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Abstract
Purpose of Review  Biodiversity is one of the most important features of forest ecosystems. One of the goals of Sustainable 
Forest Management is to reduce biodiversity disturbance, which can occur as a consequence of timber harvesting. The aim 
of this review was to define which silvicultural systems and forest operations can have an influence on forest tree biodiversity 
by summarising the findings of nearly 60 papers published in the last ten years (2013–2022).
Recent Findings  In natural forest ecosystems characterised by a high level of structural complexity, such as uneven-aged 
tropical forests, selective logging and retention forestry are, in general, suitable forms of intervention that have a limited 
impact on tree biodiversity. Forest operations, in particular, should be of low intensity and try to simulate as much as pos-
sible small-scale natural disturbances. Thinning has proved to be a valid treatment for managing tree biodiversity. However, 
it is important to shape the magnitude of thinnings according to the management aims. Limited removal is recommended 
in interventions for maintaining the current structure, and more extensive removal is appropriate in cases when a change in 
species composition is expected, e.g. in the conversion of planted coniferous stands to uneven-aged mixed or broadleaved 
stands. In addition, coppicing is suitable for maintaining tree biodiversity due to its effectiveness in fostering the presence 
of light-demanding tree species. Findings show that it is important to establish the right rotation age, considering that an 
excessively short period between coppicing interventions can be detrimental to functional biodiversity.
Skid trails and landing sites represent suitable areas for the initial establishment of natural regeneration. However, gener-
ally, the level of biodiversity on these sites declines with time as a consequence of soil compaction, thus highlighting the 
importance of the forest infrastructure network planning.
Summary  In uneven-aged tropical forests, selective logging and retention forestry are the most suitable options for maintain-
ing tree biodiversity. Thinning and coppicing help to manage biodiversity, whilst intensive thinning helps to change species 
composition. Skid trails and landing sites can support natural regeneration. Recommendations and management options were 
developed, as well as possible future research directions. The authors recommend that future studies should investigate how 
much tree biodiversity depends on different levels of harvesting technology applied within the same silvicultural treatment.

Keywords  Harvesting · Sustainable forest management · Selective logging · Retention forestry · Thinning · Coppicing · 
Skid trails

Introduction

Forests are crucial ecosystems for maintaining biodiversity 
[1]. Currently, a substantial area of forest is actively man-
aged and, considering the growing demand for renewable 
energy and timber, this scenario is unlikely to change in the 
near future [2••]. In Sustainable Forest Management (SFM), 
it is therefore vital to consider the issue of biodiversity con-
servation within the framework of active forestry [3, 4]. 
Indeed, management is not only able to shape the biological 
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diversity of forest ecosystems [5], but also can jeopardise it 
in the case of poor management [6]. Taking the above into 
consideration, one of the most important challenges for for-
est managers is to ensure the conservation of tree diversity 
whilst fulfilling the traditional objectives of forest manage-
ment, most notably timber harvesting [7••].

Biodiversity could be regarded as key to life-sustaining 
ecological services such as nutrient cycling, photosynthesis, 
decomposition, soil creation, micro-climate regulation, pol-
lution mitigation and maintenance of ecosystem resilience. 
The presence of more species in an area gives a more com-
plex structure to natural ecosystems, and as a result, these 
ecosystems are more capable of responding to change [8, 9•, 
10, 11]. For instance, plant diversity positively affects the 
provisioning of useful plant products, erosion control, resist-
ance to other invasive plants and pathogen regulation [12]. 
Obviously, there is no universal rule indicating that the more 
species there are, the higher the quality of the ecosystem. 
However, the maintenance of a suitable level of biodiversity 
should always be considered as contributing to sustainable 
forest management.

