
N87- 22227 '

INFLUENCE OF TORSIONAL-LATERAL COUPLING ON STABILITY

BEHAVIOR OF GEARED ROTOR SYSTEMS*

P. Schwlblnger and R. Nordmann

University of Kalserslautern

Kalserslautern, Federal Republic of Germany

In hlgh-performance turbomachlnery trouble often arises because of unsta-
ble nonsynchronous lateral vibrations. The instabilities are mostly caused by

oil-film bearings, clearance excitation, internal damping, annular pressure

seals in pumps, or labyrinth seals in turbocompressors. In recent times the
coupling between torsional and lateral vibrations has been considered as an

additional influence. This coupling is of practical importance in geared rotor

systems. The literature (refs. l and 2) describes some field problems in

geared drive trains where unstable lateral vibrations occurred together with
torsional oscillations. This paper studies the influence of the torsional-

lateral coupling on the stability behavior of a simple geared system supported

by oil-film bearings. The coupling effect is investigated by parameter studies

and a sensitivity analysis for the uncoupled and coupled systems.

INTRODUCTION

The dynamic behavior of many rotating machines (e.g., turbines and com-

pressor pumps) is influenced by the stiffness and damping characteristics of
nonconservatlve effects such as oil-film forces, forces in seals, and clearing

excitation forces. Besides the forced unbalance vibrations, unstable nonsyn-

chronous vibrations caused by such self-excltlng mechanisms may also occur.

Usually the stability analysis for this turbomachlnery is limited to a lateral

rotor dynamic analysis that is carried out independently from the torsional

vibration analysis. However, for geared rotor systems - that is, compressor

or turbogenerator sets (fig. l) - the torsional and lateral vibrations are

coupled because of the offset centerllnes of the geared rotors. Previously we

did not know how much this coupling affected the stability of the machine.

In the literature we find several publications concerning torsional-

lateral coupling in hlgh-performance turbomachinery with gears. Wachel and

Szenasl (ref. l) describe a field problem in a geared system where unstable
lateral vibrations occurred together with torsional oscillations. The authors

do not describe the coupling mechanisms, but they point out the importance of

gears for the exchange of energy between torsional and lateral vibrations.

Similar instability phenomena were observed on different units. Yamada and

Mltsul (ref. 2) deal with a two-stage ship gear supported by oil-film bearings.

During operation with partial load the pinion ran unstably. A coupled

torslonal-lateral analysis limited to the gear stage shows that the oil-film
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bearings are the source of instability, but the stability threshold is deci-
sively influenced by the torsional stiffness of the rotor system. Iannuzzelll
and EIward (ref. 3) point out that certain measuredelgenfrequencles of a com-
pressor train can be verified only by an analytical model that considers the
torslonal-lateral coupling in a gear stage. Simmonsand Smalley (ref. 4) found
by experimental and analytical investigations of a gas turblne/compressor train
that torsional modes(i.e., coupled torsional-lateral modes) with a superposed
bending componentat the gear wheel can be dampedsignificantly by the oll-film
bearings.

This paper investigates the influence of the torslonal-lateral coupling
in the gear on the stability behavior of a simple geared system (fig. 2). The
coupling effect is analyzed by meansof parameter studies and a sensitivity
analysis for the uncoupled and coupled systems.

NATURALVIBRATIONSOFGEAREDROTORSYSTEM

Mechanical Model

Figure l showsa typical turbomachlne consisting of two elastic shafts
connected by a reduction gear. The rotors run In oll-film bearings. Usually
the lateral vibration analysis (including a stability analysis) is carried out
for both shafts separately and independently from the torsional rotor dynamics
analysis. But in fact torsional and lateral vibrations of both rotors are
coupled by the gear. To study whether thls coupling may really be ignored In
a stability analysis, we first consider a simple geared rotor system. Figures
2 and 3 showthe model wlth two elastic shafts connected by a gear. The axes
of the shafts are offset by the angle of meshso that the tooth force acts in
the vertical plane on the gear wheels. Both shafts are elastic for torsion
and bending. Shaft l runs In two identical oil-film bearings that are the
only source of instability In the system. Shaft 2 is supported rigidly. Note
that not all the effects of the real machine can be investigated with the
simple model. Weconcentrate on the coupling effect in the gear stage and its
interaction wlth the self-exclted vibrations of the vibration system.

