem 3.2. Abbreviat-

ing, as before, Zn = Sn/X* we have S„^X* andf(x)\ 0, so that

Pr {nf(xt) <z] gPr {»/(SO < z)

= Pr \nf(Sn) <z,Zn> 1 + e}

+ Pr {»/($„) <z,Zn^l + e\

= 5+ Pr {nf(Sn) <z,Zn^ 1 + e)

= 5+ Pr {nf(X*n(l + e)) <z}.

Now consider the difference

Pr [nf(X*n(l + e)) < 2} - Pr {nf(X*n) < z}

= Pr {nf(xl)(l + «)) <z^nf(X*n)}

umi+<))
l   /cO }

and this latter expression approaches zero as n—> 00 since X£—» 00 with prob-

ability one and condition 3.1 is satisfied. Since 5 was arbitrary, we have shown

lim Pr {nf(Sn) < z) = lim Pr \nf(X*n) < z]
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provided the second of these limits exists. But the distribution of the extreme

is well known, and we have (cf. Cramer [l ])

lim Pr {nf(xt) < z) = 1 - e~*
n—»oo

as can also readily be deduced from the simple formula

Pr \xl<z) = (1-/(*))».

This concludes the proof of Theorem 4.1.

It seems difficult to give "natural" restrictions on the admissible class of

normalizing functions fax(x), as we have noted in §1, and for this reason it

appears meaningless to attempt to say under what circumstances (3.1)

would be a necessary condition for a limiting theorem to obtain.

For the distribution given by Levy [4], /(x) = (log x)~l, x>e, as an

example for which Sn could not be linearly normalized we have however by

Theorem 4.1 the following limiting expression:

lim Pr {Sn    < y\ = exp <-> , x > 1.
n->« (.      log x )

It is possible to remove the restriction X.ïîO (which in Theorem 4.1

could be relaxed to Pr {Xt< — x} —o(f(x)), x—»oo). As a direct extension of

Doeblin's theorem (Theorem 3.1) we shall prove the following theorem.

Theorem 4.2. Let F(x), the distribution of the Xi, be such that

(i) F(x) = 1 - fx(x), x^O,

(n) . F(x) =f2(-x), x<0,

J '(OtCC)

(iii) lim^—- = 1, i = 1, 2, a > 0,
*->» fi(x)

h(x)
(iv) lim- = p = 1 — q.

*->« fi(x) + f2(x)

Then, letting

we obtain

tl ,       j7i(s) ^0,
f(x) =  <

KM- x) x<0,

(4.2) lim Pr {nf(Sn) < y] = 1 - pe~y,p - qe~v'q.

Proof. As before we may presume without loss in generality that f\(x)

and f2(x) are continuous. Assume initially that 0<p<l and let X* be the
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1952] ADDITION OF INDEPENDENT RANDOM VARIABLES 101

term of maximum modulus among Xi, X2, • • • , Xn. It is clear that the

result of Theorem 4.1 applies to each tail of F(x) separately and Sn~X% in

probability if the conditions of the theorem are met.

To see this we note that Pr {| X(\ >x} =fi(x)+f2(x) and that this func-

tion satisfies condition (3.1) by virtue of (iii) and (iv). Hence by Theorem

3.2, |Xi|-f-|Z2|+ • • • +[Xn|— \X*\ in probability. If we denote by

yi* a sum omitting the term X%, we have | Sn — X*\ = \ ^* X{\ ¿ y^*| Xj\

= o(\X*\), and hence \Sn/X* — l\—*0 in probability and S„~X* in prob-

ability as asserted.

