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Summary. In the simplest approximation the high-frequency toroidal mode 
dispersion is simply related to the intercept time ~ p ( p )  as a function of 
slowness p derived from SH-wave travel times. Velocity and density gradients 
in the Earth introduce perturbations to this simple relation. More pronounced 
effects arise when the mantle contains discontinuities in elastic properties and 
these disrupt the regular spacing of eigenfrequencies with radial order at 
fixed slowness p ,  a ‘solotone’ effect. A simple iterative approach is introduced 
which enables the solotone effect to be calculated for an earth model with 
multiple discontinuities. At futed frequency the discontinuities give rise to a 
distinctive pattern with varying slowness, particularly in the group velocity 
behaviour. The perturbations due to the discontinuities depend on the 
reflection coefficients at these interfaces and so are large for modes with 
slownesses corresponding to turning points near the discontinuities. For mode 
phase velocities greater than 9 km/s the details of the solotone perturbation 
are dominated by beating between the effects of different discontinuities. 

The theoretical results are illustrated by computations for model 1066B, 
both directly and using the asymptotic approach. This allows an assessment 
of the influence of velocity gradients and upper mantle discontinuities on the 
dispersion. Also the sources of systematic error in Brune’s approach to 
determining toroidal mode dispersion are discussed and bounds on the errors 
estimated from the calculations. 

1 Introduction 

Many models of the velocity distribution in the upper mantle of the Earth contain dis- 
continuities in velocity or very strong velocity gradient zones which will approximate 
discontinuities for low-frequency waves. For low angular order toroidal modes Anderssen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
& Cleary (1974), Lapwood (1975), Wang, Gettrust & Cleary (1977) and Anderssen (1977) 
have related the asymptotic spacing of the frequency spectrum with radial order to the radial 
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travel times of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASH waves through the whole mantle. They have demonstrated that dis- 
continuities in velocity give rise to a ‘solotone’ effect of perturbations in the regular 
asymptotic frequency spacing. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A similar regularity in the spacing of eigenfrequencies, but at futed slowness, can be 
derived for a smooth mantle (Pekeris 1965) by essentially a WKBJ approximation. For radial 
order n the eigenfrequency at futed slowness p is now simply related to the intercept time 
~ p ( p )  for SH body waves by 

B. Kennett and G. Nolet 

for a turning point in the mantle. This result has been used by Nolet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Kennett (1978) 
in a study of the correspondence between pulse formation by addition of normal modes and 
multiply reflected phases zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(SS, SSS etc.). 

Woodhouse (1978) has presented a convenient asymptotic approach to the study of 
elastic wave propagation in piecewise smooth velocity models. This approach has been 
employed by Kennett & Woodhouse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1  978) to consider the asymptotic behaviour of 
spheroidal modes whose displacements are confined to the mantle and also the inversion of 
high-frequency spheroidal modes. 

In this paper we present a detailed study of the effects of one or more discontinuities on 
the high-frequency behaviour of the toroidal modes for arbitrary slowness ( p )  on the 
Woodhouse (1978) approach. As in Kennett & Woodhouse (1978) we are able to relate the 
effects of velocity gradients and discontinuities to additional frequency-dependent phase 
shifts zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9(u, p )  in the dispersion relation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
% W ~ ~ T ~ ( ~ )  = (n + %)n + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 ( u , p ) .  

We introduce a simple iterative approach to the calculation of toroidal mode dispersion in 
the presence of multiple discontinuities. The ‘solotone’ contributions from the dis- 
continuities depend on the reflection coefficients at these interfaces and thus are large for 
modes with slownesses appropriate to ray turning points in the neighbourhood of the 
discontinuity. For turning points in the lower mantle and for ScS equivalent modes the 
details of the phase shift are dominated by beating effects due to the interaction of 
contributions from several interfaces. The existence of the ‘solotone’ effect leads to 
oscillatory behaviour in the group velocity for fixed mode phase velocity whereas in the 
simplest treatment the group velocity would be constant. 

We compare direct calculations of mode dispersion for model 1066B (Gilbert & 
Dziewonski 1975) for radial orders up to 29 and angular orders out to 700 with our 
asymptotic results. This enables us to assess the influence of the upper mantle discontinuities 
on the overall solotone phase shift, and to examine the significance of velocity and density 
gradients in the model. In addition w: are able to estimate bounds on the systematic errors 
arising in Brune’s (1964) approach to the calculation of toroidal dispersion, from the neglect 
of discontinuity contributions. 

The size of the overall phase shift 9 is a rather useful measure of the information content 
in the toroidal modes. When 9 is large the density has a significant influence on the 
frequencies of the normal modes, but when 9 is small the dispersion information is 
equivalent to that attainable by ray theory. 

2 An asymptotic development for toroidal modes 

Woodhouse (1978) has presented a systematic account of an asymptotic development of 
wave propagation in media with smoothly varying velocity profiles. We shall use his 
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High-jirequency toroidal free oscillations o f  the Earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA285 

approach to re-derive the simple results of Nolet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Kennett (1978) and to examine the 
influence of velocity gradients and discontinuities on the toroidal mode spectrum. 

The displacement field for a toroidal mode takes the form 
l a  a 

sine a4 ae zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAug = W(r) - -&“‘ (e, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) exp ( i o t ) ,  ue = w(r)  - y;” (e, 4) exp (iwt),  

with stresses 

l a  a 
Tr@ = T(r) - - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY;” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6, 4) exp (iwt), T~,#, = T(r) Km (6, 4) exp (iwt), 

slne a@ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
and 

The stress and displacement scalars are related by 

in terms of the slowness p =  [1(1+ 1)]”2/w=L/w, and the boundary conditions for toroidal 
modes are 

T(a) = 0 

and 

T(b) = 0 

At any internal interface (W, T) are continuous. 
We will consider the high-frequency limit of the equations (4) for futed slowness and thus 

variable large angular order. Woodhouse (1978) has shown that an asymptotic fundamental 
matrix solution FT of (4) (i.e. with both columns asymptotic solutions of (4)) can be written 
as 

at the free surface r = a,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(5) 

at the core-mantle interface r = b.  