In a gear a strong torslonal-lateral coupling exists naturally because of
the mechanismof power transmission. The torsional momentfed Into the gear
is transmitted by tooth forces. For that reason transverse forces and bending
momentsresult from the torsional moment. Also the torsional and lateral
displacements of the gear wheels are coupled klnematlcally (fig. 4), provided
that both wheels maintain contact during operation. Without the lateral
displacement of the gear wheels the kinematic relation In a gear stage Is

rlql = r2 q2
(1)

This Is the model commonly used in rotor dynamics analysis. If we allow lat-

eral movement of the gear wheels, the geometric equation

rlql + q3 = r2q2 + q4 (2)

implies a coupling of the torsional and lateral degrees of freedom.
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From the theoretical considerations it is known that, for small vibrations

of the Journal bearings around a static equilibrium position, there is a linear

force motion relation for the oll film (fig. 5):

Af 1

Af 2

Fc11 c12

= -ic21 c22

k121 ql (3)

where

klk stiffness coefficients of bearings

Clk damping coefficients of bearings

The stiffness and damping coefficients depend on the rotational speed and

the static load on the bearing. The resulting static equilibrium position of
the shaft In the Journal bearing is characterized by the dimensionless

Sommerfeld number. In addition, the bearing coefficients depend on the load

direction, which must be taken into consideration for geared rotors, where the

gear transmlsslon forces often make up an appreciable part of the bearing load.

Available data for these coefficients assume a specific load direction (gravity
load direction), but in a geared rotor system the load direction may be dif-

ferent because it is governed by the gear mesh forces. Hence, if the bearing

geometry is such that the coefficients are sensitive to load direction, they

must be calculated by solving the lubrication equation or by using an approxi-

mate formula (refs. 5 and 6). As the coefficients normally are obtained in a

bearing coordinate system that does not coincide with the chosen system for

the geared rotor, a transformation must be performed. Besides being anlsotro-

plc, the stiffness cross-coupllng terms are generally unequal. This asymmetry
is the reason for self-exclted shaft vibrations.

For the statically indeterminate supported shaft in Journal bearings, the

calculation of the static load in the bearings leads to a nonlinear problem
that has to be solved numerically. The reason for this is the nonlinear force-

motion relation in the journals. In our study the static bearing loads due to

the transmitted power and rotor weight are estimated with the rigidly supported
shaft system.

An energy-flow diagram demonstrates how self-exclted bending vibrations

in a geared system may exchange energy with torsional oscillations by means of

the gear mechanism (fig. 6). The main energy flows from the motor to the gen-
erator to transmit the required power for the unit. Because of shear forces

in the oil film of the journal bearing, energy branches off from the main flow

to the bearing, where it may dissipate from oil-film friction or may excite

bending vibrations in the shaft and the gear. Because torsional and bending
displacements are coupled in the gear stage, torsional oscillations of the
geared rotor train also are excited. It is clear from these considerations

that the stability behavior is affected by this energy exchange between the
torsional and the lateral system.
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Equations of Motion

To obtain the equations of motion for the simple shaft system (fig. 2)

wlth N degrees of freedom, we apply the principle of virtual work. Using

static deflection functions for the approximation of the displacements, we can
dlscretlze the model wlth continuous mass and stiffness distribution into disk,

shaft, and bearing elements connected at their nodes. The resulting energy

equation expresses that the sum of the virtual work done by the inertia, damp-

Ing, stiffness, and external forces is equal to zero:

6q/ { M ci+ D Cl + K q - f_(t) } = 0 (4)

where

M (N x N) mass matrix

(N x N) damping matrix

(N x N) stiffness matrix

(N x l) vector of displacements

(N x I) vector of external forces

To connect both shafts, we introduce the kinematic relation of equation (1)

for the uncoupled system and of equation (2) for the torslonal-lateral-coupled

system by the matrix equation

£:Z 3 (5)

where

ql

q2

q3

q4

and __ =

I

ql

q3

q4
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and for the torslon-bendlng uncoupled case

ql

I_i_l Irl "
Z = q2 .... _ "'" •

E IN

and for the torslon-bendlng coupled case

resp. -T-T= q2

ql q2 q3 1
: : :