Now

Pr {0 < Xl < x} = Pn(x) - - « f *(1 - h(t) - MM^d/i«)
•Jo

and from (iv) we have fi(x)+f2(x) = (fi(x)/p) (1+0(1)), x—»oo. Let us define

a(x) so that fi(x)-\-f2(x) = (fi(x)/p)(l-\-a(x)) so that a(x)—»0, a;—»oo. Choose

e>0 arbitrary and let x0 be such that \a(x)\ <e, x>Xa. Then for x>xa

and

Pn(x) = Pn(x0) - n J Yl - — (i + fl(/))V

Pn(xo) - » f Yl - — (1 + e)Y ViW á Pn(x)

dh(t)

d/i(0.Ú   Pn(Xo)   -   » J Yl  -  — (1   -  6)V     i

1 + e\       * /        1 + e\ * /

P     (        fi(xo) Y
á P«(x) ̂  Pn(x0) - ~~U - -^^ (1 - 0J

/>     /        /i(a:) \"

P

Now

Pn(a:o) á -« f ""(I -/iWi-'d/iW = (1 -/i(««))- - (1 -/i(0))",
«J o

so that Pn(xo)—»0 as «—»». Let y be fixed and greater than 0 and determine

x such that/i(x) =y/«, choosing « large enough so that x>x0. If /i(x) is not

strictly monotone, we choose the largest such x so that we can write

x=fï1(y/n) unambiguously. Then (4.3) becomes
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102 D. A. DARLING [July

W-îfi'-^flHy+rî-i'-^ » + ■»)"
l + e\ /> / 1 + « \ «/> /

-i />     / fi(xo)
= P„(/i  (y/»)) g Pn(xo) - -*— ( 1 - J-^- (1

l — A        />

1 — e \ »/>

and letting w—>» we obtain

—^_ r»/Pd+.) = Um inf Pn(f~l(y/n))
1  + € n-»»

= lim sup P^/"1^/«)) ^ —^— «rWp(i-),
n—*« 1   —  €

and since e is arbitrary, lim„_w Pn(f~1(y/n)) =pe~vlv.

Recalling the definition of P„(x) above we have

PÁhXy/n)) = Pr {0 < X*< hXy/n)} = Pr {nf,(X*n) > y, X*n > 0}

and using the fact that Sn^X* we obtain as in Theorem 4.1

lim Pr {»/i(5n) > y, Sn > 0} = per»"'.
n-»oo

In a similar manner we prove

lim Pr {n/i( - 5») > y, Sn < 0\ = ?«-»/«
n—»«

and adding these last two equalities we obtain the conclusions to the theorem

when pq>0.

Up or 2 = 0, the above derivation breaks down, but in that case one of

the tails is negligible and the result of Theorem 4.1 is applicable. We also

obtain (4.1) as a limiting case (p—*l) of (4.2).

5. The approach to the stable distribution. When the sum 5„ has a linear

normalization to a stable distribution (i.e., when the conditions of Theorem

3.1 are fullfilled), the largest term X% forms a sensible proportion of the

entire sum S„, and in reality Sn is essentially dominated by the contribution

of a finite number of its larger terms, the remainder being asymptotically

negligible. These results were announced by Levy [3] in 1935, and in point

of fact he demonstrated that the necessary and sufficient condition that the

central limit obtain is that the largest term be asymptotically negligible

(even in the case of nonidentically distributed components). Thus only in the

case of the limiting Gaussian distribution can we truly say that the distribu-

tion of Sn is composed of infinitely many infinitesimal components.
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These remarks are capable of quantitative analysis, and we give in this

section three theorems which show in what manner X* influences the sum Sn.