Forest management, and forest operations in particular, do 
not always negatively impact the maintenance of biodiver-
sity, nor adversely affect an increase in biodiversity [13•]. In 
primary forests, it is highly probable that most management 
activities will generate losses of tree biodiversity. However, 
in some cases, in actively managed forests over the short and 
medium term, there is an increase in tree biodiversity [14–17]. 
It is worth noting that active forest management and the steps 
taken towards mitigating the consequences of climate change 
may be positive tools for maintaining and increasing tree bio-
diversity. For this reason, the introduction of broadleaved tree 
species to replace coniferous ones can be observed as suitable 
policy supporting biodiversity [18, 19••].

Logging can result in changes in environmental condi-
tions, such as altered light, humidity and wind speed, thereby 
putting forest species under stress [20, 21]. Local biodiver-
sity loss due to timber extraction can disrupt the long-term 
resilience of forests, which may in turn lead to an impover-
ished delivery of ecosystem services, and also ultimately 
affect human well-being [22, 23•, 24]. The most evident 
consequence of forest management in stands is the removal 
of trees [25]. This change in stand density may also poten-
tially lead to some modification in tree species diversity [26], 
considering that species composition affects forest structure 
[27]. The possibility of applying different silvicultural and 
forest engineering options makes forest management even 
more complex, leading to variety of ways in which forestry 
can alter forest biodiversity.

The aim of this review was to investigate the implica-
tions of different silvicultural treatments and harvesting 
systems on the biodiversity of vascular plants in forests, 
including trees. Additionally, the aim was also to outline the 

current knowledge on the topic and, finally, to suggest future 
research directions. In terms of silvicultural treatments, the 
authors investigated the impact of clear cuts, selection and 
shelter cutting, as well as thinnings, coppicing and crop 
tree management on the future biodiversity of tree species. 
Regarding harvesting options, the authors referred to the 
infrastructure needed for forest operations (skid trails, strip 
roads and landing sites), different wood systems, such as the 
short wood system (SWS), including cut-to-length (CTL) 
technology, the tree length system (TLS) and whole-tree 
system (WTS). Different levels of technology and various 
machine use for forest operations were also considered to 
have an impact on biodiversity.

It is important to underline that the concept of biodiver-
sity is much more complex than a simple indicator, such 
as the number of species in a stand per unit of area [28]. 
Indeed, according to Noss [29], biodiversity can be subdi-
vided into composition, structure and function [29]. Compo-
sition is mainly related to species richness, whilst structure 
refers to features such as the presence or absence of micro-
habitats or deadwood and tree size distribution. Functional 
diversity (FD) is a major feature of the ecosystem as it meas-
ures the extent of an organism’s role in the environment. For 
instance, tree species that are effective in creating ecological 
niches or tree roots which fix nitrogen from the air in coop-
eration with symbiotic soil organisms [2••]. Considering 
the importance of all these concepts, the authors decided to 
analyse them separately. The presented work focuses on the 
implication of forest management on forest tree biodiversity 
in terms of composition and function, whilst structure will 
be analysed in a future review.

Methods

A systematic search of the literature was carried out using 
the Scopus and Web of Science databases applying the key-
words: clear cut, clear cutting, shelterwood system, selec-
tive logging, retention forestry, thinning, coppice, coppic-
ing, crop tree management, harvesting system, harvesting 
method, wood system, skid trail, strip road, forest opera-
tions, forest management, biodiversity, richness and even-
ness, and linking them with the Boolean operators AND 
or OR.

To further increase the number of literature sources, the 
authors applied the snowball system, which entailed the use 
of a reference list of recent papers to identify further suit-
able references, starting from the most recent publications 
on the topic.

The first screening was carried out by limiting the pub-
lished research to those findings in the English language, 
from the last 10 years, 2013–2022. This screening revealed 
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an increasing number of published papers on the topic, thus 
highlighting researchers’ growing interest in the relationship 
between forest management and biodiversity (Fig. 1).