E • : O"

rl ] l

r2 r 2 r 2

o I
.o .. • • o • • o • o.N

where

N=N-I

q(Nxl)

T(NxN)

reduced number of degrees of freedom

reduced vector of displacements

coupling matrix

E matrix of unity

The application of the constraint equation (5) to equation (4) eliminates the

torsional degree of freedom at one gear wheel (fig. 4) and yields the equation
of motion for the coupled system:

TT M T _ + TT D T _ + TT K T _q= TT f(t)

(6)

The matrices K and D contain stiffness and damping terms for the bearings.
They are asymmetric and depend on the running speed of the rotor and on the

transmitted load. The external load may be caused by unbalance or by gear-mesh

errors. Because our study is restricted to a stability analysis, we consider

only the homogeneous equations of motion (f = 0).

Lund (ref. 7) introduced a similar model for a geared train of rotors and

mentioned the influence torslonal-lateral coupling may have on the critical

speeds, stability, and unbalance response of the system. But he focused more

on the solution algorithm, which is a modified transfer matrix method, than on

the discussion of the stability behavior.
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Natural Vibrations - Eigenvalues and Natural Modes

The natural vibrations can be calculated from the homogeneousequations
of motion (f = 0).

Assuming a solution of the form _(t) = E • eXt, we obtain the quadratic

elgenvalue problem

(x2 + xb+ ) r=o

with 2N eigenvalues Xj and corresponding elgenvectors Ej- In most cases
elgenvalues as well as elgenvectors occur in conjugate complex pairs:

Eigenvalues - _j = _j + i_j Xj = _j - imj

(7)

(8)

where _j
constant.
make the system unstable, if
system runs stably.

Eigenvectors - _j = _j + itj _j = sj - it._j

We consider only the part of the solution that belongs to a conjugate complex

pair:

_j(t) = Bje_j t {_j sin(_jt +yj) + tj cos(_jt +yj)} (g)

is the circular natural frequency of this part and :j the damping

If the damping constant :j > 0, the natural vibrations increase and

ej < 0, the natural vibrations decrease and the

For the torsional-lateral-coupled system the elgenvalues are composed of

torslonal-lateral-coupled damping constants and elgenfrequencles. The corre-

sponding modes are set up by torsional and lateral components. We define the

expression in braces of equation (9) as the natural mode. In contrast to con-

servative systems there is no constant modal shape: proportions and relative

phasing generally vary from point to point at the shaft. The lateral compo-

nents of one natural mode represent a tlme-dependent curve in space. The plane

of motion of one point of the shaft has an elliptical orbit. The torsional

components of one natural mode also twist the shaft along its axis.

If we transpose the matrices M, D, and K, we obtain the so-called left-

hand elgenvalue problem

{_2 _T + x_T + _T} l = 0 (I0)

which has the same elgenvalues X but different elgenvectors !- Both elgen-

vector sets are needed to decouple the system matrices for the sensitivity

analysis of the elgenvalues.

First the elgenfrequencles and modes for the rigidly supported system are
calculated in the manner described. A similar system was studied by Ilda

(ref. 8). Because of its geometry (fig. 3), for bending purposes shaft 2 is

very stiff as compared with shaft l. Figure 7 shows the natural modes of
vibration where the torsional displacement of shaft l is multiplied by the

radius of gear wheel l and the twisting of shaft 2 is multiplied by the radius
of gear wheel 2 to match the dimension with the bending. With this
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normalization the kinematic constraint equation (1) equation (2) can be veri-
fied at once from the plot of the elgenvectors, because the sumof torsional
and lateral displacement at shaft l and shaft 2 must be equal at the gear mesh.

In the first modethe torsional displacement is rather predominant, but
in the second and fourth modesit is comparable to the flexural displacement.
In these two modesthe elgenfrequencles of the torslonal-lateral-coupled sys-
tem differ about 15 and 5 percent, respectively, from the solutions of the
uncoupled system. The third elgenvector lles in the x-y plane, which is per-
pendicular to the direction of the tooth force. Therefore for the rigidly
supported system it is a completely decoupled bending mode.