FT = r-’R(l  + w-’rT)Ep, (6)  

where 

The matrix T arises from the S-wave velocity ((3) and density ( p )  gradients in the model and 
has the form 

and we will usually set x = z - qgy. The detailed forms of y and x are given in the Appendix. 
The phase matrix E ,  depends on Airy functions 
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The radius zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARp corresponds to a turning point (qp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0) if one is present in a layer; for regions 
where the shear velocity increases with depth sp = 1. In the subsequent work we assume at 
most one turning point for the slownesses considered, and to simplify the algebra we follow 
Kennett & Woodhouse (1 978) and write zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

B. Kennett and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. Nolet 

the expressions Aj, Ak, Bj, Bk have simple asymptotic forms (Abramowitz & Stegun 1965). 
Using the fact that the Wronskian of (Ai, Bi) is B-' the inverse of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEp is 

Also in a high-frequency approximation we have 

(I + w-'rT)-' = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( I  - w-'rT) 

and so the inverse of the asymptotic fundamental matrix FT' may easily be constructed 
using (1 0) and (1 Oa). 

For a region (rl, r 2 )  we may factor the propagator matrix for the toroidal modes (Gilbert 
& Backus 1966) into a product of a fundamental matrix at the top of the shell (rl) and the 
inverse of a fundamental matrix at the base of the shell ( r z )  

PT(r1. r2) = FT(~I) [FT(~z)I- ' .  (1 1) 

2.1 A S M O O T H  M A N T L E  

The displacement at the Earth's surface can be related to that at the core-mantle boundary 
by 

using ( I  I )  and the boundary conditions (5). It is convenient to recast (12) into the form 

with the new vector (clr c ~ ) ~  depending on the SH-wave phase terms at the base of the 
mantle, from (lo), 

The asymptotic dispersion relation for the toroidal modes is then obtained from the stress 
equation in ( 1  3) as 

As we would expect we see from (14) that there is in this case complete symmetry in the 
terms arising froin the two boundary conditions. 
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High-frequency toroidal free oscillations of the Earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA287 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
For a slowness p corresponding to the existence of toroidal modes, qj(a)  will be positive 

corresponding to propagating zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASH waves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand thus at the surface we may employ the 
asymptotic approximations for the Airy functions of the type 

Aj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[oHg(a)] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- qg(a)-'" cos [wHg(a) - n/4], (1 6 )  

with Rg set equal to the turning radius at which qg(r) = 0, if this lies in the mantle. If we 
employ the approximations analogous to (16) in (1 5) we have 

tan [wH,(a) - n/4] = tan zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[O (a, Rg) - tan-' (c2/cl)] ,  

where (1 7) 

O(a, Rg) = tan-'(w-'aqj'x h), 
represents the integrated effect of the velocity and density gradients between the turning 
radius and the surface. The solution of (1 7) is then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I q g  I dr = (n t %)n + O(a, Rg) - tan-'(c2/cl), wl:&¶ 
in terms of the radial order n. We recall that (18) is appropriate to a ftved slowness p so that 
the phase term may either be connected to the body wave intercept time 7p(p) or 
alternatively in a form corresponding to Nolet & Kennett (1978) 

where c is the phase velocity (alp) and u p  = L - (1 t $5) for large 1. 

c2/cI and thus on the nature of the SH wavefield at the core-mantle boundary. 
Equation (18) shows us that the dispersion of the toroidal modes depends on the ratio 

We can distinguish three slowness regimes: 

2.1.1 An SH-wave turning point well above the core-mantle boundary (4 kmfs G c G 

I2  kmfs) 

In this case the SH waves will be evanescent at the radius b and we may use the asymptotic 
approximations for Aj etc. of the type 

Aj [wHg(b)l - %Q&)-"~ exp (- o I Hg(b) I), (20) 

and then 

and this will be very small. If c2/cl  is regarded as entirely negligible then (18) reduces to 
Nolet & Kennett (1978) equation (3.6) with a correction term for velocity and density 
gradients in the model. 

2.1.2 Turning point near the core-mantle boundary (12 kmls < c < 15 kmls) 

Once a turning point for SH waves comes clod to the boundary the asymptotic development 
leading to (21) is no longer appropriate and the full forms of the Airy functions must be 
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288 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
used. If the SH wave just fails to turn we may take zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR p  to be given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq p  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 with the 
velocity distribution analytically continued beyond the core-mantle boundary as mentioned 
by Woodhouse (1978). The modes in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt h i s  slowness range correspond to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASH diffracted body 
waves and we may approximate the behaviour by taking the turning radius Rp to lie at the 
core-mantle boundary. Then 

B. Kennett and C. Nolet 

1 - - -  c2 - + 0 [ ~ - ~ ~ z ( b ) ] ,  
C l  d 3  

the slight correction arising from the local velocity and density gradient at the core-mantle 
boundary and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
%o.rp(p) = (n + 1/12) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn + O(a, b),  (22) 

the correction term for SH diffracted modes depends on the velocity and density gradients 
throughout the mantle. 

2.1.3 Reflection ut the core-mantle boundary (15 kmJs G c) 

We now have propagating SH waves throughout the whole mantle and may therefore employ 
asymptotic approximations to the Airy functions similar to (16). There is now no turning 
point in the mantle for these ScS equivalent modes and so we recover a form similar to 
(1 8) but without the n/4 phase shift arising from a turning point 

I q p  I dr = ' A w ~ ~ ( p )  = nn + O(u, b), -J: 
with the correction for gradients encompassing the whole mantle. 

