
Citation: Orlov, V.; Chichurin, A. The

Influence of the Perturbation of the

Initial Data on the Analytic

Approximate Solution of the Van der

Pol Equation in the Complex Domain.

Symmetry 2023, 15, 1200. https://

doi.org/10.3390/sym15061200

Academic Editor: Serkan Araci

Received: 12 March 2023

Revised: 30 March 2023

Accepted: 31 May 2023

Published: 3 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

The Influence of the Perturbation of the Initial Data on the
Analytic Approximate Solution of the Van der Pol Equation in
the Complex Domain
Victor Orlov 1,* and Alexander Chichurin 2

1 Institute of Digital Technologies and Modeling in Construction, Moscow State University of Civil Engineering,
Yaroslavskoe Shosse, 26, Moscow 129337, Russia

2 Department of Mathematical Modeling, The John Paul II Catholic University of Lublin, ul. Konstantynów 1H,
20-708 Lublin, Poland; achichurin@kul.pl

* Correspondence: orlovvn@mgsu.ru

Abstract: In this paper, we substantiate the analytical approximate method for Cauchy problem
of the Van der Pol equation in the complex domain. These approximate solutions allow analytical
continuation for both real and complex cases. We follow the influence of variation in the initial
data of the problem in order to control the computational process and improve the accuracy of the
final results. Several simple applications of the method are given. A numerical study confirms the
consistency of the developed method.
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1. Introduction

As noted in [1–12], the Van der Pol equation has numerous applications: for instance,
self-oscillation theory, nonlinear and symplectic dynamics, aerodynamics, biology, mod-
elling of the processes in the human body, and in models of artificial intelligence, neural
networks, biophysics, etc. The equation is also used in chaos theory [13,14] and in seismol-
ogy when modelling geological faults [15].

The methodology for studying the Van der Pol equation refers mainly to the methods
of qualitative differential equations theory and asymptotic methods [7,16–18]. This equation
does not have an exact, analytic solution [19].

Let us note that the Van der Pol equation and its generalizations have been studied
for the presence of symmetries. In particular, symmetry analysis [20] and study of the
impact of symmetries on the occurrence of periodic solutions in systems of Van der Pol
Equations [21] can be applied to the research of this equation.

The Van der Pol equation is a non-linear differential equation, is not solvable in
quadratures, and has movable singular points in the complex plane [22]. The fact of the
existence of movable singular points and the uniqueness of a solution of the Van der Pol
equation for complex domain have been proven [23].

The article considers a modification of the Cauchy method, which allows for the
construction of an analytical approximate solution with a given accuracy, indicating an
estimate of the error of the resulting solution. It has been shown that influencing the
variation in the initial data of the problem can gain control over the computational process
and improve the accuracy of the final results. In [24], substantiation of an analytical
approximation in solving some nonlinear differential equation in vicinity of movable
singular points was presented.

These ideas were developed for other nonlinear differential equations in [23,25]. In
particular, the existence of movable singular points in the Van der Pole equation has been
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proven in [23]. A generalization of the modified majorant method for third-order nonlinear
differential equation in the domain of analyticity was represented in [25]. An analytical
approximate solution was built, taking into account the solution search domain.

This article contains a continuation of the research in article [24].

2. Methods of Research and Results

We consider the initial problem for the Van der Pol equation in the complex domain
G ⊂ C

d2w
dz2 = a(w2 − 1)

dw
dz
− w, (1)

w(z0) = w0, w′(z0) = w1, (2)

where w(z) ∈ C1(G) and a = const is a parameter.
In [24], an approximate solution for the initial problem was set

wN(z) =
N

∑
n=0

Cn(z− z0)
n (3)

for some domain of initial data (2) and where Cn represents the coefficients. When im-
plementing the analytical continuation [26,27] of the solution (3), we face a mathematical
problem concerning the influence of variation in the initial data on the solution (3). In this
case, Formula (3) will change to the form

w̃N(z) =
N

∑
n=0

C̃n(z− z0)
n, (4)

where C̃n represents the coefficients related to the modified initial data

w̃(z0) = w̃0, w̃′(z0) = w̃1. (5)

The following theorem allows us to obtain a prior error estimation for solutions (4) and (5).