A further refining process was carried out by reading the 
title and abstract of each paper and including it in the data-
base only when it fulfilled two of the following criteria: the 
paper had to refer to the biodiversity of tree species, and 
not only to herbaceous species, and the paper had to report 
the biodiversity values of a control treatment on an unhar-
vested area with similar characteristics to the harvested area. 
Using this process, 56 papers were identified and catego-
rised according to six topics, as suitable and useful for the 
review. Selective logging proved to be the most investigated 

category, but a certain amount of attention was also given 
to coppicing, thinning and to the direct influence of forest 
operations (Fig. 2). Most of the studies were located in tropi-
cal or temperate zones, which also proved to be the areas in 
which more treatments were investigated (Fig. 2).

Results and Discussion

Before revealing the findings from the literature search, it 
is worth introducing the issue of the relationship between 
forestry and biogeography, i.e. that different zones of the 
world and different climate conditions imply various 

Fig. 1   Relationship between 
forest management and biodi-
versity, as a topic explored in 
published papers from 2013 to 
2022. For the year 2022, the 
number of papers published by 
May 2022 was multiplied by 2.5

Fig. 2   The distribution of 
papers per topic (top) and num-
ber of papers per topic in rep-
resented biogeographical zones 
(bottom). The total number of 
papers reported in the figure 
is not equal to 56 as reported 
initially, as some of them dealt 
with two topics simultaneously, 
such as thinning and clear cut in 
the same study area

61Current Forestry Reports (2023) 9:59–71



1 3

management options, developed as good practice over 
several decades of forest management. In addition to envi-
ronmental aspects, historical, political and socioeconomic 
reasons have shaped and generated primary forest man-
agement systems [30, 31]. Over recent decades, increased 
attention to environmental issues on a global scale has 
given rise to the strengthened concept of SFM [32, 33], 
which has been extended to Sustainable Forest Operations 
(SFO) [3].

In tropical forests, selective logging is the most often 
applied treatment, probably because it is an approach 
which can, or should, simulate small-scale natural distur-
bances, thus ensuring the natural regeneration of a com-
plex ecosystem [34, 35]. This approach of SFO evolved 
from Reduced Impact Logging (RIL), which was devel-
oped specifically for tropical forests, but nowadays also 
used worldwide [36].

In temperate and boreal zones, forestry in the last few 
years has been shaped by a balance between the paradigm 
of Continuous Cover Forestry (CCF) and the application 
of rotation forestry [37–39], both linked to the pure appli-
cation of SFO [40].

In contrast, in Mediterranean zones, the development 
of a hybrid forest management system is observed, which 
is dedicated to high forests with approaches close to CCF, 
or coppice forests, where silvicultural techniques are con-
stantly evolving (tree silviculture, groups of stands and 
systemic approaches) [41]. Moreover, in small-scale for-
estry, coppice management has considerable importance, 
and after a period of abandonment in the previous cen-
tury, it has started to occupy a crucial role again in Medi-
terranean forestry, mostly for the production of fuelwood 
as a renewable energy source [41–43]. Forest operations 
in the most sensitive areas were carried out by adapting 
the RIL guidelines to specific scenarios, and planning 
and implementing forest operations to sustain or enhance 
forest services and functions [44, 45]. This was shaped 
further into the paradigm of SFO.

In general, biodiversity conservation and, specifically, 
tree biodiversity is crucial for forestry, but the manage-
ment goals have to be formed by taking into consideration 
the biogeographical context. There is no one model of 
biodiversity which is universal throughout the world; for 
example, in planted stands in boreal conditions, it is not 
possible to reach and maintain a level of biodiversity and 
structural complexity that is typical for tropical uneven-
aged forests. However, forestry can be adjusted in order 
to make sure that planted stands are not monocultural, 
ensuring a certain amount of biodiversity and also a share 
of natural regeneration, by, for instance introducing the 
shelterwood system, or converting, when suitable, pure 
stands into mixed ones [46, 47•, 48].