Thus as the phase velocity increases the phase shift in the asymptotic relation (18) for 
the toroidal mode eigenfrequencies remains close to n/4 until the SH wave turning point 
approaches the core-mantle boundary, the phase shift then reduces steadily through n/ 12 
for S diffracted modes to zero for ScS equivalent modes (Fig. 1). 

Turning point in Mantle 
Phase 

Shift 
S diffracted 

I \  ' ScS equivalent 

6 8 10 12 1 4  16 18 2 0  
C krnls 

Figure I .  Pattern of  phase shifts with change of mode character as the phase velocity c increases and thus 
slowness p ( =  u/c) decreases. 

2.2 A M A N T L E  W I T H  A D I S C O N T I N U I T Y  

We will consider initially a single discontinuity at a level r = d. The relation between the 
surface displacement W(u) and that at the core-mantle boundary is given by 
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High-frequency toroidal free oscillations of the Earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA289 

By analogy with (1 3) we may write 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(c;, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc ; ) ~  will represent a modification of (14) by the interface term arising from the 
discontinuity 

Any additional discontinuities will introduce similar interface terms and so a close 
examination of (26) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill give a basis for extension to multiple discontinuities. The eigen- 
frequencies of the toroidal modes at fuced slowness p will be given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
O H ~ ( Q )  = (n + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA%)n + 6 (a) - tan-' (c;/ci), (27) 

and we will examine the modification from the relation (1 8) introduced by the presence of 
the discontinuity. The interface term 

where m = p+/p- and the suffices denote the upper and lower sides of the discontinuity. 
In the terms [Eo(d+)]-', E&-) we need to use the expressions (9), (10) evaluated with 

the turning point depth appropriate to the side of the interface under consideration. The 
phase term Hp(d+) depends on the turning point radius in the analytic continuation of the 
velocity structure in r > d, whilst Hp(d-) depends on the true turning point radius. 

To reduce the algebraic complexity we will neglect the gradient terms henceforth in the 
treatment of the interface effects, since they will be one order down in frequency. To this 
approximation 

c;/c; = [hl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+fiZ(C2/Cl)l/[fil +fi2(C2/CI)l9 

with 

fll = m'"Bk (OH;) Aj ( a H i )  - m-1'2 Bj (OH;) Ak ( a H i )  

fi2 = m'" Bk (OH;) Bj  OH^) - m-'I2 Bj (OH;) Bk ( w H ~ )  

fil = - m " 2 A k ( o H B + ) A j ( d f i )  + m - ' / 2 A j ( ~ H ; ) A k ( ~ H , ? )  

h2 = - m'" Ak (OH;) Bj   OH^) + m-'"Aj (OH;) Bk (a&) 

and all the phase arguments are evaluated at r = d .  In order to determine the asymptotic 
dispersion of the toroidal modes from (27) we have to calculate tan-'(c;/c;). It is con- 
venient to do this in terms of tan-'(c2/c1) and using a trigonometric identity (Abramowitz 
& Stegun 1965, section 4) 

with (30) 

@ = tan-'(c2/cl). 
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We may only simplify zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt h i s  relation further if we are able to use the asymptotic forms for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Aj, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAk, Bj, Bk. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB. Kennett and G. Nolet 

2.2. I Turning point below the discontinuity 

For modes with slownesses such that the SH-wave turning point lies below the discontinuity 
we may use the forms of the Airy functions corresponding to propagating waves on both 
sides of the interface. Then we find 

tan-' (c; /c;)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= n/4 - OH; + tan-' {Q tan (@ + wHi - n/4)}, (31) 

where Q = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp-qp-/p+qp+. Alternatively we may cast this result in terms of the reflection 
coefficient for SH waves incident on the top of the interface, at slowness p ,  

R = (1 - Q M l  + Q), 

and then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
tan-'(c;/c;)=@+w(Hi-H;)+ tan-'{Rcos2(@++Hi)/[ l  + R  sin 2(@++Hi)]}.  (32) 

The behaviour of (3 l), (32) will depend on the nature of the wavefield in the mode. 

(a) Turning point in mantle 

In this case (cz/cl) is given by (2 l), and if the turning point lies well above the core-mantle 
boundary tan @ will be negligible so that (32) becomes 

o [Hp(a) - Hp(d+) + Hp(d-)] = (n t %)n 

- tan-'{R cos 2oHp(d-)/[ 1 +R sin 2wHp(d-)] 1. (33) 

Since If&), Hp(d+) are evaluated with the same effective turning radius we have 

d 

H~(Q) - Hp(d+) = /: I q p  I dr, whilst Hp(d-) = 

where Rp is the radius of the turning point, and so 

I q p  I dr, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
% o T ~ ( ~ )  = (n + %)n - tan-' [R cos 2wHp(d-)/(1 + R sin 2wHp(d-))]. (34a) 

The additional term arising from the presence of the discontinuity includes the interference 
of waves reflected above and below the discontinuity, and there is no simple ray-mode 
correspondence. We note that w appears implicitly in (34a), but approximately the 
additional contribution depends on the radial order number n and the ratio of the tau 
contribution from beneath r = d  to the whole, i.e. 

u =  ~ ; p 1 4 p l d r / f p l ~ f i l d r .  

If we consider small contrasts in elastic properties at the interface (i.e. R 5 0.1) a good 
approximation to the dispersion behaviour is provided by 

(34b) H w ~ ~ ( p )  = (n t %)n - R cos % o H i (  1 - R sin 2wHi)  = (I + H)x (c ) .  
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High-frequency toroidal fiee zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoscillations of the Earth 29 1 

With the further approximation of setting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2(n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt %)n/~&) in the perturbing term in 
(34b) 

% w p ( p )  = (n t %)n - R cos 2(n t %)m(l - R sin 2(n t %)m), (34c) 

and thus the solotone perturbation due to the discontinuity will be periodic in radial order n 
but will be a more slowly varying function of p at fured radial order. 