Theorem 1. If |a| ≥ 1, for the approximate solution (4) of the problem (1), (5) in the domain

|z− z0| < ρ1, ρ1 = const 6= 0,

for the error there exists an estimation

∆w̃N(z) ≤ ∆1 + ∆2,

where
∆1 ≤ ∆M|1 + (z− z0)|

+
|a|M ∆M

2
(M + ∆M + 2)2|z− z0|2

1
1− |a|M(M + ∆M + 2)|z− z0|

,

∆2 ≤
|a|N MN(M + 2)N+1|z− z0|N+1

N(N + 1)(1− |a|M(M + 2)|z− z0|)
,

∆M = max{∆w̃0, ∆w̃1}, M = max{|w̃0|, |w̃1|},

ρ1 = min
{ 1
|a|M(M + 2)

,
1

|a|M(M + ∆M + 2)

}
.

Proof. Applying the majorant method [24,27], we obtain

∆w̃N(z) = |w(z)− w̃N(z)| ≤ |w(z)− w̃(z)|+ |w̃(z)− w̃N(z)| = ∆1 + ∆2.
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Estimation for ∆2 was done in [24]

∆2 ≤
|a|N MN(M + 2)N+1|z− z0|N+1

N(N + 1)(1− |a|M(M + 2)|z− z0|)
, (6)

it is valid in the domain
|z− z0| <

1
|a|M(M + 2)

.

Let us consider the quantity ∆1:

∆1 = |w(z)− w̃(z)| =|
∞

∑
n=0

Cn(z− z0)
n −

∞

∑
n=0

C̃n(z− z0)
n |≤

∞

∑
n=0

∆C̃n|z− z0|n,

where ∆C̃n = |Cn − C̃n|. Let us prove the accuracy of the estimation for ∆C̃n when n ≥ 2

∆C̃n ≤
|a|n−1Mn−1∆M

n(n− 1)
(M + ∆M + 2)n. (7)

To prove inequality (7), we will use the recurrence relation for coefficients Cn [24]

n(n− 1)Cn = a C∗∗∗n−2 − Cn−2, (8)

where the following definitions are used

(w2 − 1) w′ =
∞

∑
n=0

C∗∗∗n (z− z0)
n; w2 − 1 =

∞

∑
n=0

C∗∗n (z− z0)
n;

w2 =
∞

∑
n=0

C∗n(z− z0)
n; C∗n =

n

∑
i=0

Ci Cn−i;

C∗∗0 = C∗0 − 1; C∗∗n = C∗n, ∀n = 1, 2, . . . ; C∗∗∗n =
n

∑
i=0

C∗∗i (n + 1− i) Cn+1−i.

Thus, we obtain

∆C̃n+1 = |Cn+1 − C̃n+1| =|
1

n(n + 1)

(
C∗∗∗n−1 − Cn−1

)
− 1

n(n + 1)

(
C̃∗∗∗n−1 − C̃n−1

)
|

=| 1
n(n + 1)

(
(C∗∗∗n−1 − C̃∗∗∗n−1)− (Cn−1 − C̃n−1)

)
|

=| 1
n(n + 1)

(
a
( n−1

∑
i=0

C∗∗i (n− i)Cn−i −
n−1

∑
i=0

C̃∗∗i (n− i)C̃n−i

)
− (Cn−1 − C̃n−1)

)
|

=
1

n(n + 1)
|
(

a
( n−1

∑
i=0

C∗i (n− i)Cn−i −
n−1

∑
i=0

C̃∗i (n− i)C̃n−i

)
− (Cn−1 − C̃n−1)

)
|

≤ 1
n(n + 1)

| a
( n−1

∑
i=0

( i

∑
j=0

CjCi−j

)
Cn−i −

n−1

∑
i=0

( i

∑
j=0

C̃jC̃i−j

)
C̃n−i

)
− (Cn−1 − C̃n−1) |

≤ 1
n(n + 1)

| a
(n−1

∑
i=0

( i

∑
j=0

(C̃j+∆C̃j)(C̃i−j+∆C̃i−j)(C̃n−i+C̃n−i)
)
−

n−1

∑
i=0

( i

∑
j=0

C̃jC̃i−j

)
C̃n−i

)

−∆C̃n−i |≤
1

n(n + 1)
| a

n−1

∑
i=0

( i

∑
j=0

(C̃j∆C̃j)C̃n−i +
( i

∑
j=0

∆C̃i−j∆C̃j

)
C̃n−i
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+
( i

∑
j=0

∆C̃j∆C̃i−j

)
C̃n−i +

( i

∑
j=0

C̃jC̃i−j

)
∆C̃n−i +

( i

∑
j=0

C̃j∆C̃i−j

)
∆C̃n−i

+
( i

∑
j=0

C̃i−j∆C̃j

)
∆C̃n−i +

( i

∑
j=0

∆C̃j∆C̃i−j

)
∆C̃n−i

)
− ∆C̃n−i | .

