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Abstract 23 

Carbon release from thawing permafrost soils could significantly exacerbate global warming as the 24 

active-layer deepens, exposing more carbon to decay.  Plant community and soil properties provide a 25 

major control on this by influencing the maximum depth of thaw each summer (active-layer 26 

thickness; ALT), but a quantitative understanding of the relative importance of plant and soil 27 

characteristics, and their interactions in determine ALTs, is currently lacking. 28 

To address this, we undertook an extensive survey of multiple vegetation and edaphic characteristics 29 

and ALTs across multiple plots in four field sites within boreal forest in the discontinuous permafrost 30 

zone (NWT, Canada). Our sites included mature black spruce, burned black spruce and paper birch, 31 

allowing us to determine vegetation and edaphic drivers that emerge as the most important and 32 

broadly applicable across these key vegetation and disturbance gradients, as well as providing insight 33 

into site-specific differences.  34 

Across sites, the most important vegetation characteristics limiting thaw (shallower ALTs) were tree 35 

leaf area index (LAI), moss layer thickness, and understory LAI in that order.  Thicker soil organic 36 

layers also reduced ALTs, though were less influential than moss thickness.  Surface moisture (0-6 37 

cm) promoted increased ALTs, whereas deeper soil moisture (11-16 cm) acted to modify the impact 38 

of the vegetation, in particular increasing the importance of understory or tree canopy shading in 39 

reducing thaw.  These direct and indirect effects of moisture indicate that future changes in 40 

precipitation and evapotranspiration may have large influences on ALTs.  Our work also suggests that 41 

forest fires cause greater ALTs by simultaneously decreasing multiple ecosystem characteristics 42 

which otherwise protect permafrost. 43 

Given that vegetation and edaphic characteristics have such clear and large influences on ALTs, our 44 

data provide a key benchmark against which to evaluate process models used to predict future impacts 45 

of climate warming on permafrost degradation and subsequent feedback to climate. 46 

  47 
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Introduction 48 

The mass of the permafrost carbon (C) stock is estimated to be almost twice that of the atmosphere, 49 

totalling ~1300 Pg (Hugelius et al. 2014).  As permafrost thaws an increasing amount of previously 50 

frozen C is exposed to microbial decomposition and hence can be transferred to the atmosphere and 51 

hydrosphere (Zimov et al., 2006; Schuur et al., 2009; Schaefer et al., 2011).  This transfer is of major 52 

concern given that high latitudes are predicted to experience the fastest rate of warming compared to 53 

the rest of the globe (IPCC, 2013). Observations over recent decades demonstrate that permafrost is 54 

warming, thinning and shrinking in area (Romanovsky et al., 2010). Therefore, to accurately predict 55 

the release of carbon from thawing permafrost and its feedback to climate, it is essential to fully 56 

understand the controls on permafrost thaw.  57 

In the early stages of permafrost degradation, thickening of the active layer (the seasonally thawed 58 

soil layer above permafrost in which biological activity takes place) is thought to be the dominant 59 

process (Schuur et al., 2008).  Although climatic warming is important in increasing active-layer 60 

thickness (ALT), the strength of the relationship between air temperature and ALT varies 61 

substantially between different regions and may be strongly influenced by factors such as vegetation 62 

cover and edaphic properties (Jorgenson et al., 2010; Shiklomanov et al., 2010; Shiklomanov and 63 

Nelson, 2013).  As a result of the surface offset (the difference between air temperature and near-64 

surface ground temperature) provided by ground cover and surface conditions, permafrost can persist 65 

in areas where the mean annual air temperature (MAAT) is as high as +2 °C, or degrade in areas 66 

where MAAT is -20 °C (Jorgenson et al., 2010).  Therefore, along latitudinal gradients, increasing 67 

vegetation cover southward may compensate for greater summer warmth, weakening the relationship 68 

between MAAT and ALT (Walker et al., 2003).  At finer scales, within catchments or hill slopes, 69 

ecosystem characteristics may play the dominant role in driving ALT (Jorgenson et al., 2010).  70 

Several vegetation characteristics can influence soil temperature and hence ALT.  Increasing leaf area 71 

reduces the amount of radiation reaching the soil, which should act to reduce ALT and hence protect 72 

permafrost (Marsh et al., 2010).  However, with increasing stem density, particularly in shrubby 73 

species, vegetation can trap more snow, which insulates the ground and reduces heat loss in winter, 74 
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potentially increasing ALT in the subsequent thaw season (Sturm et al., 2001).  Experimental removal 75 

of shrub or dwarf shrub and non-tussock sedge cover in Siberian and Alaskan tundra has been shown 76 

to increase ALT considerably (Blok et al., 2010; Kade and Walker, 2008).  In the boreal region, the 77 

tree canopy leaf area performs a similar shading role to that of the understory, but evergreen canopies 78 

also trap snow aloft and reduce snow cover on the ground.  This trapping may increase conductive 79 

heat loss from the ground in winter, which may decrease ALTs and so protect permafrost (Yi et al., 80 

2007).  81 

Mosses are another important component of high latitude vegetation (Street et al., 2012, 2013), and 82 

have been largely neglected in coupled C-climate models (Turetsky et al., 2007, 2012).  Mosses 83 

strongly dampen temperature fluctuations in the soil, largely because their open structure makes them 84 

effective insulators. However, their thermal conductivity is strongly influenced by their moisture 85 

content (Gornall et al., 2007; O’Donnell et al., 2009).  In summer, a dry moss layer minimizes 86 

downward heat conduction, whereas when wet during the shoulder seasons, and when frozen in 87 

winter, the higher thermal conductivity increases upward heat conduction (Burn and Smith, 1988). 88 

Both processes keep the ground cool, thus reducing ALTs.  Because the thermal properties of mosses 89 

can be explained solely by their physical properties (such as mat thickness and moisture content), this 90 

should simplify their inclusion in processed-based models (Soudzilovskaia et al., 2013). 91 