Theorem 5.1. // Xi = 0 and S„ has a limiting stable distribution with ex-

ponent 0<7<1, then

lim Pr {Sn < yXl) = G(y)
n—»oo

where G(y) has the characteristic function

f  eil»dG(y)
Jo r1 da

1-7        (eita - 1) —77
Jo a?+1

Proof. Here again we have supposed X.-^O, but as before if Pr {X,< — x}

= o(x_r), x—»oo, the negative tail is negligible. We may also presume, as

before, that F(x) is continuous. Let us put

(5.1) lK0) = ß f  eita<t>(aß)da
Jo

so that by (2.1) the characteristic function of Zn = Sn/X* becomes

S»« = -ne" fa(Hß))n'ldf(ß).
Jo

By a slight transformation we find for (5.1)

t(ß) = 1 - f(ß) + it f  e^(f(aß) - f(ß))da.
J o

It follows from Doeblin's theorem that/(x) is h(x)/xy where h(x) satisfies

h(ax)/h(x) = l+o(l) for x—>«>  and a>0; from this it follows that if a>0,

(5.2) f(aß) = (1/ay) f(ß)(l + o(l))

for large ß. Hence

it f   eiia(f(aß) - f(ß))da = itf(ß)(l + o(í)) f  eita(— - ljda

= /(/3)7 f\ei,a-l)-%+o(f(ß))
J o aT+1

when ß—>oo and |/|  is bounded. Putting

r1 d
<pi(t) = <pi = 7       (eita - 1) —

«/ o a">

da

vT+l
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we obtain

*(ß)  =   1  -  (1 - fa)f(ß) + 0(f(ß)), ß^oc.

Since |^(j3)| <1 for bounded ß, it is seen that the early portion of the

integral for l-n(t) is negligible for sufficiently large n. Operating formally for

the moment we use the preceding asymptotic development for \p(ß) in the

integral for £„(i), and make the change of variable nf(ß) =v to give

nn-l
dv

J o
e-v(.l-<t>l)¿v  =   -

1 — fa

which yields the conclusions to the theorem.

To justify the limiting process it suffices, first of all, to consider only

— ̂BitfA4/n~1df(ß) which for every A will differ arbitrarily little from £„(£)

for n sufficiently large. Hence

rn/u)/        v /i\\
€.W ~ «" J Í1-(1 - fa) + vo{—))

n—1

dv

for each A, and if we write the last integral as f%fU) =Jo+JmW, the second

term can be made arbitrarily small by choosing M, n sufficiently large.

For the case when the exponent of the distribution is larger than 1 the

mean value E(XX) =¡x exists, so that by the strong law of large numbers

Sn~nß with probability one, and this term will dominate X*. In this case

there are two theorems—one which compares Sn directly with X* and another

which compares the deviation Sn — np. with X*.

Theorem 5.2. Let X.^O have an exponent Ky<2 and such that Sn has a

limiting stable distribution, and let a sequence {c„} be determined by the relation

f(cn) = 1/n. Then p. = E(X¡) exists, and if an — n/cn, we have

lim Pr <—- < anx> = 1 - e-^'"^.
[X* )

Proof. We use the same formula for £„(¿) as before, but we need a different

estimate for ^i(ß). We have

M) = 1 - M + it f   eil"(f(aß) - f(ß))da
Jo

= 1 - f(ß) + it  f   (c«« - l)(f(aß) - f(ß))da - itf(ß) + itf  f(aß)da.
J o J o

Now
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/.i i  rß i  r°° i r°°f(aß)da = -        f(z)dz = -        f(z)dz - —        f(z)dz
0 P^o ß J o ß J ß

p       rx

= — -   I    f(<*ß)da
ß       J i

/•" da-

i     aT

, + o(f(ß))
ß       7-1

where p = E(X¡). We next estimate itfl(eita — l)(f(aß) —f(ß))da as in Theorem

5.1, obtaining for it

ß

p

J
p     M

itf(ß)(i+ o(l))  f    (eita - 1)(-1 jda

f(ß)   f   («»-
J o

da
1 - ifa)—-+ ito(f(ß)).

aT+l

As a consequence we obtain for large ß and bounded |i|

Up y
(5.3)      m = 1 + —- - /((8)(1 - Mt)) - üf(ß) —7 + Uo(f(ß))

ß 7-1

where

J'1 da
(e¡i- _ l _ ita) __ .