Taking into account estimations for Cn [24] and ∆C̃n

|Cn| ≤
| a |n−1 Mn−1

n(n− 1)
(M + 2)n, ∆C̃n ≤

| a |n−1 Mn−1∆M
n(n− 1)

(M + ∆M + 2)n,

after some transformations we derive the inequalities

∆C̃n+1 ≤
1

n(n + 1)
|a|n−2Mn−3∆M(M + ∆M + 2)n ≤ |a|

n Mn ∆M(M + ∆M + 2)n+1

n(n + 1)
.

Further, for ∆1 we obtain

∆1 = |w(z)− w̃(z)| =|
∞

∑
n=0

∆C̃n(z− z0)
n |≤

| ∆C̃0 + ∆C̃1(z− z0) +
∞

∑
n=2

∆C̃n(z− z0)
n |≤

∆M|1 + (z− z0)|+
|a|M ∆M(M + ∆M + 2)2|z− z0|2
2(1− |a|M(M + ∆M + 2)|z− z0|)

.

Because the estimation for ∆1 is valid in the domain

|z− z0| ≤
1

|a|M(M + ∆M + 2)
,

the theorem holds in the domain

|z− z0| < ρ, ρ = min
{

1
|a|M(M + 2)

,
1

|a|M(M + ∆M + 2)

}
.

Theorem 2. If |a| ≤ 1, a prior estimation for the solution (4) of problem (1), (5) in the domain

|z− z0| < ρ2

has the form
∆w̃N(z) ≤ ∆1 + ∆2,

where

∆1 ≤ ∆M(1 + |z− z0|) +
M ∆M(M + ∆M + 2)2|z− z0|2
2(1−M(M + ∆M + 2)|z− z0|)

,

∆2 ≤
MN(M + 2)N+1|z− z0|N+1

N(N + 1)(1−M(M + 2)|z− z0|)
,

∆M = max{∆w̃0, ∆w̃1}, M = max{|w̃0|, |w̃1|},

ρ2 = min
{ 1

M(M + 2)
,

1
M(M + ∆M + 2)

}
.
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Proof. Similarly to Theorem 1, we have

∆w̃N(z) ≤ |w(z)− w̃(z)|+ |w̃(z)− w̃N(z)| = ∆1 + ∆2.

When |a| ≤ 1, in [24] an estimation for the Cn was found

|Cn| ≤
|a|Mn−1(M + 1)n + M

n(n− 1)
.

Let us strengthen this estimation

|Cn| ≤
|a|Mn−1(M + 1)n + M

n(n− 1)
≤ Mn−1(M + 2)n

n(n− 1)
. (9)

Taking into account estimation (9), we obtain

∆2 = |w̃(z)− w̃N(z)| =|
∞

∑
n=N+1

C̃n(z− z0)
n |≤

∞

∑
n=2

Mn−1(M + 2)n

n(n− 1)
|z− z0|n =

MN(M + 2)N+1|z− z0|N+1

N(N + 1)(1−M(M + 2)|z− z0|)
,

and it is valid in the domain
|z− z0| <

1
M(M + 2)

.

As in the case of Theorem 1, we obtain an estimation for ∆C̃n. Taking into account the
condition |a| ≤ 1 , we obtain

∆C̃n ≤
Mn−1∆M(M + ∆M + 2)n

n(n− 1)
.

Therefore, for ∆1 we find the following estimation

∆1 = |w(z)− w̃(z)| =|
∞

∑
n=0

(Cn − C̃n)(z− z0)
n |

≤
∞

∑
n=0

Mn−1 ∆M(M + ∆M + 2)n|z− z0|n
n(n− 1)

≤ ∆M + ∆M|z− z0|+
∞

∑
n=2

Mn−1∆M(M + ∆M + 2)n|z− z0|n
n(n− 1)

≤ ∆M(1 + |z− z0|) +
M ∆M(M + ∆M + 2)2|z− z0|2
2(1−M(M + ∆M + 2)|z− z0|)

in the domain
|z− z0| <

1
M(M + ∆M + 2)

,

where
∆M = max{∆w̃0, ∆w̃1}, M = max{|w̃0|, |w̃1|}.