The thickness of the soil organic layer beneath the moss layer performs a similarly important role in 92 

determining ALT (Johnson et al., 2013).  The low bulk density of organic relative to mineral soils 93 

means organic soils can present more varied and extreme air and water contents, leading to a much 94 

greater range of thermal conductivities and specific heat capacities.  Moisture content plays a major 95 

modifying role on the thermal properties of the soil organic layer, as it does for moss (O’Donnell et 96 

al., 2009), and can also influence ALT by non-conductive heat transfer through movement of liquid 97 

water and vapour (Hinkel and Outcalt, 1994; Kane et al., 2001).  ALT monitoring in Canada has 98 

revealed that within-site variation is much reduced at sites with  homogeneous thin organic layers, but 99 

where large variations in organic layer thickness or its water content exist, ALT is much more 100 

variable (Smith et al., 2009).  101 
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Our goal here is to better understand the magnitude of effects and relative importance of the multiple 102 

vegetation and edaphic characteristics that influence ALT.  Such an understanding is particularly 103 

important given that climate change is likely to have contrasting impacts on different ecosystem 104 

characteristics.  For instance, the tree line will (overall) move poleward with climate warming while 105 

tundra shrub cover is also predicted to increase (Grace, 2002; Jia et al., 2009; Forbes et al., 2010).  106 

Greater shrub cover, however, is likely to reduce moss cover and may over time result in thinner 107 

organic layers (Walker et al., 2006).  Furthermore, fire activity in boreal forest and tundra is likely to 108 

increase in the future, causing further changes to vegetation structure and organic layer thickness and 109 

strongly influencing soil moisture (Stocks et al, 1998 Kelly et al., 2013). Additionally, these factors 110 

affecting ALT are likely to be of particular importance within the discontinuous and sporadic 111 

permafrost regions, which are typically dominated by boreal forests, as these areas have relatively 112 

warm (-0.2 °C) and thin permafrost, which may be particularly vulnerable to thaw (Smith et al., 2005; 113 

Baltzer et al., 2014). 114 

Here, we aim to quantify the influence and importance of vegetation and soil characteristics in driving 115 

ALT in boreal forests, which cover over 50% of permafrost regions globally (Osterkamp et al., 2000).   116 

Our study includes four field sites within the discontinuous permafrost zone in the Northwest 117 

Territories, Canada. These incorporate different fire histories, substrates and tree canopies (deciduous 118 

or evergreen) that capture three representative and contrasting boreal forest cover types [black spruce 119 

(Picea mariana) at two sites of differing canopy density, a burned black spruce site, and a paper birch 120 

(Betula papyrifera) site]. We employed a stratified sampling strategy to encompass the full range of 121 

variation in vegetation and edaphic characteristics within each site to produce the most detailed fine 122 

scale survey of the links between ALT, vegetation and soil characteristics to date.  Specifically, we 123 

hypothesised that (i) increasing canopy and understory LAI would decrease ALT; (ii) taller understory 124 

vegetation would increase ALT, (iii) increasingly thick moss and soil organic layers would decrease 125 

ALT; and (iv) increasing soil moisture would increase ALT. In addition to addressing these 126 

hypotheses, our approach allowed us to determine the relative importance of these different drivers of 127 

ALT, and how they interact to determine ALTs. 128 
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 129 

Materials and Methods 130 

 131 

Study sites 132 

All study sites were located on gently sloping topography, avoiding low points in the landscape where 133 

permafrost may impede drainage and create wetlands (median slope angle about 6 to 8°; Table S1). 134 

Thus, we selected sites where the permafrost dynamics were likely to be controlled by ecosystem 135 

properties rather than conversely the permafrost controlling ecosystem properties (see Discussion).  136 

Two study sites in the Great Slave Lowland High Boreal Ecoregion (Fig. S1) were adjacent burned 137 

and unburned areas of black spruce (Picea mariana) forest located near Mosquito Creek, NWT 138 

(62°42’2.3” N, 116°8’8.8” W), subsequently referred to as Mosquito Spruce Burned (MSB) and 139 

Mosquito Spruce Unburned (MSU) (Fig. 1).  The effects of a large fire at this site in 2008 (Canadian 140 

Forest Service, 2014) were still clearly visible in our survey year (2014).  The burned site was 141 

characterised by charred snags and ground scorching, bare ground coverage, and associated 142 

heterogeneous losses of moss and organic soil horizon thickness.  In some areas taller shrub birch 143 

(Betula glandulosa) had begun to establish, while other patches were covered with shrubby species 144 

such as Rhododendron groenlandicum and Vaccinium vitis-idaea (Fig. S2).  The density of dead trees 145 

was 2720 stems ha-1, with a mean diameter at breast height (DBH) of 6.8 ± 0.3 cm.  A neighbouring 146 

(~50 m) study site was established in an unburned area (~ 500 m2 of unburned forest) dominated by 147 

mature black spruce trees interspersed with tamarack (Larix laricina), with a varying degree of 148 

canopy closure (stem density 4161 stems ha-1, DBH 7.8 ± 0.2 cm, Fig. 2, Table S1) and a carpet of 149 

feather mosses, predominantly Hylocomium splendens.  Again, shrub and herbaceous species, mainly 150 

Arctostaphylos rubra and Geocaulon lividum, formed a patchy understory (Fig. S2).  The soil profile 151 

at these sites transitioned sharply from organic to mineral soil, and the mineral horizon was generally 152 

poorly pore-ice cemented and, down to 1 meter depth, dominated by grey sand with occasional 153 

rounded to sub-angular pebbles < 2 cm in diameter. Texturally, the <2 mm fraction of mineral soil at 154 
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MSU had mean values (n=6) of 82 ± 8% sand, 11 ± 6% silt and 7 ± 4% clay, similar to those at MSB 155 

(n=6) of 79 ± 5% sand, 15 ± 4% silt and 6 ± 2% clay.  156 

Two other sites were established ~63 km east in the Great Slave Lowland within adjacent black 157 

spruce and paper birch (Betula papyrifera) forest near Boundary Creek  (62°31’36.3” N, 158 

114°57’41.3” W and 62°31’37.7” N, 114°57’38.9” W, respectively), subsequently referred to as 159 

Boundary Creek Spruce (BS) and Boundary Creek Birch (BB) (Fig. 1, Fig. S1). Paper birch stem 160 

density was 2980 stems ha-1 and mean DBH was 9.6 ± 0.3 cm (Fig. 2 and Table S1 for LAITree).  161 

There was no moss layer in the birch understory; instead the ground was covered with leaf litter with 162 

sparse patches of fireweed (Chamerion angustifolium), low stature shrubs such as Ribes glandulosum 163 

and Rubus chamaemorus or denser stands of Rosa acicularis or emergent P. mariana saplings (Fig. 164 