(b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAScS equivalent modes 

If we now consider modes equivalent to reflections from the core-mantle boundary 

tan-'(cJcl) = = - oHp(b) + n/4, 

and so (27) becomes 

o [Hg(a) - Hp(d+) + Ha@-) - Hp(b)] = %io.rp(p) = nn t tan-'(R sin 2 w / [  1 t R cos 2081 ), 

We note that we have recovered a form similar to (23) but with an additional term arising 
from the presence of the discontinuity at r = d. The structure of the perturbing term is very 
similar to that in (33), once the phase shift associated with the reflection is taken into 
account. For small contrasts in elastic parameters at the interface (R S 0.1) we may make a 
similar development to (34) and obtain 

% ~ ~ p ( p )  = nn t R sin 2ot)( 1 - R cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 4 .  (35b) 

Once again we have an implicity relationship for o, but we see that approximately the 
discontinuity term in (35a, b) depends on the ratio of the tau contribution from below the 
discontinuity to the whole zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1; I 46 I dr I q p  I dr. 

and with the simplest approximation to the frequency o = 2nn/~p(p) 

% o ~ p ( p )  = nn - R sin 2nm( 1 - R cos 2nm). (3%) 

The solotone effect is again periodic in radial order but the detailed behaviour will be rather 
sensitive to the location of the discontinuity in the mantle through the ratio v. 

In agreement with the results of Anderssen (1977), who considered very small slownesses, 
'solotone' perturbations in the dispersion relation persist for any level of contrast at the 
discontinuity and scale with the reflection coefficient for small contrasts. 

tan % o ~ p ( p )  = R sin 20774 1 t R cos 2 q ) ,  

which after rearrangement becomes 

For these ScS equivalent modes we may recast equation (35a) into the form 
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292 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
the roots of (36) then determine the asymptotic mode dispersion. This equation may 
alternatively be derived directly from the asymptotic development of the propagator 
matrices above and below the discontinuity, but this latter approach is rather difficult to 
extend to multiple discontinuities. Since the right-side of (36) varies more slowly with 
frequency than the left-side, (36) will have roots of the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

B. Kennett and G. Nolet 

The 'solotone' phase shifts associated with the discontinuity in (35) can only therefore result 
in moving a mode branch halfway towards the next. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.2.2 Turning point at or above the discontinuity 

We are also able to consider the case where the turning point for SH waves lies above or at 
the discontinuity. In this case cz/cl will be very small and so 

and there will be very little contribution to (27) if the turning point lies well above r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= d 
so we have 

The effect O f  the discontinuity will only begin to be felt when the turning point approaches 
the discontinuity. In a similar fashion to our discussion for the core-mantle boundary the 
phase shift term in (37a) will diminish from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn/4 towards n/12 as the turning point 
approaches r = d .  For waves reflected from the jump in elastic properties we may approxi- 
mate the behaviour by using the propagating asymptotic expressions for Aj etc. in r > d+  

and the evanescent expressions in r < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd- and so obtain 

tan- ' (h l / f i l )=  o ~ p ( d + )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt tan-' Q - n/4, 

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ=u- Iqp-J /p+ lqp+l,and therefore from (27)we have 

w (Hp(a)  - Hp(d+)! = ! 4 w ~ ~ ( p )  = nn t tan-' Q (37b) 

where T,, is the tau value for reflection from the discontinuity at r = d. In this reflected zone 
we see that the phase shift is frequency independent to this asymptotic approximation, and 
depends purely on the variation of the reflection coefficient with slowness. At critical 
refraction Q = 0 with a corresponding phase shift of n/4 (this value would be reduced if 
we use the full Airy function forms). For smaller slownesses we are into the transmitted 
regime which has previously been discussed. The variation in the phase shift with slowness 
across the region of the discontinuity is sketched in Fig. 2. 

7.3 M U L T I P L E  M A N T L E  I ) I S C O N T I N U I T I E S  

We now consider a model of the upper mantle with N discontinuities in elastic properties 
(at r = d j ,  j = I , .  . . , N) and will index them in order of increasing radius. The surface 
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High-frequency toroidal free oscillations of the Earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
XlC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI-, 

293 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Phase zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Shift 

0 1  I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL 

fJld.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApfd-1 
C kmls zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

F i r e  2. Pattern of phase shifts across a discontinuity occupying the phase velocity interval from P (d,) 
toP(d-1. 

displacement may now be determined from 

with ( c ~ / c ~ ) ~  defined as in (13), where we have factored each of the propagator matrices 
between the discontinuities. 

If as in Section 2.2 we ignore effects due to velocity gradients, then the analogue of 
(27) for the eigenfrequencies of toroidal modes at fmed slowness p is 

wHp(a) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n + %)n - @N, (39) 

where aN is determined by the standing wave ratio above the shallowest discontinuity. 
In the previous section we have established the relation (32) between the standing wave 

ratios (c;/c;) above a discontinuity and (cz/cr) below, when the turning point lies beneath 
the interface. We may apply this relation iteratively to determine @N: we work towards 
the surface in a cascade fashion, the standing wave ratio above one discontinuity becoming 
the input for a further application of (3 1). Thus we have 

@j = @j - 1 + w [Hp(dj -) - HP (dj+)] 

+tan-'{Rjcos2[@j- 1 +~Hp(dj-) ] / ( l  +Rjsin2[@j- 1 +df,,(dj-)])) (40) 

for j = 1, .  . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN where 

a,,= tan-' (c2/cI), 

in terms of the standing wave ratio at the core-mantle interface. R j  is the reflection co- 
efficient for SH waves incident from above the jth interface, at slowness p. This iterative 
approach to the toroidal mode dispersion represents a generalization of the technique 
introduced by Tolstoy (1 955) to non-uniform layering. 