Influence of Silvicultural Treatment on Forest 
Biodiversity

Selective Logging

There have been a substantial number of studies on selec-
tive logging that have evaluated the influence of silvicultural 
treatment on forest tree biodiversity. The majority of these 
studies had been located in tropical or subtropical zones, 
but research on this topic have also been carried out in a 
temperate climate. Selective logging is considered to be one 
of the less impactful treatments, considering that it mimics 
small-scale natural disturbances, such as the collapse and 
decomposition of a large tree, to induce natural regeneration 
[49, 50]. However, the results obtained from the literature 
search on the influence of this treatment on forest tree bio-
diversity are rather diverse, particularly when a further vari-
able is introduced into the evaluation, that is, the recovery 
time needed after logging to fully restore the biodiversity 
level to pre-intervention values.

The majority of the analysed studies highlighted no dif-
ference or just a slight decrease in vascular plant richness 
and evenness between forest stands harvested via selective 
logging and control areas with unharvested stands [51–54]. 
Furthermore, several studies highlighted the influence of 
selective logging on tree biodiversity and the magnitude of 
the intervention, with limited biomass removal (removal of 
approximately 3 trees per hectare equal to a harvest volume 
of approximately 20 m3 per hectare) generally leading to a 
lower impact on biodiversity indices [55–57]. When apply-
ing group selection cutting, opening size did not show any 
effect on species richness in regeneration. However, smaller 
openings of 6–20 m in diameter (single tree selection) were 
more effective in achieving a regeneration with a higher 
density and richer species composition. In particular, when 
openings were larger than 46 m in diameter (mainly for 
group selection), they were unsuccessful, and further human 
intervention, such as thinning of the regenerating vegetation 
and herbivore protection, were needed to ensure successful 
regeneration [58]. On the other hand, some changes in func-
tional diversity after selective logging have been detected, 
such as a shift from a deciduous to evergreen phenology [59] 
or an increased number of vines [60].

As anticipated above, there is even more contrast when 
dealing with the issue of the time needed after selective 
logging to restore the biodiversity level. Identified recovery 
time ranged from five years [61] to more than 40 years [62]; 
some studies also reported increasing species richness in 
selectively logged stands after 27 years [63].

Another study carried out in Central Amazonia reported 
increased regeneration growth, up to three years after selec-
tive logging, but an increased mortality rate of seedlings and 
saplings in logged areas up to 11 years after intervention. 
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It was speculated that, over time, the habitat becomes less 
suitable for species regeneration in selectively logged stands 
[64]. On the other hand, in studies carried out with the goal 
of comparing the effects on biodiversity of selective logging 
and other treatments, mainly clear cutting, use of the CCF 
technique was more successful in maintaining biodiversity 
[65]. The same was also confirmed in terms of functional 
biodiversity, with a higher number of shade-tolerant spe-
cies found in selectively logged rather than clear cut stands, 
40 years after intervention in a tropical rain forest [66]. 
Finally, illegal harvesting and repeated selective logging 
were found to be detrimental to tree biodiversity [67, 68], 
highlighting once more the importance of forest manage-
ment planning and monitoring [69–71].

Thinning and Crop Tree Management

The results presented in the literature regarding the effects of 
thinning treatments on forest tree biodiversity are much more 
consistent than those found for selective logging. Indeed, 
thinning proved to be an effective tool for the positive man-
agement of tree biodiversity, mostly in planted stands [72, 
73]. The main aspect investigated in the literature was the 
effect of different magnitudes of thinning intervention. In 
general, lower intensity thinning proved to be more effec-
tive in preserving biodiversity [74]. However, this statement 
should not be taken as dogma. Indeed, it is crucial to ensure 
biodiversity conservation when shaping a thinning pattern, 
according to the kind of stand and to the management goal.

In planted coniferous stands where conversion is planned 
in order to replace softwood species with native hardwoods, 
thinning is a powerful tool for the quick promotion of natural 
regeneration and increased tree biodiversity [75–77]. The 
magnitude of intervention can also be substantial, where up 
to 60% of pre-intervention biomass can be removed on one 
occasion for conversion purposes [78–80]. Furthermore, 
thinning in the coniferous forests of the Pacific Northwest 
in the USA led to increased richness, which also remained 
stable 17 years after the intervention and with the negli-
gible appearance of invasive species [81]. This highlights, 
therefore, that thinning does not trigger biological invasions. 
However, this conclusion needs further investigation in dif-
ferent kinds of forests.