S2).  Nearby, the spruce site (BS) had a stem density of 6620 stems ha-1 and the trees had a mean 165 

DBH of 5.7 ± 0.1 cm.  The understory was similar to that of the Mosquito Creek unburned site though 166 

with some fruticose lichen dominated patches. The organic soil horizon at these sites was underlain, to 167 

at least 1 meter depth, by grey silty clay mineral soil with ice lenses < 1 cm thick and disseminated ice 168 

crystals a few millimetres in diameter. Texturally, the <2 mm fraction of mineral soil at BS had mean 169 

values (n=6) of 13 ± 11% sand, 24 ± 5% silt and 63 ± 15% clay, and at BB (n=4) 26 ± 10% sand, 29 ± 170 

10% silt and 45 ± 20% clay. Abundant segregated ice was commonly observed in the BS soil profiles 171 

at depths between 60 and 90 cm, which coincides with the top of the permafrost.   172 

During the growing season, the average mean daily air temperature at both the Mosquito Creek and 173 

Boundary Creek sites, measured using screened TinyTag probes (Gemini, Chichester, UK), was 15.6 174 

°C, the average daily maximum and minimum temperatures were 21.6 °C and 8.2 °C, respectively 175 

(Fig. S3a).  Total rainfall through the growing season, measured at the nearby Environment Canada 176 

Yellowknife-Henderson station (62°27'00.0"N, 114°22'48.0"W) was 77 mm (Fig. S3b).  At all sites, 177 

bottom-sealed access tubes filled with antifreeze were installed after soil coring to monitor soil 178 

temperature profiles by means of sealed thermistors connected to a digital multimeter. Soil 179 

temperatures, at 1 m depth obtained from access tubes installed after soil coring, at the end of the 180 

growing season (29 August 2014) were -0.2 ± 0.2 °C in MSU and 1.6 ± 1.6 °C in MSB.   Soil 181 
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temperatures at 1 m depth at the end of the growing season (2nd September 2014) were -0.5 ± 0.1 °C 182 

in BS and -0.4 ± 0.1 °C in BB. 183 

 184 

Plot establishment 185 

In 2014, plots of 1 m2 were located to ensure that a full range of ground cover types, tree canopy 186 

cover and moss and organic layer thicknesses were sampled at each site.  Additionally, we only 187 

selected plots where the ground cover was homogeneous over an area of at least 2 m x 2 m such that 188 

the 1m2 study plot was representative of the larger area.   Initially, 30 plots were established at each of 189 

the four study sites. However, as the summer thaw season progressed it became apparent that, for a 190 

small number of these plots, thaw depth could not be accurately determined due to the resistance of 191 

unfrozen, clay-rich soils or rocks.  Hence the final dataset had 30 plots from the MSB site, 30 from 192 

the MSU site, 24 from the BS site and 24 from the BB site, giving a total of 108 plots.  193 

 194 

Vegetation and edaphic characteristics 195 

Vegetation characteristic survey work was carried out between 27th July 2014 and 25th August 2014, 196 

with thaw depths recorded on 28th August 14 – 1st September 2014 to capture near maximum ALT. 197 

Tree canopy leaf area index (LAITree) was determined using a Nikon D5000 DSLR camera with a 198 

Sigma EX 4.5 1:2.8 DC HSM hemispherical lens. Nine photographs were taken at different locations 199 

1 m above each plot and processed with CAN-EYE software (Weiss & Baret, 2010).  The “LAI2000, 200 

5 rings.Eff” output was used for maximum comparability with understory LAI. To control for 201 

influence of sunlight conditions, images were thresholded individually by the same researcher, 202 

allowing the threshold to be set appropriately for the sky conditions.  Whenever possible all LAI 203 

measurements were taken as late as possible in the day to reduce influence of directly incident 204 

sunlight.   205 
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Understory LAI (LAIU) was measured using a LI-COR LAI2000 Plant Canopy Analyser (LI-COR, 206 

Lincoln, USA).  One measurement was taken above the understory canopy with a 90° field of view 207 

cap and 4 measurements were taken below the understory canopy at the four corners of a 20 x 20 cm 208 

square at the centre of each plot.  This protocol allowed LAIU to be determined independently of 209 

LAITree (White et al., 1997). LAIU therefore comprises the vascular plant component but not the moss 210 

ground layer.  To control for sunlight conditions, the LAI2000 has a relatively narrow (90°) field of 211 

view cap that minimises the impact of uneven cloud conditions on days when the sky was cloudy or 212 

non-uniformly overcast (as recommended in the user manual).  When the sky was clear a tarpaulin 213 

was used to cast shade on the part of the understory canopy that was being measured (again following 214 

the manual).   215 

The maximum understory vegetation height was measured from the moss or soil surface (where moss 216 

was not present) at the four corners and in the centre of a 50 x 50 cm quadrat in the centre of the 1 m2 217 

plot.  The mean of these five values was used in subsequent analyses. 218 

Moss thickness was determined by carefully removing a section of moss and organic material from 219 

the ground with a serrated knife while avoiding compression. Moss thickness was measured as the 220 

distance from the surface of the living moss to the point at which dead moss (fibric material) became 221 

decomposed to a state that its structure was no longer discernible.  Moss thickness therefore includes 222 

living and dead moss layers. 223 

Surface moisture was measured in the upper 6 cm of the moss/soil layer using an ML3 ThetaKit 224 

(Delta-T Devices Ltd, Cambridge, UK) with an accuracy of 1% for 0-50% range volumetric moisture 225 

content, and precision of 1mV. Measurements were taken by placing the probe gently into the surface 226 

of the moss carpet or soil surface (in the case of bare ground plots), and in most cases readings 227 

reflected the moisture in the moss layer.  Given the similar properties of soil organic matter and moss 228 

in insulating permafrost, we deemed it more appropriate to measure the depth of the moisture 229 

measurement from the surface of the soil or moss when present, rather than always measuring from 230 

the soil surface (even when there was a moss layer above this).  A deeper soil moisture measurement 231 

was taken by parting the moss/organic layer so that the probe was inserted to a depth of about 11 cm, 232 
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hence the measurement volume was between ca. 11-16 cm below the surface of the moss or soil. For 233 

clarity we refer to this reading as deeper soil moisture, though in the thickest moss areas, this 11-16 234 

cm volume included some moss.  Four measurements were taken at each plot throughout the growing 235 

season and the mean of these readings was used for data analysis.  In previous work we found that 236 

millivolt readings varied over small scales even within the same plot, so building new calibration 237 

curves for the moisture probe was problematic (and ideally would have needed a calibration curve for 238 

each plot).  Hence we used the standard factory calibration settings for organic soils and concentrated 239 

effort in obtaining multiple readings from each plot at the multiple sites over the growing season. 240 