As we have seen from the discussions in Section 2.2, in this asymptotic approximation 
we need only to include the effects of discontinuities at or above the turning point for a 
given slowness. Thus for a turning point in the mantle the mode dispersion is given by 
(cf: ( 3 W  
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and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@H- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 if the turning point radius zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARp dH. We may note that the phase shifts due to 
the various discontinuities are coupled together in the overall solotone shift zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@(a, p). If the 
individual reflection coefficients are small then an approximate development, as in (36b), 
may be made for the tan-' terms. However, the phase shifts from the interfaces will only 
become additive if internal multiple reflections between interfaces are neghgible. With 
major discontinuities present in an earth model such internal multiples can be quite 
significant, as may be seen, e.g. in fig. 5 of Wang et al. (1977), and then the full form 
(4 1 a) needs to be used. 

For ScS equivalent modes the form of (41) is modified slightly, since now all dis- 
continuities will contribute to  the phase shift. Thus we have 

B. Kennett and G. Nolet 

m I 1 7 p ( P )  = nn + %,P), 

and 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
@ o =  - UHp(b) + n/4, 

as in Section 2.2. In this case also the solotone shifts from the discontinuities wikl not in 
general be purely additive. 

Both the expressions (41a. b) may be used for earth models containing velocity inversions 
provided that their use is restricted to  a slowness range such that the corresponding turning 
points lie beneath the base of the deepest velocity inversion. 

For an earth model with multiple discontinuities, (41a, b) may be used either to 
determine the slowness behaviour at fixed frequency or alternatively to examine frequency 
variation at fixed slowness. In each case we note that 9, 9 are functions of w,  p and it is 
convenient to work in terms of perturbations from the simplest form 

( I  + %.)x,(c) = %on,7p(p)  = (n + %)n, (42) 

which neglects all gradient and discontinuity effects (Pekeris 1965; Nolet & Kennett 1978). 
Equation (42) predicts a regular spacing of eigenfrequencies with radial order n and the 
additional solotone phase shifts @ lead to oscillating perturbations in this spacing. Roughly 
these perturbations will be a superimposition of periodic effects associated with individual 
discontinuities. At fixed frequency (41) regarded as an equation for slowness will give 
shifts in the apparent intercept time 7p(p).  'Solotone' effects therefore arise in both radial 
and angular orders. 

3 Group velocity and the pattern of solotone behaviour 

We may summarize the various results obtained in the second section by writing 

(I + %)X(C) = Hw7p(p) = (n + %)n t *(u, p ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(43) 

for phase velocity c (=a /p ) .  We have here reintroduced the notation of Nolet & Kennett 
(1978) since this allows a convenient treatment of group velocity. For an earth model with 
significant velocity and density gradients in addition to discontinuities, the phase shift * 
will take the form 

N 

j = H  
* ( w ,  P) = $j (a, P, d j )  + e(u, P, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARp), 
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where the sum is to be taken over all discontinuities which lie above the turning point for a 
ray with apparent velocity alp (as in (4 1)). The term zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0, p, R p )  represents the integrated 
effect of velocity and density gradients within the model, and for moderate gradient levels 
will depend on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 - l  and thus diminish at high frequencies. 

For high-frequency modes L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= [1(1 t l)] 1'2 is very close to (l + 31) so that at constant 
radial order n, 

(L t AL)x(c + Ac) - 9 ( L  t AL,  c t Ac) = Lx(c) - 9 ( L ,  C) 

from (43), and so to first order 

We may simplify this relation slightly by introducing X I  (c), the distribution which pertains 
to the simplest approximation ignoring any gradient or discontinuity terms (42) so that 

L x = L x 1 +  9. 

This reduces (45) to  the form 

where pl (c) is the group velocity from the simplest approximation. The xl function and its 
derivatives can be related to the travel time curve by 

x1@) = 'Ap-' 7 p ( P ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Lx; (c) = m J T ( P ) ,  

where T ( p )  is the travel time for ray parameter p ,  phase velocity c.  The first approximation 
to the group velocity 

PI (c) = X(c)/T(c)  

is constant for fixed phase velocity, as noted by Nolet & Kennett (1978). Once allowances 
are made for the effects of the velocity gradients and discontinuities 

P ( C )  = p1 (c) - 2 4 9  - 20a ,9  + cac*)/[awT(c)l, (47) 

there will thus be fluctuations in the group velocity with frequency (and thus radial order n) ,  
at fixed phase velocity c, since 9 and its derivatives are frequency dependent. We expect the 
magnitude of such fluctuations to increase in size, in general, with increasing phase velocity 
as may be seen in Fig. 7; the behaviour with frequency and thus radial order n is rather more 
complex. 

With increasing phase velocity the turning point for SH waves penetrates further into the 
Earth and the effects of the discontinuities become felt in turn (see, e.g. Figs 5-7). We will 
restrict our attention to phase velocities for which the turning point lies beneath the deepest 
velocity inversion. 
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296 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As the turning point approaches a discontinuity the phase shift zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 diminishes and there 

will therefore be a slight decrease in the group velocity. Within the phase velocity range 
associated with a discontinuity the major contribution to 9 is frequency independent 
(37b) and so the group velocity perturbation will depend on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[oT(c)]-'. Across the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdis- 

continuity T(c) will correspond to a retrograde branch and will therefore diminish zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith 
increasing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc, with the result that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(c) will decrease from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApl(c). Such drops in the group 
velocity associated with the discontinuities may be clearly seen in Fig. 9. However, super- 
imposed on this behaviour will be oscillations due to overlying discontinuities. 