In more complex stands, such as tropical rain forests, in 
which the management goal should rather be conservation 
of the status quo, lower biomass removal during thinning 
is suggested since excessive thinning can have detrimen-
tal effects not only on functional diversity, but also on tree 
species composition [82]. Indeed, thinning with intensity of 
about 33% of biomass removal proved to favour late-succes-
sional species, whilst more intensive biomass removal led to 
the co-dominance of all successional states [83].

Concerning crop tree management, only one paper deal-
ing with the effects of this treatment on tree biodiversity 
was found in the selected period. This study referred to a 
Pinus massoniana Lamb. plantation in subtropical China 
and the main results highlighted how crop tree management 
could increase the Shannon–Wiener biodiversity index of 
the shrub layer. Obviously, considering the increasing atten-
tion towards this silvicultural treatment [84, 85], much more 
effort should be devoted to investigating the effects of crop 
tree management on vascular plant biodiversity.

Clear Cutting and Coppicing With Standards

Turning now to clear cutting and coppicing with standards, 
we leave the framework of retention forestry, which is gener-
ally considered less impactful [86]. However, as found for 
the other investigated treatments, large-size interference in 
the forest cover does not necessarily lead to a significant 
negative impact on tree biodiversity, although this depends 
on management goals.

In sensitive ecosystems such as riparian forests, clear cut-
ting proved to be a strong driver changing functional diver-
sity, triggering ruderal invasive species [87]. Therefore, clear 
cutting should be limited in such stands in favour of reten-
tion forestry as much as possible [88]. On the other hand, 
there are situations in which clear cutting can act as a shock 
treatment to induce regeneration or increase the biodiversity 
of abandoned or degraded stands [89]. For instance, clear 
cutting can be beneficial in favouring native hardwood colo-
nisation in coniferous plantations [90, 91], and in maintain-
ing the richness and evenness of open environments such as 
savannas, also in the medium term [92]. Furthermore, gap 
clear cutting can promote natural regeneration in closed-
canopy temperate oak-dominated forests [93] and limit the 
presence in the seedling pool of strongly competitive spe-
cies such as beech (Fagus sylvatica L.) and initiate the pres-
ence of different species, such as maple (Acer spp.) and ash 
(Fraxinus spp.), instead.

In contrast, coppicing with standards is an effective man-
agement option for sustaining tree biodiversity in the long 
term [94, 95], although coppice aging and abandonment 
can lead to general landscape and habitat simplification 
[96]. In comparison to beech high forest, coppice stands 
present a higher share of light-demanding species [14, 97, 
98, 99•]. However, it is worth highlighting that proper for-
est management and planning is vital in coppice forests. 
Indeed, an excessive short rotation (10–15 years) resulted in 
a considerable change in functional diversity in black alder 
(Alnus glutinosa (L.) Gaertn.) coppice forests in Northern 
Italy, with a substantial increase in non-native and rud-
eral species, notwithstanding a higher richness and Shan-
non–Wiener biodiversity index [100]. Therefore, planning 
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of the rotation, taking into account the edaphic features of 
the stand, is crucial for the long-term sustainability of cop-
pice [41].

Influence of Forest Operations on Tree Biodiversity

Forest Infrastructure

The forest infrastructure network, including skid trails, 
strip roads, secondary roads and landing sites, is essen-
tial for effective forest management [101–104]. However, 
these elements of infrastructure, most of all the ones spe-
cifically established during forest operations such as skid 
trails, strip roads and often landing sites, too, are parts 
of the forest in which there is a significant level of soil 
disturbance caused by machine passes [13•, 105]. There-
fore, it is expected that the presence of these elements 
within forests can somehow shape tree biodiversity. In 
the last 10 years, the influence of the infrastructure relat-
ing to forest operations on tree biodiversity was investi-
gated in six papers. The results of these studies are rather 
consistent.