Soil organic matter (OM) thickness, determined using a soil corer (1.8 cm internal diam.), was 241 

measured to the depth of the base of the O horizon.  The thickness of the moss layer was then 242 

subtracted from this measurement.  Slope was measured, as it influences surface water runoff, 243 

snowpack depth and solar radiation interception.  A 50 cm wooden plank was laid along the steepest 244 

gradient through the centre of each plot, and the angle below the horizon was measured using a digital 245 

angle meter with a bubble level. 246 

ALT was measured using a graduated stainless steel rod (1.5 cm diameter) inserted to the point at 247 

which it was impeded by frozen soil (Nelson and Hinkel, 2003).  At this late stage in summer, thaw 248 

depth approaches its maximum and is therefore close to that of the ALT (Walker et al., 2003).  A 249 

temperature probe was used to confirm that the soil was frozen (0 °C) at the point of refusal.  The 250 

probe was custom built (British Rototherm Co. Ltd. Port Talbot, UK), and consisted of a robust 1.3 m 251 

long tube of stainless steel (11 mm outer diameter, 7 mm inner diameter) fitted with a 300 mm wide 252 

‘T’ handle for inserting and extracting the probe from the soil. The sensing tip was 7 mm in outer 253 

diameter, sharpened to a point and contained a platinum resistor (100 Ω at 0°C, 4 wire, Class B, made 254 

to IEC 751 Standard; manufacturer’s stated tolerance ± 0.3 °C). Temperature measurements were 255 

made by connecting the probe to a hand-held digital thermometer.  Where temperatures were > 0 ºC 256 

these plots were excluded from analysis. 257 

 258 
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Statistical analyses 259 

The influence of the measured vegetation and edaphic factors on thaw depth was assessed using both 260 

tobit multiple regression models and structural equation modelling (SEM).   These approaches are 261 

complementary, with SEM giving a more mechanistic insight into the controls on ALT whereas 262 

multiple regression modelling provides a clearer insight into the direct influence of the measured 263 

variables on ALT.   In addition to their complementary strengths, the combined approach reinforces 264 

confidence in the conclusions drawn where there is agreement between them.  265 

Tobit regression was used in place of standard multiple regression because 17 of the plots in the 266 

burned sites had ALTs greater than 150 cm, which were beyond the limit of the probe, resulting in a 267 

censored response variable.  Tobit models were developed specifically to deal with this kind of 268 

censored data (Tobin, 1958) and were implemented in the VGAM R package (Yee, 2014). Prior to 269 

tobit analysis predictor variables were mean centred to aid interpretation of the results.  Curvature in 270 

the relationship between explanatory and response variables was tested by fitting all explanatory 271 

variables and their squared terms then retaining only those terms which were significant in the full 272 

model.  A series of models each containing main effects and a subset of all possible two-way 273 

interactions were used to identify potentially significant interactions.  A full model was then 274 

constructed using all main effect terms plus the identified potentially significant interactions and 275 

quadratic terms.  This model was simplified by sequentially removing non-significant terms in order 276 

to obtain the model with minimum Akaike information criterion (AIC) (Crawley, 2012).  α levels for 277 

testing the significance of the terms remaining in the model were determined using the false discovery 278 

rate control method described by Benjamini and Hochberg (1995).  Interactions were interpreted 279 

using the methods of Aiken and West (1991).  Model fits were checked visually to ensure that they 280 

conformed to model assumptions.   281 

This process was repeated at the individual site level to determine whether the same factors that 282 

emerged as important drivers of ALT across all sites were also significant within each land cover type 283 

(paper birch, black spruce and burned black spruce).  However, interaction terms were not fitted as the 284 

sample size within each land cover type was too small, and further data collection within each 285 
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individual site to the level needed to elucidate interactions would have been impossible in the time 286 

available.  Data are back transformed for presentation in figures to ease visualisation of relationships, 287 

but our interpretations are based on the non-back transformed data in the statistical analysis. These 288 

analyses were carried out using R 3.1.2 (R Core Team, 2014). 289 

The data were also interrogated with SEM, which allows links between measured variables to be 290 

analysed with direct paths implying causality and indirect paths occurring where the impact of one 291 

factor is modified by another.  Using SEM, direct and indirect impacts of exogenous and endogenous 292 

variables can be estimated and compared.  Additionally SEM is well suited to data where there may 293 

be colinearity among predictor variables, since SEM can be used to build meaningful models of 294 

ecological systems where this is present (Graham 2003).  Bayesian SEM was used as it allowed the 295 

incorporation of the censored ALT measurement (burned site plots with ALT >150 cm) by restricting 296 

the posterior distribution of those ALT estimates which could not be measured directly.  Diffuse 297 

priors were set for all parameter estimates except where an admissibility test determined that the 298 

lower bound of the prior needed to be set to zero in order to generate a proper solution.  The rationale 299 

behind the structure of the model is outlined in Supporting Information.  95% highest density intervals 300 

(HDIs) were used to assess whether parameter values and differences between parameter values were 301 

credibly different from zero (i.e. zero did not lie within the 95% HDI).  SEM was carried out using 302 

IBM SPSS Amos 22 (Arbuckle, 2013). 303 

 304 

 305 

Results 306 

 307 

Site characteristics 308 

Site characteristics contrasted as expected for these land cover units.  Briefly, MSU had relatively low 309 

average surface and deep soil moisture contents, an intermediate tree canopy LAI, and thick moss 310 
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(dead + live moss) and organic layers (Fig. 2, Table S1).  BS was similar, but had a more closed tree 311 

canopy, slightly greater deep soil moisture, and slightly lower moss and OM thicknesses (Fig. 2, 312 