When the turning point lies just below the kth discontinuity we may extract the 
dominant contribution from 9, which with the simplest approximation for the frequency is 

B. Kennett and G. Nolet 

9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= tan-' ( R ~  cos [2 (n  + %)ukn]/ (1  + R~ sin [2(n  + %)ukn]}  ) + q', 

where 

and Rk is the reflection coefficient at the kth discontinuity. We note that, as in the single 
discontinuity case, uk is the ratio of the tau contribution from beneath the kth discontinuity 
to  the whole. 9 is now frequency dependent so that there will be a rapid increase in group 
velocity as Rp emerges beneath dk. When Rp is close to dk, R~ is just less than unity so that 
the first term does indeed dominate, and also since uk will be very small the variation of 
9 with n will be slow. There will be small additional contributions from the overlying 
interfaces and these will be magnified in the group velocity behaviour. 

Once the phase velocity c increases further and the turning point lies well below the 
deepest discontinuity the reflection coefficients diminish and so the contribution of an 
individual discontinuity to the phase shift will be fairly small. They all increase in size and so 
there will be rapid variations in 9 with n.  Since the size of the contributions from the 
various discontinuities are then comparable, there are beating phenomena with respect to n 

between the oscillations controlled by the various vi. These beating phenomena will once 
again be magnified in the group velocity behaviour and will be the main contribution for 
ScS equivalent modes. 

4 Discontinuity effects for model 10668 

To assess the effects of discontinuities in a realistic earth model we have carried out a 
range of calculations of the toroidal mode dispersion for model 1066B (Gilbert & 
Dzeiwonski 1975) with three discontinuities, at the Moho and in the upper mantle at depths 
of 420 and 670 km (Fig. 3 ) .  We have considered radial orders (n )  from 1 to 29 and angular 
orders (I) out to 700.  To reduce the computation we used an I step of 5 out to angular order 
300 and a step of 10 from there out to I =  700. Where necessary we have used quadratic 
interpolation between computed values, random checks show that this is not a significant 
source of error. 

For each phase velocity c, between 5 and 20 km/s, we have constructed the best fitting 
relation of the form 

(1 + W X ( C )  = b + y(c)l= 

to the suite of toroidal modes with that phase velocity. The y(c) values are given in Table I 
and we see that they broadly follow the pattern of Fig. 1 in the transition from modes with 
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km zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI \ \  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 3. The earth model 1066B, showing both shear wave velocity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf3 and density p.  

a turning point in the mantle to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAScS equivalent modes. The two particularly low values of 
y(c) for the upper mantle c = 5.0,7.0 km/s correspond to turning points just above and just 
below a discontinuity. We note that throughout the mantle y(c) differs from the value of 
0.25 predicted by the simplest asymptotic theory, due to gradients (e.g. near 1100 km) as 
well as the discontinuities. 

As we have seen, the influence of the mantle discontinuities is determined by the 
reflection coefficients at the interfaces. In Fig. 4 we therefore show the variation of the SH 
wave reflection coefficients with phase velocity from 5-20 k m / s  for incidence from above 
the three discontinuities in model 1066B. The coefficients for the two deeper discontinuities 
are small for all modes bottoming in the lower mantle or reflected from the core-mantle 
boundary but can be sizeable at near grazing incidence. The Moho reflection coefficient is 
however typically greater than 0.2 so that it has a noticeable influence on the character of 
the solotone effect. (For model 1066A with an even more pronounced Moho, the reflection 
coefficient is greater than 0.4 giving rise to the possibility of marked trapping of energy in 
the crust .) 

Table 1 ,  Variation of phase shift ~ ( c )  with phase velocity c. 

c (kmls) 7 @ )  Mode character 

5 .o 
6 .O 
7 .O 
8 .O 
9 .O 

10.0 
11.0 
12.0 
13.0 
14.0 
15.0 
16.0 
17.0 
18.0 
19.0 
20.0 

0.066 
0.341 
0.145 
0.280 Turning point in mantle 
0.330 
0.340 
0.317 
0.26 1 
0.154 
0.090 
0.038 
0.004 

-0.016 
-0.029 
-0.022 
-0.055 

S diffracted 

ScS equivalent modes 
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29 8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKennett and G. Nolet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

P"I 

C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk m h  

Figure 4. The variation of the SH wave reflection coefficients from the three mantle discontinuities in 
model 10668 (Moho, 420 km, 670 km) as a function of phase velocity. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

In Figs 5 and 6 we consider the dispersion characteristics of model 1066B from both the 
direct computations and from the asymptotic results. In order to separate out the solotone 
variations from the regular progression of eigenfrequencies as a function of radial order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn, 
for fixed phase velocity, we consider the phase shift Vn defined as: (a) for a turning point 
in the mantle (5 km/s Q c < 13.24 km/s) 

!4w,,~&) = [n  + % t V ( o ,  p ) ]  n 

and (b) for ScS equivalent modes (1 3.24 km/s < c) 

%ufl l7p(p) = [n  t 

(49) 

p)1 n. 

This definition does, of course, distort the phase shift for phase velocities near 13 km/s, 
but is simple to use. 

In Fig. 5 we show the values of V from computation of the toroidal eigenfrequencies for 
model 1066B; in Fig. 6 we show the calculated phase shift Vd for the cumulative effect of all 
the mantle discontinuities (41) using the frequencies derived from the direct computations. 
In addition we show the combined contribution of the 420 and 670 km discontinuities to 
the phase shift, so that the modifications due to the Moho may be examined. The sets of 
phase shifts are directly comparable and we are able to see the contribution of the dis- 
continuities to the overall shift. 

Except for small values of n(< 8) where the asymptotic treatment is likely to be in error, 
the phase shifts in Fig. 6 are indistinguishable from those obtained by an iterative solution of 
equations (40) and (4 I), starting from the simplest approximation for the frequency. 

The most obvious differences between Figs 5 and 6 occurs for small phase velocities even 
for large n.  Even though the frequencies are rather high for radial orders above 20, the 
modes in this slowness range are interacting strongly with the upper mantle velocity 
gradients. The general form of the computed and asymptotic phase shifts are very similar, 
but the gradient contribution leads to an offset which diminishes with frequency and thus 
radial order number n .  Such offsets are most noticeable for phase velocities between 6 and 
9 km/s. 

