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ABSTRACT

Since 1982, Shiga toxin-producing Escherichia coli (STEC) has been an in-

famous foodborne pathogen causing significant human illness worldwide. The past

decades have brought much advancement in food safety practices and industry stan-

dards, but STEC still remains prevalent in beef processing with cattle hide implicated

as a major source of carcass contamination. To investigate the association between

STEC prevalence and the indigenous microbial population of the hide, 16S rRNA bac-

terial community profiles and viral shotgun metagenomes were created from hide and

fecal samples collected from a large commercial feedlot. For the 16S rRNA dataset, fe-

cal OTUs were subtracted from the OTUs found within each hide 16S amplicon library

to focus on bacterial populations found exclusively on the hide. Comparative alpha

diversity analysis revealed a significant correlation between low bacterial diversity and

samples positive for the presence of E. coli O157:H7 and/or the non-O157 groups. This

trend continued regardless of diversity metric or fecal OTU presence. Beta diversity

data revealed differences in the bacterial community composition between the O157 and

non-O157 contamination states, with certain OTUs demonstrating significant changes

in relative abundance. The exact nature of this relationship remains a mystery, however

phage interaction may play a crucial role due to their ability to control the diversity,

abundance and genetic composition of their microbial host populations. By dissecting

the population ecology of viral groups present in the fecal viral metagenomes we were

able to uncover trends in phage host interactions between the feces and the hide and

associations between virulent phage and the commensal microbes.

ix



Chapter 1

INTRODUCTION

Shiga toxin-producing Escherichia coli (STEC) are zoonotic pathogens that

asymptomatically colonize the lower gastrointestinal tracts of cattle and other rumi-

nants (Hancock et al., 1994 and Caprioli et al., 2005). In the United States, STEC

cause over two hundred thousand illnesses and approximately 30 deaths each year,

generally occurring through the ingestion of contaminated beef products (Scallan et

al., 2011). However, STEC is not limited to beef as a means of infection and has been

implicated in outbreaks involving sprouts, municipal water, unpasteurized milk and

apple cider, and leafy greens. Even person-to-person contact, day care and nursing

centers, and recreational water (e.g. swimming pools) have been vehicles of STEC

transmission (Tarr et al., 2005).

STEC primarily cause illness in humans through the production of the A1B5

family protein, Shiga toxin (Stx1 and Stx2). In host cells Stx binds to the receptor

globotriaosylceramide (Gb3) via its pentameric B subunit and is internalized through

receptor mediated endocytosis (Sandvig and Van Deurs et al., 1996). It is trafficked

by early endosomes to the endoplasmic reticulum where the A subunit unfolds and is

inserted into the membrane (Sandvig and Van Deurs et al., 1996). This induces the cell

to undergo endoplasmic reticulum-associated protein degradation, which translocates

the A subunit to the cytosol where it is folded into an active fragment that can exert

toxic effects (i.e. depurination of 60S ribosomal subunit causing protein synthesis

inhibition and apoptosis) (Sandvig and Van Deurs et al., 1996, Paton and Paton, 1998

and Keir et al., 2012). If Stx breaches the epithelial barrier and the accompanying

vasculature, the toxin can damage Gb3 abundant kidney cells and cause hemolytic

uremic syndrome (HUS) (Karmali et al., 1983 and Richardson et al., 1988). HUS is
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characterized by haemolytic anaemia, thrombocytopenia and acute renal failure, which

can lead to death (Richardson et al., 1988 and Paton and Paton, 1998). Roughly

1/10 to 1/4 of patients will develop HUS after infection, with children being the most

susceptible (Karmali et al., 2004). In addition to Shiga toxins, pathogenic STEC

possess additional virulence genes, such as the type III secretion system, translocated

intimin receptors (tir) and intimin (eae). These genes enable the bacterium to tightly

adhere to colonic epithelial cells, producing characteristic attaching and effacing (A/E)

lesions (Paton and Paton, 1998 and Kaper et al., 2004).