We will define

ρ2 = min
{

1
M(M + 2)

,
1

M(M + ∆M + 2)

}
and thereby complete the proof of Theorem 2.
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3. Numerical Study

Let us demonstrate the usage of the results of Theorems 1 or 2 depending on the value
of the parameter a on the examples.

The corresponding calculations were performed in Mathematica system [28].
Taking into account the recurrence Formula (8), we find an explicit form of several

coefficients C̃n (n = 2, 3, . . . , 10), which are necessary to calculate the approximate solution:

C̃2 =
1
2

(
a(C̃2

0 − 1)C̃1 − C̃0

)
,

C̃3 =
1
6

(
2aC̃0C̃2

1 + 2a(C̃2
0 − 1)C̃2 − C̃1

)
,

C̃4 =
1

12

(
a
(

C̃3
1 + 6C̃0C̃1C̃2 + 3

(
C̃2

0 − 1
)

C̃3

)
− C̃2

)
,

C̃5 =
1
20

(
4a
(

C̃2C̃1
2 + 2C̃0C̃3C̃1 + C̃0C̃2

2 + (C̃0
2 − 1)C̃4

)
− C̃3

)
,

C̃6 =
1

30

(
5a
(

C̃3C̃2
1 + (C̃2

2 + 2C̃0C̃4)C̃1 + 2C̃0C̃2C̃3 + (C̃2
0 − 1)C̃5

)
− C̃4

)
,

C̃7 =
1

42

(
2a
(

C̃3
2 + 6(C̃1C̃3 + C̃0C̃4)C̃2) + 3C̃2

1C̃4 (10)

−3C̃6 + 3C̃0

(
C̃2

3 + 2C̃1C̃5 + C̃0C̃6

))
− C̃5

)
,

C̃8 =
1
56

(
7a
(

C̃5C̃2
1 +

(
C̃2

3 + 2C̃0C̃6

)
C̃1 + C̃2

2C̃3 + 2C̃0C̃3C̃4

+2C̃2(C̃1C̃4 + C̃0C̃5) +
(

C̃2
0 − 1

)
C̃7

)
− C̃6

)
,

C̃9 =
1
72

(
8a
(

C̃6C̃2
1 + 2(C̃3C̃4 + C̃0C̃7)C̃1 + C̃2

2C̃4 + C̃0(C̃2
4 + 2C̃3C̃5)

+C̃2

(
C̃2

3 + 2C̃1C̃5 + 2C̃0C̃6

)
+ (C̃2

0 − 1)C̃8

)
− C̃7

)
,

C̃10 =
1
90

(
3a
(

C̃3
3 + 6(C̃2C̃4 + C̃1C̃5 + C̃0C̃6)C̃3 + 3

(
C̃7C̃2

1

+(C̃2
4 + 2C̃2C̃6 + 2C̃0C̃8)C̃1 + C̃2

2C̃5 + 2C̃0C̃4C̃5 + 2C̃0C̃2C̃7 + (C̃2
0 − 1)C̃9

))
− C̃8

)
.

3.1. Example 1

Consider Equation (1), when a = 2. We set the initial conditions (5)

z0 = 0.16, w̃0 = 0.187933 i, w̃1 = 1.366035 i. (11)

The variation in the initial data is

∆w̃0 = 10−5, ∆w̃1 = 10−5, N = 10.

Based on Theorem 1, we find the radius of the analytic continuation ρ1 = 0.108740.
Taking into account the value of the radius ρ1, we choose the value z1 = 0.26. Using
Formulas (4), (10), and (11), we obtain the structure of the analytic continuation of the
approximate solution

w̃10 = −2.55122i(z− 0.16)10 + 1.58662i(z− 0.16)9 − 1.07093i(z− 0.16)8 + 1.37633i(z− 0.16)7

− 1.552171i(z− 0.16)6 + 0.894560i(z− 0.16)5 − 0.211966i(z− 0.16)4 (12)

+ 0.579544i(z− 0.16)3 − 1.508248i(z− 0.16)2 + 1.366035i(z− 0.16).
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The characteristics of the approximate solution (12) are presented in Table 1.