For a range of phase velocities from 12- 16 km/s, which span the transition between a 
turning point in the mantle and ScS equivalent modes, offsets between the asymptotic phase 
shifts and the directly computed values occur because of the simplicity of our comparison 
procedure. 
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High-frequency toroidal free oscillations of the Earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA299 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
For the lowest radial orders the frequencies are too low for the asymptotic form to be 

accurate. As the frequency increases the agreement between the direct computations and the 
asymptotic phase shifts becomes very good indeed, once slight effects due to the nature of 
the wavefield are taken into consideration. Once the period is less than 45 s, gradient effects 
are very small (for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 9 km/s) and the asymptotic curves overlie the direct calculations. 
For modes bottoming in the upper mantle the effects of gradients appear to be negligible 
at around 25 s period. Thus at high frequencies we may economically employ the simple 
scheme (40) and (41) to get an iterative solution for the dispersion of toroidal modes. 

The results in Figs 5 and 6 correspond closely to the features discussed in the previous 
section, and we may use the calculations for the effect of the upper mantle discontinuities 
alone in Fig. 6 to examine how the phase shifts are built up. At a phase velocity of 5 km/s 
the turning point lies just above the 420 km discontinuity and so the sole contribution is 
from the Moho. By 6 km/s we have a small periodic effect from the 420 km interface and a 
relatively small contribution from the Moho since we are close to a null in the reflection 
coefficient (Fig. 4). The very slow variation for c = 7 km/s corresponds to a turning point 
just below the 670 km discontinuity, the large reflection coefficient for this interface 
(Fig. 4) means that its contribution swamps that from the 420 km discontinuity; there is 
also a significant phase shift due to the Moho. At c = 8 km/s the upper mantle shift is more 
rapidly varying but of smaller amplitude due to interaction between the two discontinuities. 
A noticeable beat pattern has developed on the c = 10 km/s plot for which the reflection 
coefficient (Fig. 4). The very slow variation for c = 7 km/s corresdponds to a turning point 
velocity increases, beating phenomena from the upper mantle discontinuities dominate the 
details of the pattern. We note that the Moho effect becomes much less rapid with n as the 
phase velocity increases. This is in part due to the relatively slow variation of frequency with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n for large phase velocities and also to the fact that uM&o will be close to unity for turning 
points in the lower mantle and ScS equivalent modes so that from (48) one could expect 
a slow variation of *Moho with n. 

The group velocity behaviour (Fig. 7) to  some extent mirrors the fluctuations of the 
phase shift, but the presence of the derivatives of the phase shift * in (47) enhances the 
more rapid fluctuations with radial order n.  It is also clear from Fig. 7 that the amplitude 
of the group velocity variations is increasing with increasing phase velocity as predicted by 
(47). For c = 7 k m / s  where the turning point lies just below the 670 km discontinuity there 
is a relatively smooth variation in group velocity. The behaviour is however more complex 
once the turning point moves away from a discontinuity and we may note the generally 
similar behaviour for c = 6 k m / s ,  where the turning point lies between the 420 and 670 km 
discontinuities, and c = 8 km/s with a turning point at about 1300 km depth. The beating 
phenomena which were visible in Figs 5 and 6 are much clearer in the group velocity 
fluctuations and dominate for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc > 9 kmfs, i.e. for turning points in the lower mantle, S 
diffracted and ScS equivalent modes. 

In Fig. 8 we show the group velocity for all the radial orders from 0 to 29 as a function 
of period from 10 to 500 s. This diagram is dominated by bands of oscillatory behaviour 
which we may associate with the discontinuities and strong gradient zones in model 1066B. 
The group velocities up to  4.8 km/s are associated with phase velocities less than 6.9 km/s 
(Fig. 7) and therefore correspond to modes with energy concentrated above the 670 km 
discontinuity. In a similar way to Kausel, Schwab & Mantovani (1977) we may separate the 
upper and lower parts of these oscillations. The local group velocity minima for group 
velocity below 4.4 km/s are associated with mode eigenfunctions concentrated above the 
420 km discontinuity whilst the upper portions correspond to eigenfunctions which 
penetrate down to the 670 km discontinuity. The oscillatory behaviour for group velocity 
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between 5.0 and 5.6 km/s corresponds to phase velocities between 7.0 and 7.7 km/s (Fig. 7) 
and is associated with modes with corresponding turning points between the 670 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkm dis- 
continuity and the velocity gradient zone at llOOkm. The irregularities in the group 
velocity above 5.6 km/s correspond to the beats between different discontinuity contribu- 
tions we have already seen. 

The ‘solotone’ effects associated with the presence of discontinuities and velocity 
gradients in model 1066B are summarized in Fig. 9 which shows a plot of group velocity 
against phase velocity for modes 7-29. Rather large deviations occur for modes 0-6 which 
are most sensitive to density as well as velocity structure. We recall that in the simplest 
approximation there would be a single group velocity for each phase velocity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that the 
width of the band is a measure of the size of the solotone effect. The range of phase 
velocities occupied by the 420 and 670 km discontinuities are indicated by shading and we 
see that as discussed in the previous section the group velocity decreases markedly for these 
regions of reflections. A similar effect, but on a larger scale may be seen for the reflected 
ScS equivalent modes for phase velocities greater than 14 km/s. 

The breadth of the band of group velocities tends to increase with depth, with a rather 
smoother behaviour for ScS equivalent modes. Strong oscillations with phase velocity occur 
for modes with turning points between discontinuities or gradient zones. As for example 
for phase velocities between 5.4 and 6.1 km/s when the turning point lies between the 420 
and 670 km discontinuities and between 7.0 and 7.7 km/s where turning points lie between 
the 670 km discontinuity and the 110 km gradient zone. 