Table S1). MSB had the greatest surface and deep soil moisture content, lowest tree canopy LAI, OM 313 

thickness, and a very thin moss layer (Fig. 2; Table S1).  The BB site almost completely lacked moss, 314 

instead having a layer of leaf litter, but the total organic layer thickness was similar to that of the BS 315 

site (Fig. 2b,c; Table S1).  Surface moisture was intermediate at this site, but deep soil moisture 316 

content was greater than in the neighbouring BS site (Fig. 2d,h; Table S1).  Tree canopy LAI was very 317 

similar across both of the Boundary Creek sites.  ALTs were greatest at the MSB site, intermediate at 318 

BB and smallest at both MSU and BS (Fig. 2a, Table S1). 319 

 320 

Cross-site tobit multiple regression analysis 321 

The tobit multiple regression of all site data combined revealed significant effects of OM thickness, 322 

moss layer thickness, surface moisture and LAITree on ALT  (detailed below, Table 1, Fig. 3).  ALT 323 

was also influenced by significant interactions between LAITree and deeper soil moisture, between 324 

LAIU and deeper soil moisture and between OM thickness and ground slope angle (Table 1, Fig. 4).  325 

The combination of factors retained in the final model (OM thickness, moss layer thickness, LAIU, 326 

LAITree, slope, deeper soil moisture, surface moisture and the interactions detailed in Table 1) 327 

explained 73% of the variation in ALT across our four sites (Adjusted McFadden’s pseudo R2 = 328 

0.734).  329 

As moss layer thickness increased ALT decreased. This relationship took the form of an exponential 330 

decay, suggesting that increases in shallow moss layers had a greater impact on ALT than in deeper 331 

moss layers (Fig. 3a, Table 1). 332 

Similarly, increasing OM thickness decreased ALT overall (Fig. 3b).  However, there was also an 333 

interaction between OM thickness and slope (Table 1, Fig. 4a).    This interaction arose from a 334 

decreasing influence of increasing organic layer thickness on ALT with steeper slopes. For plots on 335 

the steepest slopes, increasing OM thickness only weakly reduced ALT (Fig. 4a). 336 
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The relationship between surface moisture and ALT was straightforward, with greater surface 337 

moisture resulting in greater ALTs (Table 1, Fig. 3d). In contrast, deeper soil moisture influenced 338 

ALT by modifying the influence of other factors (interactions described below).  339 

Overall, increasing LAITree caused a decrease in ALT (Table 1, Fig. 3c).  This effect, however, was 340 

moderated by a significant interaction with deeper soil moisture (Table 1, Fig. 4b).  As deeper soil 341 

moisture declined, the influence of LAITree on ALT was also decreased.  Specifically, when soil 342 

moisture was high (one standard deviation above the mean, 0.55 m3 m-3) the relationship between 343 

LAITree and ALT was strongly negative (Fig. 4b), but became less negative when soil moisture was at 344 

its mean (0.33 m3 m-3). The relationship between LAITree and ALT was not significant when soil 345 

moisture was low (one standard deviation below the mean, 0.11 m3 m-3; Fig. 4b). 346 

ALT was also influenced by a similar interaction between LAIU and deeper soil moisture (Table 1).  347 

At the mean value of deeper soil moisture (0.33 m3 m-3), increasing LAIU did not have a significant 348 

impact on ALT (Fig. 4c).  However, at one standard deviation above the mean soil moisture (0.55 m3 349 

m-3), increasing LAIU decreased ALT, while at one standard deviation below (0.11 m3 m-3) increasing 350 

LAIU increased ALT (Fig 4c). 351 

 352 

Individual land cover type tobit regression analysis 353 

Different combinations of vegetation and edaphic factors were revealed to be the most important 354 

determinants of ALT within each land cover type (for brevity, greater detail for the site specific 355 

analyses, and discussion, are provided in supporting information, Table S2).  Across the two black 356 

spruce sites (MSU and BS), increasing OM thickness and increasing LAITree both resulted in 357 

decreasing ALTs.  Conversely, increasing surface moisture content promoted greater ALTs (Table 358 

S2).   359 

At the paper birch site (BB), only LAITree had a significant effect on ALT, with more closed tree 360 

canopies associated with smaller ALTs (Table S2).  In the burned black spruce site (MSB) LAIU was 361 

the only significant factor, with greater LAIU resulting in smaller ALTs (Table S2). 362 
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  363 

Structural equation model 364 

The structural equation model supported our a priori interpretation of the importance of moisture 365 

mediation on the impact of the vegetation and edaphic factors measured, and explained 70.5% of the 366 

variance in ALT (Fig. 5, Table S3, and supporting information for SEM rationale).   367 

The effects observed are causal relationships in the context of the SEM approach where the choice of 368 

model -and so the direction of causality- is determined from the modeller’s existing understanding of 369 

the system.  Deeper soil moisture, LAITree,, moss layer thickness, surface moisture and OM thickness 370 

all had direct effects on ALT (95% highest density interval, HDI), and the standardised path 371 

coefficients indicated that the importance of these direct effects was in this order (Fig. 5).  Increasing 372 

LAITree, moss layer thickness and OM thickness all had negative direct effects on ALT, whereas 373 

increasing deeper soil moisture and surface moisture both acted to increase ALT (95% HDI, Fig. 5).   374 

LAITree, moss layer thickness, OM thickness and LAIU had indirect effects on ALT, which were 375 

mediated via either surface or deeper soil moisture (zero not within 95% HDI for indirect effects).  In 376 

the case of moss layer thickness, OM thickness and LAITree, the indirect effects via moisture acted to 377 

reinforce the direct effects.  The indirect effects of LAIU as mediated by moisture were more 378 

complicated as LAIU simultaneously increased surface moisture and decreased deeper soil moisture.  379 

Moss layer thickness had a negative effect on both surface moisture and deeper soil moisture (95% 380 

HDI).  LAITree and OM thickness each had a negative effect on deeper soil moisture, but not on 381 

surface moisture, and LAIU had a positive effect on surface moisture but not deeper soil moisture 382 

(zero not within 95% HDI).  There was also a positive effect of deeper moisture on surface moisture.  383 

In the case of LAITree, moss layer thickness and OM thickness, the standardised direct effect of these 384 

variables was not credibly different to their standardised indirect (moisture mediated) effects (95% 385 

HDI of difference contains zero), implying that the indirect effect of these factors on ALT via soil 386 

moisture was of similar importance to their direct effects.  However, the direct effect of deeper soil 387 

moisture on ALT was greater than the indirect effect via surface moisture. 388 
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 389 