Whenthe coupling effect has such a strong influence on the elgenfrequen-
cles, how does it affect the damping constants of the elgenvalues for the oil-

film-supported system in figure 2? To answer this question, we calculate

the elgenvalues for the uncoupled and coupled systems. Because the bearing
coefficients depend on both the rotational speed and the static load on the

journal, the elgenvalues change with the running speed and the transmitted
load.

In figure 8, for the six lowest elgenvalues, the elgenfrequencies
(f = _/2_ rpm) and damping coefficients (a = _/2_ rpm) are plotted as a func-

tion of the rotational speed of shaft l for the uncoupled system (---) and

for the torsional-lateral-coupled system (_). In this diagram the static

load on the bearings remains constant during the alteration of shaft speed.
Static load is determined by the weight of the shaft and the transmitted moment

MM or MG (fig. 3).

It is obvious that most of the elgenfrequencles change only little and

that they almost coincide with the solutions for the rigidly supported system.

The reason for this is that the oil-film bearings in the investigated speed
range are relatively stiff as compared with the elasticity of the shaft.

Exceptions are the two whirling frequencies, which grow linearly with the rotor

speed. Their frequency is approximately one-half the speed of shaft I. They

belong to highly damped modes where the movement of the oil-film-supported
shaft represents a conical whirl in one of the two bearings.

In some modes the frequencies for the uncoupled and torslonal-lateral-

coupled systems differ essentially (e.g., the second frequency of the coupled

system is about 15 percent lower than that for the uncoupled system). Figure 9
shows the strong torslonal-lateral coupling in the corresponding elgenmode in

contrast to the first elgenvector, which remains an almost pure torsional mode
even in the coupled model.

The coupling affects not only the elgenfrequencles and modes but also the

damping constants (fig. 8). The zero passage of one damping coefficient indi-

cates the stability threshold of the system. In the uncoupled system all the

damping constants for the bending modes are negative up to a threshold speed

of 3745 rpm, where the first bending mode (f2 = 2157 rpm) becomes unstable.

It proves that the dangerous positive damping constants occur at the lower
bending elgenvalues. Because we have not introduced additional torsional

damping, the damping constants for the torsional modes (fl = 821 rpm,
f4 = 4370 rpm) are equal to zero.
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In the torsional-lateral-coupled system the lateral motion of the shaft

in the journals may contribute additional damping to the torsional modes

(fig. 6). An additional negative damping is in general desirable, but a posi-
tive damping, which may destabilize the torsional modes, is also possible.

Figure 8 indeed shows that the first weakly coupled torsional elgenvalue

(fl = 812 rpm) becomes slightly unstable at 1740 rpm. Obviously the insta-

bility whirl tends to lock in at the lowest system frequency, which in the
coupled case may be a bending or a torsional mode. Because negative torsional

damping Is always present in real machines (material damping, damping of the

surrounding media), the slight torsional instability of our coupled model
would not occur in practice. The next elgenvalue, which becomes clearly

unstable at 3510 rpm, belongs to the second strongly torslonal-lateral-coupled

mode (f2 = IBTl rpm). Its threshold speed is 7 percent lower than in the

uncoupled case. In addition, the third eigenvalue, which remains stable In

the uncoupled case, becomes unstable at a rotational speed of 4150 rpm In the

torslonal-lateral-coupled model. The corresponding elgenfrequency and elgen-

vector (an almost pure bending mode lying in the x-y plane, which is perpen-
dicular to the plane of tooth force action) nearly coincide with the solutions

of the uncoupled system (fig. 7). Therefore we conclude that although we can-

not recognize a strong torslonal-lateral coupling in the frequencies and modes,

the coupling may still affect the stability behavior. This effect is due to

the energy exchange between the torsional and bending vibrations at the gear

mesh (fig. 6).

It is important to note that the instability onset speed of the uncoupled
and the torslonal-lateral-coupled systems are not equal. The coupling mecha-

nism in gears may essentially lower the threshold speed. Classical uncoupled

stability analysis indicates that the system becomes unstable at the lowest
lateral threshold speed of the individual rotors. In a coupled analysis the

actual stability threshold may occur in a torsional or a strongly torsional-

lateral-coupled mode of the complete system.