We have seen that it is only for the low radial order modes that velocity and density 
gradients make a significant contribution to the phase shift. Thus apart from some measure 
of the density contrast at discontinuities, high-frequency toroidal modes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill throw little 
light on the density structure within the Earth. 

5 Pulse formation and the solotone effect 

The constructive interference conditions presented by Nolet & Kennett (1978) show that we 
expect pulse-like arrivals to occur by superposition of modes when the group velocity V(c) 
is stationary with respect to L and the range is such that x(c) = V(c)T(c). The presence of 
the additional phase shift *(a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc) due to velocity and density gradients and discontinuities 
(as discussed in Sections 2 and 3) will degrade the quality of pulse formation corresponding 
to high-order multiple S reflections. 

If attention is concentrated on waves which bottom in the lower mantle or at the core- 
mantle boundary the S and SS arrivals wiU generally not be strongly affected by deep 
discontinuities since the travel time differences between the direct path and, e.g. waves 
reflected at the underside of discontinuities will be considerable. A large epicentral distance 
is required before the full pattern of interfering waves is established, as considered in our 
normal mode treatment. A shallow discontinuity such as the Moho may however produce 
reflections which interfere with relatively long-period pulses. 

The method introduced by Brune (1964) for the determination of toroidal mode 
dispersion by analysis of multiple S pulses has been extensively applied by Brune & Gilbert 
(1974) to determine a large number of mode periods. Brune & Gilbert (1974) have 
correlated multiple S reflections with equal phase velocity at a pair of stations and estimated 
mode periods by finding the periods 
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for which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn is an integer. A is here the angular separation between the stations, t the 
difference in fiducial times and &(T), &(T) the phases of the pulses as a function of 
period. The angular order is estimated from 

( I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ H) = 2nT-'dt/dA. 

Since it is very difficult to obtain station pairs exactly positioned to receive successive 
multiple zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS reflections a number of corrections have to be made and these are based on the 
assumption that the group velocity is V(c)  = A / t .  

If we compare (50) with our asymptotic expressions (49) for the normal mode period 

B. Kennett and G. Nolet 

we see that we have, as expected, a very close correspondence. The estimated intercept time 
t - M t / d A  in (50) is likely to be a good estimate of ~ p ( p )  since the velocity structure is 
already quite well known and estimates of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT are insensitive to first-order errors in p (Brune 
1964). The principal source of error in (50) is therefore likely to be the extent to which the 
estimated phase shift %T{&(T) - @ , ( T ) }  is equivalent to [ V(T, p) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt %In. Small errors in 
the estimated angular order may also arise from deviations in the group velocity but this 
should not exceed one place in 1 if the stations are well chosen. 

For low-order multiple S reflections (in particular S and SS) the time separation between 
the main pulses and any phases arising by interaction with the upper mantle discontinuities 
is sufficiently large that for a reasonable time window about the main pulse the upper 
mantle phases will not appear. This means that the estimated phase shift %T{&(T) - 
&(T)}  from correlations between multiple S reflections will not include any phase shift 
due to upper mantle discontinuities. Thus as noted by Wang et al. (1977) the estimated 
toroidal mode periods will be biased towards a smooth upper mantle. The effect which has 
been neglected is however rather small. 

We take the discontinuities in the upper mantle model 1066B as estimates of the likely 
contrasts in elastic parameters at major upper mantle discontinuities. Then from the results 
in Fig. 5 we may estimate the errors associated with the neglect of these phase shifts. Over 
the range of phase velocities from 8-20 km/s the upper mantle shift satisfies 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv u M ( ~ ,  P )  I < 0.04 

and so from (5 1) the relative error in mode period from Brune's (1964) method 

I~TUM/TI  < 0.04/n (52) 

at radial order n. Thus for radial order 10 we would have less than 0.4 per cent relative error 
dropping to 0.1 per cent by radial order 40. Significant error from this cause is therefore 
only likely for small radial orders. 

The most likely cause of contamination of mode periods arises when different inter- 
ference conditions are satisfied in the two pulses analysed. This is most likely to  occur when 
interfering phases are generated at the base of the crust, so that complications will ensue 
if the two stations used in the analysis are situated on rather different crustal structures. We 
may obtain an upper bound on such errors by assuming that only one station record includes 
all phases generated by the Moho discontinuity. From Fig. 6 the Moho contribution to the 
overall phase shift for phase velocities between 8 and 20 km/s satisfies 

I VMoho(T, P) I < 0.l 
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and so the corresponding relative error in mode period is 

307 

If both station records include some Moho phases then this relative error will be reduced 
but it is at least likely to be comparable to the error arising from the neglect of the effects 
of deeper discontinuities (52). The size of the error in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(53) increases with the parameter 
contrast assumed at the Moho and would be somewhat larger for model 1066A, for example. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

All these sources of systematic error in Brune’s (1964) method for determining toroidal 
model dispersion decrease in size with increasing radial order n.  This unfortunately just 
reflects the decrease in additional information content for high-frequency modes. The size 
of the errors associated with the neglect of discontinuity effects suggests that the relative 
errors ascribed to the mode periods determined by Brune zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Gilbert (1974), which were 
employed in the inverse of Gilbert & Dzeiwonski (1975), may be unduly optimistic. 
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Appendix: the gradient matrix T 

Following Woodhouse ( 1  978) 
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with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z(r)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - r-2(2 + l/irarp/p + rarp/p + 1/irar24p/ar$p), 

y ( r )  = I&-' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsgn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4;) I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4p I-' 

and 

F(r) = rd3 ["/,(rar2$fl/ar$p)2 - %(r2ar3$p/ar$p) + %(rarp/p)2 

B. Kennett and G. Nolet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r r  

I 4p I - ' W d r ,  J,, 

- %r2 ar2 p / p  - r2 ar2 p/p - mrp/p) (arplp) - 4rarp/p - 2r arplp]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
For convenience we have often set 

x = z - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4pY, 

in the body of the text. 
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