 390 

Discussion 391 

This study provides the most comprehensive assessment of how ALT varies with vegetation and soil 392 

characteristics in boreal forest, and is the first to separate data on moss, vascular vegetation and soil 393 

organic layer properties.  Our main approach of seeking emergent drivers that operate irrespective of 394 

land cover type shows that moss layer thickness and LAITree, in combination with soil OM thickness, 395 

are the most important and broadly applicable factors influencing ALT.  However, the influence of 396 

both LAITree and LAIU on ALT is highly dependent on soil moisture, which also has its own direct 397 

effect of increasing ALTs. Therefore, the important central role that moisture plays in influencing 398 

ALT should not be underestimated given future changes in precipitation regimes and 399 

evapotranspiration that may significantly alter soil moisture.  Indeed, all measured variables that had a 400 

direct impact on ALT also had indirect effects that were mediated by soil moisture.  Understanding 401 

the direct effects and interactions of these key vegetation and soil characteristics is crucial both for 402 

understanding the controls on current ALTs, and also future impacts of climate change on permafrost 403 

degradation due to climate driven changes in vegetation and soil properties. 404 

 405 

Direct and indirect effects of soil moisture 406 

Our SEM showed that surface soil moisture had the greatest direct impact on ALT, and also 407 

highlighted deeper soil moisture content as an important factor influencing ALT indirectly by 408 

modifying the effect of other factors.  This is supported by the regression analysis that also revealed a 409 

significant influence of surface moisture in increasing ALTs, whereas the importance of deeper soil 410 

moisture lay in modifying the impact of other factors on ALT.  Taken together, these findings 411 

strongly indicate that (among the factors we measured), future changes in precipitation and 412 

evapotranspiration patterns and hence associated changes in soil moisture, will have a particularly 413 
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strong influence on the rate of permafrost degradation, both directly by increasing ALTs and 414 

indirectly by modifying the influence of other drivers (Iijima et al., 2010). 415 

In the ecosystems we studied, the critical role of soil moisture emphasises the importance of moss and 416 

organic matter layers as critical insulators, and the role of greater wetness in increasing heat 417 

conductance and resulting in deeper active layers.   However, we note that in very wet and 418 

waterlogged soils in other systems, it is possible that greater moisture can reduce ALTs due to the 419 

greater latent heat effect delaying freezing (Morse et al., 2015).  Similarly, for wetland ecosystems 420 

where the water table is at or near the surface during the growing season, we expect changes in 421 

precipitation regime to have less effect on ALTs.    Clearly the critical role of soil moisture warrants 422 

further attention, for both empirical research and for model development. 423 

 424 

Moss layer thickness 425 

Both regression analysis and SEM revealed that ALTs decreased with increasing moss layer thickness 426 

(live and dead moss). This is consistent with dry moss being a poor thermal conductor which readily 427 

insulates permafrost from warm summer air temperatures (Turetsky et al., 2012).  The exponential 428 

nature of the regression relationship shows that while initial increments in moss layer thickness may 429 

have a large impact in reducing ALT, subsequent increases are less effective as has been noted in 1-d 430 

modelling analysis (Riseborough et al., 2014).  The SEM demonstrated that moss also affects ALT 431 

indirectly because increases in moss layer thickness resulted in drier soil.  The tendency for the whole 432 

organic layer to dry in feathermoss covered soils has been demonstrated elsewhere (Harden et al., 433 

1997) and a thicker moss layer may dry more quickly during hot, dry summers because its pore 434 

fraction is likely to be greater than that of the underlying OM.  Overall, moss is the single most 435 

important component of the plant community in driving shallow ALTs and hence protecting 436 

permafrost. 437 

 438 

Organic matter thickness 439 
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Consistent with our hypotheses, thicker soil organic matter layers decreased ALTs, demonstrating the 440 

capacity of organic soils to protect permafrost from thaw by performing a similar role to that of the 441 

moss layer, with good insulating properties in summer when dry (O’Donnell et al., 2009).  However, 442 

the actual relationship between OM thickness and ALT was more complicated due to a significant 443 

interaction with slope.  Moisture may provide a mechanistic explanation for the OM thickness 444 

interaction with slope, where the influence of increasing OM thickness diminished on increasingly 445 

steep terrain. Because runoff and drainage can be improved on steeper terrain, as supported by our 446 

SEM analysis, the importance of increases in OM thickness are likely to be reduced because on a 447 

steeper, drier, slope less OM would be required to provide the same level of insulation compared to a 448 

shallower, wetter slope (Jorgenson et al., 2010).  Steeper slopes may also have decreased snowpack 449 

thickness, reducing insulation from this and so furthering the importance of OM thickness on ALT 450 

(Johansson et al., 2013; Nowinski et al., 2010).  This is consistent with OM thickness having a 451 

negative effect on deeper soil moisture in the SEM.  The mechanism driving this is unclear but in 452 

thicker organic layers, the soil moisture reading at 11-16cm may be situated within organic matter that 453 

is more “surface-like” and so less compacted and more freely draining (the opposite direction of 454 

influence of drier soils creating deeper organic layers seems very unlikely). 455 

While the soil organic layer plays a similar role to the moss layer in insulating permafrost, a greater 456 

OM thickness may not compensate for a thinner moss layer; for instance a moss layer loss (e.g. from 457 

15 cm to 0 cm) increases ALT by approximately 40cm on average, whereas the same loss of OM 458 

thickness only increases ALTs by approximately 10cm.  Moss has a lower bulk density than the 459 

organic layer which will contribute to it draining/drying more readily in summer and having greater 460 

insulating properties (see also “justification for SEM design” in supporting information). 461 

Additionally, although we did not measure the influence of litter, given the consistent emergence of 462 

moss as one of the most important factors influencing ALT, where moss is replaced by litter as the 463 

surface cover (as in deciduous versus evergreen stands) it is highly unlikely that litter could maintain 464 

ALTs and hence protect permafrost to the extent that moss can.   465 

 466 
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Leaf area index 467 

Overall, increasing LAITree caused a decrease in ALT, emphasising the importance of a dense tree 468 

canopy in boreal forest in protecting permafrost.  Three potential mechanisms could explain this 469 

observation; (i) increasingly closed evergreen canopies could intercept more snow, reducing the 470 

insulating snowpack and hence allowing more heat loss from the ground in winter (Lundberg and 471 