Table 1. Numerical characteristics of example 1.

No. Analytical Continuation z1 w̃10(z1) ∆w̃10 ∆1

1 0.26 0.122087i 0.016501 10−4

Here, w̃10(z1) is an approximate solution, ∆w̃10(z1) is a prior error estimation, and ∆1 is a
posterior error estimation. For a posterior estimation ∆1 = 10−4, we choose N = 42 in the
structure of the approximate solution (12). For an approximate solution (12) the values
∆w̃10(z1) has the calculation error 1.65× 10−2 (Theorem 1). The summands from the 11th
to 42nd in total do not exceed 10−4. Therefore, w̃10(z1) in the resulting domain has the
accuracy 10−4.

3.2. Example 2

We consider Equation (1), when a = 1. Using Theorem 2 for the initial conditions (5)

z0 = 0.3, w̃0 = 0.345649 i, w̃1 = 1.309878 i (13)

and variations in the initial data

∆w̃0 = 10−5, ∆w̃1 = 10−5, N = 10,

we find the radius ρ2 = 0.230651 and value z1 = 0.5. Using Formulas (4), (10), and (13), we
obtain an approximate solution

w̃10 = −0.089172i(z− 0.3)10 + 0.082906i(z− 0.3)9 + 0.040185i(z− 0.3)8 − 0.009819i(z− 0.3)7

− 0.232238i(z− 0.3)6 + 0.246389i(z− 0.3)5 + 0.115120i(z− 0.3)4 (14)

− 0.077914i(z− 0.3)3 − 0.906011i(z− 0.3)2 + 1.309878i(z− 0.3).

The characteristics of the approximate solution (14) are presented in Table 2.

Table 2. Numerical characteristics of example 2.

No. Analytical Continuation z1 w̃10(z1) ∆w̃10 ∆1

1 0.5 0.22536i 0.010915 10−4

For a posterior estimation of ∆1 = 10−4 we choose N = 31 in the structure of the
approximate solution (14). For an approximate solution w̃10(z) of the form (14), we have
the calculation error 10−2. The summands from 11th to 31nd in total do not exceed 10−4.
Therefore, w̃10(z) in the resulting domain has an accuracy of 10−4.

3.3. Example 3

We consider Equation (1), when a = 1
50 (using Theorem 2). For initial conditions

z0 = 0.3, w̃0 = 0.296422 i, w̃1 = 0.961348 i (15)

and their variations
∆w̃0 = 10−5, ∆w̃1 = 10−5, N = 10,

we calculate the radius ρ2 = 0.351260 and value z1 = 0.6. Using Formulas (4), (10), and (15),
we obtain an approximate solution
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w̃10 = 7.21950× 10−6i(z− 0.3)10 + 0.000032i(z− 0.3)9 − 0.000054i(z− 0.3)8

− 0.000416i(z− 0.3)7 − 0.000128i(z− 0.3)6 + 0.008912i(z− 0.3)5 (16)

+ 0.013069i(z− 0.3)4 − 0.160900i(z− 0.3)3 − 0.158669i(z− 0.3)2 + 0.961348i(z− 0.3).

The values of the approximate solution (16) and its characteristics are presented in Table 3.

Table 3. Numerical characteristics of example 3.

No. Analytical Continuation z1 w̃10(z1) ∆w̃10 ∆1

1 0.6 0.568236i 0.011467 10−4

For a posterior estimation ∆1 = 10−4 we choose N = 30 in the structure of the ap-
proximate solution (16). For an approximate solution w̃10(z) of the form (16) we have the
calculation error 1.15× 10−2. The summands from 11th to 30th in total do not exceed 10−4.
Therefore, w̃10(z) in the resulting domain has an accuracy of 10−4.

The analytical approximate solutions (12), (14), and (16) obtained in the examples
approximate the exact solution of the initial problems with the accuracy indicated in
Tables 1–3, respectively.

4. Conclusions

In the present paper, we have presented results on the study of the analytical approxi-
mate solution of the Van der Pol equation in the analyticity domain. We have examined
dependence of such an approximation on small changes in the initial data. This permits us
to perform analytical continuation on the considered nonlinear equation. The theoretical
studies are verified by numerical analysis. Optimization of an a priori estimate is carried
out using an a posteriori estimate.
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