STEC are divided into serogroups and serotypes characterized by their somatic

lipopolysaccharide (O antigen) and flagella (H antigen), respectively (Nataro et al.,

1998). The STEC serotype O157:H7 (E.coli O157) is highly virulent and responsible

for the majority of hemolytic uremic syndrome (HUS) cases and, as a result, is the

most widely characterized and studied serotype of STEC (Riley et al., 1983, Boyce et

al., 1995 and Rangle et al 2005). Its infamy in the United States began in 1993 after

it claimed the life of four young children after eating contaminated beef patties from a

popular fast food chain. Still, 20-50% of infections worldwide are caused by non-O157

serogroups (the “big six”; O26, O111, O103, O121, O45, and O145) with some linked

to major outbreaks of HUS in Austria, Germany and Australia (Elliott et al., 2001

Gerber et al., 2002, Brooks et al., 2005 and Hughes et al., 2006). The prevalence of

these serogroups in cattle is varying and may depend on factors including, environment

(Van Donkersgoed et al., 1999), diet (Callaway et al., 2009), age (Zhao et al., 2013), and

seasonality (Barkocy-Gallagher et al., 2003). A global assessment of beef cattle reports

over 3 decades determined that E.coli O157:H7 presence in cattle ranged between 0.3-

19.7% in feedlot cattle and 0.7% -27.3% in grazing cattle, while non-O157 were between

0.7-44.8% in grazing cattle and 4.6-55.9% in feedlot cattle (Hussein, 2007). To further

our knowledge of these deadly pathogens this thesis will focus on the bacterial and viral

communities of cattle feces and hide and their association with STEC contamination

on pre-harvest cattle.
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Chapter 2

16S RRNA ASSESSMENT OF BACTERIAL COMMUNITIES ON

PRE-HARVEST CATTLE HIDE

2.1 Introduction

Every microbial environment from the cattle gut to the human intestine is an

opportunity for STEC to encounter and compete with other microbial populations.

These populations host a complex assembly of indigenous microbes, including bacte-

ria, fungi, archaea, and viruses. In particular, commensal bacteria have been shown

to mitigate the proliferation of invading pathogens through predation, nutrient com-

petition, and the excretion of antimicrobial compounds (Buffie et al., 2013, Hibbing

et al., 2010, Zhao et al., 2013). E. coli O157, in particular, thrive within microbial

communities demonstrating lower species diversity (Jiang et al., 2002). Specifically,

in soil and manure environments, microbial diversity is negatively correlated with the

invasion of E. coli O157 and Listeria monocytogenes (van Elsas et al., 2012, Zhao et al.,

2013, Vivant et al., 2013). These studies suggest that indigenous microbial populations

interact, often negatively, with pathogen populations. This inherent protection against

invasion is especially evident when the diversity of the microbial community is large

enough to occupy a broad spectrum of ecological niches, thereby reducing the likeli-

hood that an alien species could gain traction within the novel environment (Hibbing

et al., 2010).

To assess community structure, researchers often employ 16S rRNA sequencing,

which utilizes the conserved and hypervariable regions of the 16S ribosomal RNA gene

to classify sequences into operational taxonomic units (OTUs) or phylotypes. Thou-

sands of environments have been studied via this method and millions of sequences

added to online databases, including those from the cattle gut and rumen. From this
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work it appears that Firmicutes and Bacteroidetes are the dominant phyla in the cattle

gut (Shanks et al., 2011 and Rice et al., 2012) and rumen (Berg Miller et al., 2012 and

Jami et al., 2012 and 2014). However, shifts in their relative abundance and other

rare community members may occur due to age and fluctuations in diet (Shanks et

al., 2011 and McCann et al., 2014). One study also found that butyrate-producing

bacteria were negatively associated with STEC shedding and cattle with a higher level

of gut bacterial diversity appeared to be associated with lower levels of STEC shedding

(Zhao et al., 2013). Therefore, we aim to investigate the microbial community on the

cattle hide, a largely unexplored environment.