o aT+1

In the integral for £„(/) we propose to make the substitution nf(ß) =sas

before; however we need an asymptotic solution to this equation for ß when

n—>oo. We determine cn such that f(cn) =l/n; then vf(cn)=v/n=f(ß) and

from (5.2) it follows that f(ß) =f(v~l,ycn)(l+o(l)) and we may easily infer

l/ß = vlly/cn+o(l/cn) which is the required asymptotic solution when v is

bounded and w—>». Now let an = n/cn and replace t by t/an in yp(ß), and

notice that/(|S)/an = o(l/«) so that

/      / \ itpv1^        v / 1 \
4,1 ß, —) = 1 +-(1 - *.(*/<»»)) + "I —)

\     aj n n \n /

=   1  +-+*(-)
w m \ n /

since «„/" oo and <f>2(t) =o(t) for /—»0.

The argument now proceeds as in Theorem 5.1, and the formal justifica-

tion of the limiting process is identical. For any A we obtain
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(1 +-+"( — ))    dv
o        \ n n \n//

/' °°       i
git? iy~vdv

o

and the latter expression is the characteristic function for the random vari-

able pWlly where W has the exponential distribution 1 — e~x. An application

of the continuity theorem for characteristic functions concludes the proof of

the theorem.

An idea of the size of the normalizing constants an can be obtained from

the fact that for any e > 0 there is an n0 such that

„l-i/r-. < an < Tji-i/Y-h n > Wo-

For the case when the mean exists there is, in addition, a theorem anal-

ogous to Theorem 5.1, and it turns out that the normalized sum Sn — np is of

the order of magnitude of X*.

Theorem 5.3. Let Xt ^ 0 have an exponent Ky < 2, and let p. = E(Xt). Then

if Sn has a limiting stable distribution.

lim Pr {Sn < np + yXl) = G(y)

where the characteristic function of G(y) is

I    eit"dG(y) =
Jo ity Cl da

1 +- - y       (eita - 1 - ita) —-
y — 1 Jo aT+1

Proof. We first need a result analogous to Lemma 2.1, and a line of reason-

ing similar to that employed before shows that

e( exp(it   " ~       ~   V)j = - neil f   if   «»<*-">'ty(ao|     df(x)

and putting

c(ß) =  f   eit(-x-")^<t>(x)dx = e-WtyGS)
Jo

where ip(ß) is given by (5.1).

Noting that

1/ß2 = o(f(ß))

we obtain by using (5.3)
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m   _    |l  - -y- + o(f(ß))}

' l1 + ̂  ~ m Í1 + ~^1 " 02(í)) + °(/(,3))}

- 1 - f(ß) (l + -^ - *,(o) + *(/(#)

where $i(t) is given by (5.4). Reasoning identical to that of Theorem 5.1

shows that

n 00 f 00

lim - »e" I    Cn~Kß)df(ß) = í" I    e-od+i.WíY-n-.fcíO)^

1 + ¿¿7/(7 - 1) - *i(0

and Theorem 5.3 is proved.

An intermediate case corresponding to y = 1 could also be studied by these

methods.

Bibliography

1. H. Cramer, Mathematical methods of statistics, Princeton, 1946.

2. W. Doeblin, Sur l'ensemble de puissances d'une loi de probabilité, Ann. École Norm.

(3) vol. 63 (1947) pp. 317-350.
3. P. Lévy, Propriétés asymptotiques des sommes de variables aléatoires indêpendentes en

enchaînes, Journal de Mathématiques vol. 14 (1935) pp. 347-402.

4. -, Théorie de l'addition des variables aléatoires, Paris, 1937.

5. K. Knopp, Über eine Erweiterung des Äquivalenzsates der C- und H-Verfahren und eine

Klasse regulär wachsender Funktionen, Math. Zeit. vol. 49 (1943) pp. 219-255.

University of Michigan,

Ann Arbor, Mich.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