Skid trails proved to be sites in which there is generally 
an equal or even higher species richness in comparison 
to unharvested, control areas. On the other hand, these 
zones also represented a marked change in functional 
diversity, with a significant increase in the presence of 
light-demanding and pioneer species [15, 106, 107]. A 
major aspect being considered is the degree of distur-
bance to the soil on skid trails and landing sites. Higher 
traffic intensity, causing higher soil compaction [108], 
can lead to a decrease in the number and diversity of 
seedlings [16, 109]. Furthermore, a study carried out in 
the Amazon forest revealed that, after eight years, tree 
richness returned to the pre-harvest condition on skid 
trails, but not on landing sites and secondary roads, due 
to the major compaction on these sites linked to a higher 
number of machine passes [110]. A study conducted in 
the temperate zone in Europe suggested that, in the short 
term, the richness of both heliophilous and mesophilous 
species increased on skid trails, but the abundance of 
these decreased in the medium term (> 12 years) [111]. 
These results demonstrate the importance of skid trail 
network planning [112–114]. The accurate design of a 
skid trail network will firstly limit the disturbed area of 
the forest by reducing skidding and winching distances. 
Secondly, it will prevent any damage to the soil and the 
stand during timber extraction from the forest. Therefore, 
more precision in the design of skid trails will reduce 
damage caused to the remaining trees in the forest [112], 
reduce soil compaction [113, 114] and reduce the edge 
effects of skid trails, which in turn will increase the 

regeneration capacity of forest trees and preserve tree 
biodiversity. Indeed, although initially triggering light-
demanding species regeneration, in the long term these 
zones have harsher conditions for the proper development 
of seedlings when growing in areas of substantial soil 
compaction [115, 116].

Applying best management practices to decrease soil 
compaction and the amount of forest soil disturbed by 
machinery during ground-based operations is therefore cru-
cial for sustainable forest management, as well as for safe-
guarding tree biodiversity [40, 117]. The planning of forest 
operations, via the application of best management practices 
[40] and modern technology, can increase the overall sus-
tainability of logging [118]. Therefore, modern technology 
(usually CTL technology) is the way to develop sustainable 
forest operations, merging the environmental, economic and 
social needs of forestry [3].

Wood Systems and Technological Level of Mechanisation

Regarding the implications of forest operations for biodiver-
sity, the authors referred to the terms and definitions differ-
entiating wood systems and levels of mechanisation (Fig. 3).

In the recently published literature, substantial atten-
tion to the implications of silvicultural treatments for 
biodiversity is noticeable, whilst forest engineering is 
underrepresented. Only three studies have been detected 
that deal with the effects of the different applications of 
forest operations on tree biodiversity. Different machin-
ery can cause different levels of disturbance to forest 
soil, and thus differentially affect tree species regenera-
tion [108, 116].

Concerning wood systems, Venanzi et al. (2019) ana-
lysed the influence of WTS, TLS and SWS on the Shan-
non–Wiener biodiversity index and evenness after coppic-
ing in a Mediterranean turkey oak stand [99•]. The results 
obtained indicated that the Shannon–Wiener biodiversity 
index did not differ from the control values for the three 
systems six months after the intervention. However, 16 and 
36 months afterwards, there was a decrease for all three 
systems, which resulted in a full recovery for TLS and WTS 
after five years, whilst for SWS the difference from the val-
ues in the control area was still significant after five years. 
In contrast, the evenness of species (i.e. the distribution of 
individuals amongst the various species in the stand) was 
still lower than in the unharvested control areas in all the 
three applied systems [99•].