DISCUSSION OF STABILITY BEHAVIOR

In a classical vibration analysis, which ignores the coupling between

torsional and lateral vibrations in gears, the torsional critical speeds are

only sensitive to torsional system parameters whereas the lateral elgenvalues

of an individual rotor depend only on its bending parameters. We use the

expression "torsional parameter" in thls context for rotary inertia or tor-

sional stiffness and "bending parameters" for quantities such as mass or flex-
ural stiffness. If we consider torsional and bending vibrations as coupled in

the gear, an elgenvalue is generally sensitive to torsional and bending param-
eters of all shafts. The effect of the coupling on the stability behavior of

the complete rotor system can therefore be studied by answering the questions

(1) How do modifications of torsional and bending system parameters change

the stability threshold? (Parameter study)

(2) How do changes of torsional and bending system parameters affect the

damping constant of the elgenvalues? (Sensitivity analysis)
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Parameter Studies

For the parameter study two torsional parameters and two bending param--

eters of the simple shaft system were selected (fig. lO). Figures II and 12

show how the stability threshold speed due to the zero passage of the second

elgenvalue (real part) changes when the chosen system parameters are varied.

As a reference model we take the torslonal-lateral-coupled model with the data

of figure 3. Its second elgenvalue becomes unstable at a speed of 3510 rpm.

The question Is now: How do respective torsional bending parameters affect
this Instablllty onset speed?

Figure ll shows the influence of the torsional stiffness _2 and rotary

inertia e2 of shaft 2. Of course the torsional parameters do not change the
stability threshold in the uncoupled model. In the coupled case, the rise of
the torsional stiffness _2 stabilizes the second elgenvalue, but a higher

rotary inertia Bp destabilizes it. At first sight (fig. ll) it appears
that a torslonall_ stiffer shaft 2 would make the system more stable. But

when the second elgenvalue becomes more stable, the first elgenvalue is

destabilized; therefore the stability threshold of the coupled system is

lowered by an increased torsional stiffness. Decreasing the rotary inertia

e2 produces similar results. This effect is ignored in figure ll because

only the real part of the second elgenvalue is considered.

Figure 12 shows that the influence of the bending parameters on the

threshold speed for the second elgenvalue is much stronger than the influence
of the torsional parameters. It is again interesting to note that the insta-

bility onset speed essentially depends on whether an uncoupled or a torsional-

lateral-coupled model is used. In our case a stiffer shaft l (kl) with a

smaller mass ml makes the system more stable. In both cases the stability

threshold for the coupled model is lower than for the uncoupled one.

We conclude from this study that the stability threshold speed is sub-

stantially influenced (1) by the model used in the coupled or uncoupled case

and (2) by the torsional and bending system parameters in the coupled case.
This fact indicates a strong torsional-lateral coupling relation to the

stability behavior.

Sensitivity Analysis

As a second tool to investigate the influence of the torslonal-lateral

coupling, we used a sensitivity analysis of the elgenvalues. This method

yields so-called influence coefficients, which describe the change of an

elgenvalue _n caused by a small modification of a system parameter Pk"

The influence coefficients for the real parts of the elgenvalues express how

sensitive the stability of the system is to parameter changes. The stability
threshold of an uncoupled model is only affected by the bending parameters of

the individual rotors. In contrast to that for the torslonal-lateral-coupled

system, an elgenvalue is generally influenced by torsional and bending param-

eters of all shafts. Therefore by the aid of the sensitivities of the real

elgenvalue parts for the uncoupled and coupled systems, the influence of the
torslonal-lateral coupling on the stability behavior can be discussed.
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This sensitivity analysis is based on an expansion of the eigenvalues In
terms of the generalized system parameters Pk, where the Pk may be mass,
damping, stiffness, or even physical parameters, for example, bearing clearance
(ref. 8):

_X _X _X
_n = Xn,o + n n n3Pl/o-APl + .AP2 + ... (11)3P2/o _Pk/o "Apk

Truncation of Taylor's expansion after the first derivatives leads to a linear

approximate formula. It Is shown in references 8 to 10 that the elgenvalue
derivatives can be expressed by the elgenvalues, by the left- and right-hand

elgenvectors of t_e _riginal system (subscript o), and by derivatives of the

system matrices M, D, and K to the parameters Pk (subscript k).

aX T O
n

=-1 .(X_ "_I,k_ + X D, +
_Pk/o -n n - k T<'k) -[n/o = gn,k

(12)

The eigenvectors must be normalized In a special way (ref. 10). The deriva-
tives are also called influence coefficients.