Koivusalo 2003); (ii); larger tree canopies would transpire more, drying the soil and reducing thermal 472 

conductivity in summer, or (iii) a greater canopy would shade the ground more, reducing downward 473 

heat flux, as identified beneath shrubs in Siberian tundra (Blok et al., 2010). Our study suggests that 474 

the transpiration and shading mechanisms are both important in explaining the impact of LAITree on 475 

ALT.  Furthermore, whereas evergreen black spruce canopies at our study sites may intercept snow in 476 

winter, deciduous paper birch leafless canopies trap snow much less effectively, yet LAITree still 477 

emerged as a significant factor for the birch site when analysed separately.  Also, snowpack thickness, 478 

which typically exceeds 30 cm depth across this area has been suggested to be functionally 479 

homogeneous, and hence of limited importance in determining ALT (Morse et al., 2015). 480 

Nevertheless, moisture plays an important role in modifying LAITree influence: as deeper soil moisture 481 

decreased, the strength of the impact of tree canopy shading also decreased, because drier deeper soil 482 

will conduct less heat downwards, rendering the cooling effect of shading less important.   483 

A similar interaction was also present between LAIU and deeper soil moisture.  However, in this case 484 

increasing LAIU only decreases ALT in wetter soils. In drier soils, increasing LAIU increases ALT, an 485 

effect which is not easy to explain, but could result from the prevention of further evaporation of 486 

moisture in these drier soils or from increased snow trapping.  Also, LAIU simultaneously increased 487 

surface moisture and decreased deeper soil moisture. That direction of causality (i.e. LAIU driving 488 

moisture) in the SEM is likely for deeper soil moisture since greater LAIU would dry soil more 489 

through greater transpiration, whereas the opposite direction of influence of more LAIU occurring in 490 

drier soils is harder to accept. The mechanism for greater LAIU increasing surface moisture is unclear, 491 

though greater shading and wind shelter may reduce surface evaporation from moss and litter layers.  492 
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Overall, LAIU may have a smaller impact on ALT than LAITree if they both influence ALT through 493 

shading.  LAIU may be less important under more closed tree canopies, such as those in the unburned 494 

black spruce and paper birch sites, because any further shading they provide will have a lesser impact 495 

on the amount of radiation reaching the ground.  However in the burned site, where the soil moisture 496 

content is greater and the tree canopy is absent, the vascular understory vegetation plays an important 497 

role in preventing greater active-layer thickening.  The rate of recovery of the ground layer vegetation 498 

post-fire and prior to re-establishment of trees could therefore be important in determining the extent 499 

of ALT deepening from fire, both through its shading effect and its capacity to dry the soil (Viereck et 500 

al., 2008). 501 

 502 

Fire impacts 503 

The burned spruce site (MSB) had the greatest mean ALT of all our sites, consistent with it having the 504 

wettest soil, a very thin moss layer, and the thinnest organic layer – all factors promoting a deeper 505 

ALT.  Indeed, with most of the other factors that control ALT reduced or removed by fire (OM 506 

thickness, moss depth, LAITree), only LAIU remains as the main controlling factor in ALT across the 507 

burned site (Table S2).  The interaction between LAITree and soil moisture probably explains a large 508 

proportion of the considerable difference in ALT between our burned and unburned sites.  The loss of 509 

the tree canopy post-fire will increase soil moisture due to a lack of transpiration and may also allow 510 

the accumulation of more snow in winter.  This is coupled with an increase in solar radiation reaching 511 

the ground, and a loss of insulation provided by reduced moss and organic layers, which will result in 512 

greater downward heat flux in summer and therefore greater ALT. Boreal forest fires are known to 513 

impact dramatically on ALT (Burn, 1998; Mackay, 1995; Yoshikawa et al., 2002), and our work 514 

shows that they have this major impact by concurrently altering several ecosystem characteristics that 515 

would otherwise provide shallow active layers. Fire severity ranges widely within boreal forests, and 516 

our study suggests that fires of differing intensity will have different levels of influence on ALT, with 517 

less severe impacts where only tree and understory canopies are removed compared to fires where 518 

insulating moss and OM layers are also lost (Turetsky et al., 2010).   It is therefore of considerable 519 
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concern that both forest fire frequency and intensity are predicted to increase with climate change; 520 

indeed clear increases in North American boreal forest affected by fire have been observed over 521 

recent years (Gillett et al., 2004, Kasischke and Turetsky, 2010).    Increased fire intensities will lead 522 

to greater ALT increases, and shorter intervals between fires will lessen permafrost recovery, leading 523 

to loss of permafrost which may shift black spruce ecosystems from being a C source to a sink 524 

(O’Donnell et al., 2011, Jorgenson et al., 2010).  However, in areas where permafrost is a driver of 525 

soil conditions, and thin active layers can impede drainage and increase soil moisture contents, the 526 

depth of burn may be reduced, as shown in lowlands in Alaska (Turetsky et al., 2011). In such 527 

ecosystems, fire may have less effect on permafrost-protecting ecosystem characteristics and thus 528 

there may be more potential for ecosystem recovery. 529 

Finally, while the selected sites allow particular insight into how fire drives deepening of ALTs, the 530 

relationships seen might also be used to determine the extent that other processes altering vegetation 531 

structure (not directly assessed here) may result in deeper ALTs (e.g. stand damaging forest pests and 532 

disease, drought, storms; Gauthier et al., 2015). 533 

 534 

Permafrost as a responder to, or driver of, ecosystem characteristics 535 

In our study permafrost is considered to be a responder to ecosystem characteristics, rather than a 536 

driver of them. At our study sites vegetation and soil properties drive permafrost because the 537 

permafrost here is climate-driven and ecosystem-protected sensu Shur and Jorgenson (2007) (Morse 538 

et al. 2015), and evapotranspiration is the main component of the surface energy balance (Burn 1998). 539 

Hence, vegetation (through evapotranspiration) and summer rainfall determine surface and deeper soil 540 

moisture in our study, rather than the presence of permafrost itself.  In other areas, especially where 541 

permafrost impedes drainage and promotes peat accumulation, permafrost can be a key driver of 542 

ecosystem dynamics. This occurs, for example in flat terrain with low-centred ice-wedge polygons in 543 

Arctic lowlands or where a bowl-shaped permafrost table drives cryoturbation in non-sorted (e.g. 544 

hummocky) patterned ground (Mackay 1980). 545 
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 546 