In a study carried out in secondary Atlantic forests in 
Brazil [119•], two motor-manual timber harvesting tech-
niques were analysed. The harvesting methods differed 
mostly in the amount of training received by the chainsaw 
operators, local experience and timber extraction devices. 
Besides productivity assessment [119•] and analysis of 
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felling and extraction damage to remaining trees [120], 
species composition was investigated two years after inter-
vention [121•]. The results of the latter showed (amongst 
trees with a diameter at breast height > 5 cm) an increase in 
palm trees and secondary species, irrespective of applied 
harvesting technique. However, with respect to tree regen-
eration and the number and intensity of damaged trees 
remaining, the harvesting technique including additional 
extraction tools, such as a snatch block or a skidding cone, 
showed significantly better results [121•]. This, therefore, 
highlights the importance of applying best management 
practices and mitigation strategies for the sustainability of 
forest operations.

Focusing on the influence of different extraction sys-
tems, a recent case study [17] compared extraction by 
horse, a forestry-fitted farm tractor equipped with a winch, 
and a medium-gravity cable yarder in the context of tree 
diversity after strip clear cutting in black pine (Pinus nigra 
Arn.) forest in Central Italy. Interestingly, all three sys-
tems showed higher species evenness in comparison to 
the unharvested control stand, whilst winching also led 
to an increase in the Shannon–Wiener biodiversity index. 
It seems, therefore, that for this kind of intervention, the 
disturbance that occurred after timber winching with the 
removal of a substantial amount of pine litter initiates the 
establishment of seedlings and the consequent level of 
biodiversity of tree species [17].

The influence of the operational part of forestry interven-
tions on tree biodiversity should, however, be investigated 
further. The influence of various applications of forest opera-
tions on forest biodiversity is not only limited to implications 
in natural regeneration. Indeed, different wood systems and 

different level of harvesting technology can cause varying 
levels of damage to the residual stand [13•]. Considering 
that the regenerative ability after logging damage varies 
amongst the various tree species [122], this damage could be 
a further influencing factor for biodiversity. It might, there-
fore, also be interesting to test this hypothesis in medium- 
and long-term studies.

Summary and Future Research Directions

In complex forest stands, such as uneven-aged tropical forests, 
selective logging and retention forestry are the most suitable 
options for maintaining tree biodiversity — interventions 
should be minimal and mimic as much as possible small-scale 
natural disturbances. Thinning is a useful option for managing 
tree biodiversity. The magnitude of thinning should be shaped 
according to the management goals, i.e. light removal in inter-
ventions aimed at keeping the current stand structure, whilst 
a more intensive removal is recommended when managers 
want to induce or facilitate a change in species composition (a 
typical example is the conversion of planted coniferous stands 
into uneven-aged mixed or broadleaved stands).

Coppicing is a suitable option for maintaining tree bio-
diversity by triggering the presence of light-demanding tree 
species. Attention should be paid to the establishment of a 
proper rotation age, considering that an excessively short 
time between coppicing interventions can be detrimental to 
functional biodiversity.

Finally, skid trails and landing sites can represent suitable 
zones for the initial establishment of natural regeneration, 
however in these areas it is common to observe changes in 

Fig. 3   Wood systems and related technology levels of harvesting. 
The same colour of wood system and machinery indicates the pos-
sibility of applying that machinery for that wood system. For exam-
ple, SWS/CTL is applicable in (1) fully mechanised technology with 

harvester and forwarder; (2) semi-mechanised level with chainsaw 
and forwarder or chainsaw and farm tractor with trailer; and (3) non-
mechanised level with chainsaw and animals used for timber extrac-
tion (please note that this technology level runs for the two systems)
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functional diversity, with higher presence of light-demand-
ing and pioneer species. Therefore, the planning of the forest 
infrastructure network, that is in fact dependant on machines 
used, is crucial for the sustainability of forest operations, 
considering that these can have a substantial impact on 
biodiversity.

Considering the above remarks, it can be stated that 
future research should cover a comparison of different 
silvicultural treatments in the same study area. There is 
also a lack of studies that evaluate tree biodiversity after 
logging in the long term. In the future, studies should 
cover the impact of the technological level of forest oper-
ations on stand biodiversity, possibly on the whole forest 
ecosystem.
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