For the simple gear model we start from a point near the stability thres-

hold speed and investigate how particular parameters affect the stability

behavior. Figure 13 shows the influence of the torsional stiffness k2 on

the real and the imaginary part of the second elgenvalue. It can be seen that
increasing the torsional stiffness has a stabilizing effect on the second

elgenvalue. The corresponding influence coefficient calculated with the given

linear formula Is indicated by the tangent to the curve.

Figure 14 contains influence coefficients for the elements used in our

gear model such as disks, journal bearings, and beams. The influence coeffi-

cients in equation (12) represent an absolute measure for the changes of the

complex eigenvalues Xn = :n + i_n caused by parameter modifications.

By means of these coefficients a relative measure, the nondimensional sensi-
tivity, can be defined:

Pk
A_n4_nl S _ = Re(g n ). i
APk_k = n,k ,k _n

Amn/mn = S m = Im(g n ) Pk
APk p_ k n,k ,k mn

(13)

where Sn,k is the nondimenslonal sensitivity of the damping coefficient and
S_,k, of the natural frequency. Thls presentation has the great advantage

that the influence of several parameters on different modes can be compared
immediately.
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To show the Influence of torsional and bending system parameters on the
stability behavior of our rotor system, relative sensitivities for the real
part of the second elgenvalue were calculated near the threshold speed of the
uncoupled and coupled models (nl = 3680 rpm) and are plotted in figure 15.
It is important to note that the values of the relative sensitivities for the
uncoupled and coupled models are different.

Of course in the uncoupled model the torsional parameters do not affect

the real part of the second elgenvalue, which belongs to a pure bending mode.
The corresponding sensitivities are therefore equal to zero.

Nevertheless in the uncoupled model changes of the bending parameters of
shaft 1 have a strong Influence on the real part of the second elgenvalue.
Because the oil-film bearings are relatively stiff as compared with the bend-
lng stiffness of shaft 1, the changes of the shaft parameters (e.g., bending
stiffness, mass of the pinion) have a much stronger effect on the damping con-
stant than do the bearing parameters (e.g., clearance _). In the uncoupled
case the bending of the rigidly supported shaft 2 is not related to the oil-
film-supported shaft 1, which becomes unstable. Therefore the bending param-
eters of shaft 2 have no Influence on the stability behavior.

In the coupled model it is obvious that changes of the torsional param-
eters can have a strong influence on the real part of the second elgenvalue.

A comparison of the different torsional parameters points out that the main

influence is from the torsional parameters of shaft 2. Their relative sensl-

tlvltles are much greater than those of the torsional parameters of shaft I.

A look at the torsional components of the corresponding second mode makes the

reasons clear: shaft 2 shows a maximum displacement because of torsion at the
gear wheel and is much more twisted than shaft I.

The sensitivity of the torsional stiffness has a negative sign. An

increasing stiffness stabilizes the rotor system, as we have already seen in

the parameter study (figs. II and 13). The rotatory inertia of the second

gear wheel and of the generator have a positive sensitivity. Increasing

values of this parameter have a destabilizing effect (fig. ll).

Changes of the bending parameters have a stronger effect on the real part
of the second elgenvalue than do the torsional parameters. Because the bend-

ing of shaft 2 is for the coupled model connected to the oil-film-supported
shaft l by the coupling equation (2), its parameters also influence the sta-

bility behavior of our model. But as shaft 2 is almost too rigid to bend in

the second mode the influence coefficients of its parameters (e.g., mass of

the wheel and lateral stiffness) are relatively small.

Obviously the dimensionless sensitivities of the bending parameters of

shaft 1 differ essentially from the values of the uncoupled model. For

example, the influence coefficient of the clearance for the right bearing in

the coupled case is of about the same magnitude as that in the uncoupled case

but has the opposite sign. The sensitivities of the bending stiffness and the

mass of the pinion are essentially smaller than those in the uncoupled model.