Our approach of conducting detailed surveys across multiple land-cover types has allowed us to 547 

determine the relative importance of the critical factors controlling ALT in boreal forest, and has also 548 

revealed how they interact to modify ALT.    Moss layer thickness, tree canopy LAI, and organic 549 

layer thickness are demonstrated to play critical roles in determining ALTs in boreal forest, which 550 

underlines the importance of including these components in processed-based models, and of testing 551 

models that include vegetation-soil interactions against datasets such as that presented here.  Crucially 552 

though, the importance of these influences are highly dependent on soil moisture.  This result suggests 553 

that changes in the magnitude and timing of precipitation, along with changes in evapotranspiration, 554 

could dramatically alter the interactions between vegetation, soil and permafrost. The impacts of 555 

future changes in precipitation and evapotranspiration on ALT and permafrost degradation require 556 

much more attention. We also demonstrate that forest fires influence ALT by simultaneously 557 

removing or reducing multiple ecosystem components that would otherwise reduce ALTs and protect 558 

permafrost.  Again, this raises further concern in light of the already increasing fire frequency and 559 

intensity in boreal regions. Understanding the mechanisms through which vegetation and edaphic 560 

factors determine ALT and how they will interact with future changes in fire regime or precipitation 561 

patterns is vital in order to predict future rates and carbon cycle consequences of permafrost 562 

degradation in a changing climate. 563 

 564 
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Table 1. Parameter estimates for a tobit regression model of the effect of the vegetation and edaphic 752 

variables on log(active-layer thickness); n = 108, Adjusted McFadden’s R2 = 0.734. Parameters in 753 

bold are significant at the α = 0.0375 level (α determined using false discovery rate control method).  754 

Analysis is for all sites combined.  Units shown in square brackets are those used before log 755 

transformation. 756 

 Parameter estimate SE t p 

(Intercept) [cm] 4.043 0.038 105.599 < 0.001 

OM thickness [cm] -0.005 0.001 -3.844 < 0.001 

Moss thickness [cm] -0.053 0.011 -4.936 < 0.001 

Understory LAI [m2 m-2] -0.044 0.056 -0.799 0.424 

Tree Canopy LAI [m2 m-2] -0.268 0.06 -4.449 < 0.001 

Slope [°] 0.002 0.008 0.256 0.798 

Deeper moisture [m3 m-3] 0.21 0.238 0.885 0.376 

Surface moisture [m3 m-3] 1.549 0.574 2.698 0.007 

(Deeper moisture)2 -1.495 0.837 -1.785 0.074 

Moss thickness*Deeper moisture -0.095 0.054 -1.748 0.08 

OM thickness*Tree LAI 0.005 0.002 2.139 0.032 

OM thickness*Slope 0.001 0.000 2.938 0.003 

Understory LAI*Deeper moisture -0.882 0.289 -3.054 0.002 

Tree LAI*Deeper moisture -1.305 0.448 -2.912 0.004 

 757 

 758 

  759 
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Fig. 1  Field sites. (a) Mosquito Spruce Burned (MSB), (b) Mosquito Spruce Unburned, (c) Boundary 760 

Creek Spruce (BS), and (d) Boundary Creek Birch (BB). Field site locations shown on map Fig. S1. 761 

 762 

Fig. 2 Boxplots of ALT and all vegetation and soil characteristics measured at each site.  BB is 763 

Boundary Birch,  BS is Boundary Spruce, MSB Mosquito Spruce Burned and MSU is Mosquito Spruce 764 

Unburned.  Boxplots represent median, 1st and 3rd quartiles (line and box), whiskers represent maxima 765 

and minima and points represent outliers. 766 

 767 

Fig. 3 Partial residual plots for the main effects in the multiple regression model.  Points represent 768 

active-layer thickness (ALT) when all factors are held at their median values (partial residuals) and 769 

regression lines are derived from the multivariate tobit regression model.  Partial residuals and 770 

regression lines (only presented where a significant main effect was found in the tobit model) have been 771 

back transformed to the original scale of ALT (exponential transformation with the base e). 772 

 773 

Fig. 4 Interaction plots with partial residuals derived from the multiple regression model.  (a) Interaction 774 

between organic layer thickness (OLT) and slope; points represent partial residuals for OLT; dotted, 775 

solid and dashed lines show the relationship between active-layer thickness (ALT) and OLT when slope 776 

is at its mean value (6.99 °), one standard deviation (SD) above its mean value (10.5 °) and one SD 777 

below its mean value (3.45 °) respectively.  (b) Interaction between tree canopy LAI (LAITree) and 778 

deeper soil moisture (11-16 cm depth); points represent partial residuals for LAITree; dotted, solid and 779 

dashed lines show the relationship between ALT and LAITree when deeper soil moisture is at its mean 780 

value (0.33 m3 m-3), one SD above its mean value (0.55 m3 m-3) and one SD below its mean value (0.11 781 

m3 m-3) respectively and (c) Interaction between understory canopy LAI (LAIUnderstory) and deeper soil 782 

moisture; points represent partial residuals for LAIUnderstory; dotted, solid and dashed lines show the 783 

relationship between ALT and LAIUnderstory when deeper soil moisture is at its mean value (0.33 m3 m-
784 

3), one SD above its mean value and one SD below its mean value (0.11 m3 m-3)  respectively.  785 

Significance stars in figure legends for individual relationships are as follows (* = p < 0.05, ** = p < 786 

0.01, *** = p < 0.001). 787 
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 788 

Fig. 5 Results of Bayesian structural equation model assessing the direct and indirect (soil moisture 789 

mediated) impact of vegetation and edaphic characteristics on ALT.  Solid lines represent paths where 790 

the 95% highest density interval (HDI) for the coefficient did not include zero, whereas dashed lines 791 

included zero in the 95% HDI.  The unstandardized path coefficient is shown on each path with the 792 

standardised coefficient in parentheses, with line thicknesses scaled in proportion to their standardized 793 

path coefficient.  The curved grey arrow represents the covariance between the exogenous variables 794 

which is not displayed here to aid presentation.  The overall posterior predictive p value for the model 795 

is 0.46 (with values close to 0.5 indicating close agreement with the data) and the model explained 796 

70.5% of the variance in ALT.  Convergence was achieved after 5907 iterations (convergence statistic 797 

< 1.002). 798 
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