The results show that the stability behavior of our model is particularly
influenced by the bending parameters of shaft l and the torsional parameters
of shaft 2. The differences in the solutions for the sensitivities in the
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uncoupled and coupled models indicate that the torslonal-lateral coupling must
not be neglected in discussing the stability behavior of geared rotors.

CONCLUSIONS

In this paper a study of the stability behavior is given for a simple
geared shaft system. It is shownthat the classical elgenvalue analysis, which
ignores the coupling of torsional and lateral vibrations in gears, may lead to
serious errors in the prediction of the stability onset speed, the critical
speeds, and the natural modes. Also it does not account for the damping of
the torsional modes,which is attributed to the lateral motions in the
journals.

The strong relation of torslonal-lateral coupling to stability behavior
is proven by parameter studies and sensitivity analysis, which show the influ-
ence of torsional and bending system parameters on the stability threshold and
damping constants.

The analytical results for the simple geared model remain to be verified
by experimental investigations and extended to more complex rotor systems.

REFERENCES

l. Wachel, J.C.; and Szenasl, F.R.: Field Verification of Lateral-Torsional
Coupling Effects on Rotor Instabilities in Centrifugal Compressors. NASA
CP-2147, 1980.

2. Yamada,T.; and Mitsui, 3.: A Study on the Unstable Vibration Phenomena
of a Reduction Gear system, Including the Lightly Loaded Journal Bearings
for a Marine SteamTurbine. Bull. JSME,Vol. 22, No. 163, 1979.

3. Iannuzzelll, R.J.; and Elward, R.M.: Torslonal-Lateral Coupling in Geared
Rotors. ASMENo. 84-GT-71, 1984.

4. Simmons,H.R.; and Smalley, A.J.: Lateral Gear Shaft DynamicsControl
Torsional Stresses in Turbine Driven CompressorTrain. ASMENo. 84-GT-28,
1984.

5. Dubols, G.B.; and Ocvlrk, F.W.: Analytical Derivation and Experimental
Evaluation of Short-Bearlng Approximation for Full Journal Bearings. NACA
Report I157, 1953.

6. Ott, H.H.: Zylindrisches Gleltlager bel instatlon_rer Belastung. Disser-
tation ETHZurich, 1948.

7. Lund, J.W.: Critical Speeds, Stability and Responseof a Geared Train of
Rotors. ASMENo. 77-DET-30, 1977.

8. Iida, H.; Tamura, A.; Kikuch, K; and Agata, H.: Coupled Torslonal-Flexural
Vibration of a Shaft in a GearedSystem of Rotors. Bull. JSME,Vol. 23,
No. 1986, Dec. 1980.

542



9. Gllenlcke, 3.: Feder- und Dampfungskonstanten von Gleltlagern und deren

Einfluss auf das Schwlngungsverhalten elnes elnfachen Rotors. (Stiffness

and Damping Coefficients in Journal Bearings). Thesis TH Karlsruhe, 1966.

lO. Frltzen, C.P.; and Nordmann, R.: Influence of Parameter Changes to the

Stability Behavior of Rotors. Rotordynamlc Instability Problems In High-
Performance Turbomachlnery. NASA CP-2250, 1982.

[Reduction gear

I

s I

Generator

I

Ol[fl[m beamng

Figure I. - Reduction gear in a tJrbogenerator set.

543



M

Motor

Shaft

1 t

2 I

Shaft 1

Figure 2. - Model of a geared rotor system.

Motor

OM

,× c//

81 =0,0063 kg m2

mI =5,66 kg

82 --0,03 kg m2

m2=8,359 kg

GM: O5 =0,018kg m2

372.5

Cylindric Gear 1

journal 81,ml, q

372,5 -4-
5O

t_ =0,001 Shaft 2 -- .-- "'_

MM=IO Nm _ I ,MG= r__2.MM
200

I

Cylindric

jourr_[
BID ,qJ

Shaft I

_Ge:ersfor

Gear 2 _ Oe

200 I- 200

Figure 3. - Data for the geared rotor system.
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Figure 5. - Vibrations of the journal.
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