Cattle hide is a major reservoir of STEC. At a large commercial processing

feedlot, 80.7% of sampled cattle hides were positive for at least one of the “big 6”

non-O157 and/or O157:H7 (Stromberg et al., 2015). In addition, cattle hide acts as a

vehicle of contamination of other animals and the carcass, particularly during transport

and slaughter (Bell et al., 1997, Elder et al., 2000, Collis et al., 2004 and Arthur et al.,

2007). Hide positive samples have also been shown to be more indicative of carcass

contamination than fecal positive samples and hide-to-hide appears to be a larger

contamination point than hide-to-pen floor (Keen et al., 2002, Callaway at el., 2009 and

Stanford et al., 2011). Interventions focused on the hide, such as dehairing, and washes

with water, various chemicals, organic acids and bacteriophage have been developed to

stem STEC contamination (Loretz et al., 2011). However, the role of the commensal

hide bacterial community in preventing or limiting the prevalence of STEC in cattle

is unknown. To determine whether there exists a possible connection between STEC

presence and the composition of bacterial communities on cattle hides, we preformed

high throughput 16S rRNA sequencing on hide samples exhibiting varying degrees of

E. coli O157 and non-O157 contamination.
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2.2 Methods

2.2.1 Sample Collection

Cattle were sampled over the course of 12 weeks in summer 2013 from a large

commercial beef processing facility, both at the feedlot (feces) and at the abattoir

(hide). Fresh feces were harvested from two pen floors of a feedlot site 24 hours prior

to transport to the harvesting plant where the brisket regions of pre-selected cattle

were swabbed with pre-wetted (0.1% sterile peptone water) sponges after stunning

and bleeding, but prior to hide removal. Fecal and hide samples were snap-frozen in

liquid nitrogen (LN2) within hours of collection and stored at −80°. A portion of

each hide sample was sent to NeoSeek™(©Neogen, Lansing, MI) for STEC serogroup

identification for the serogroups O157, O26, O45, O145, O103, O111 and O121.

2.2.2 Microbial Community Processing

Microbial nucleic acids were extracted from 192 fecal and 182 hide samples taken

across the 12-week study via the MO BIO PowerViral DNA/RNA Isolation Kit Tm.

Following quantification with the Qubit® Fluorometer, the V3-V4 region of the 16S

rRNA gene was amplified using dual-indexed primers (Fadrosh et al., 2014), with an

annealing temperature of 52°for 32 cycles. Amplicon reactions (3 µl ) were run on

an agarose gel to verify amplification. Amplicons were normalized with the Sequal-

Prep™Normalization Plates (Invitrogen Inc., CA, USA), pooled, and then sequenced

on the Illumina MiSeq platform.

2.2.3 Microbial Community Analysis

Raw Illumina sequences were subjected to quality control and demultiplexing as

in Fadrosh et al., 2014. Processed sequences were classified using open-reference OTU

picking in Qiime (97% identity) (Caporaso et al., 2010). Briefly, step 1: sequences

were clustered against GreenGenes v13.8 (DeSantis et al., 2006). Step 2: sequences

that failed to cluster with the reference database were subsequently clustered de novo,

and the centroids of these clusters were used as reference sequences for the reference
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database in step 3. Step 3: sequences that failed the first clustering were clustered

against the new reference database generated in step 2. Step 4: The remaining un-

classified sequences were clustered de novo. All reads were clustered using UCLUST

(Edgar, 2010) and aligned with PyNAST (Caporaso et al., 2010). Community richness

was evaluated for each sample using the Chao1 estimator (Chao 1984) and Faith’s

phylogenetic diversity (PD) (Faith 1992). Additionally samples were pooled by var-

ious metadata categories (STEC infection status, number of STEC strains, etc.) to

examine differences in richness associated with each group. PCoA plots were generated

with Emperor (Vazquez-Baeza et al., 2013) using weighted and unweighted UniFrac

(Lozupone and Knight 2005) distance to evaluate large-scale structural shifts associ-

ated with each metadata category. Taxonomic profiles for each metadata group were

analyzed with Kruskal-Wallis one-way analysis of variance and paired Mann-Whitney

U tests to identify taxa at significantly higher or lower abundance, and significant

OTUs were visualized with Cytoscape (Shannon et al., 2003).

2.3 Results

2.3.1 Sequencing and STEC Identification

After assessing the data for poor quality and removing singletons, 1,688,954

high-quality 16S rRNA gene sequences were recovered from hide bacterial samples.

From these sequences, 97,050 OTUs were classified across the dataset. Each sample

provided an average of 9,877 sequences. In ranking the abundance of the OTUs the

80%, 90%, 95%, and 99% of the abundance occurred in the top 225, 554, 1165, and 4062

OTUs, respectively (Fig. 2.1). Feces are often found on the hide and likely influenced

the density of bacteria in hide swab samples. To focus on bacterial populations found

only on the hide and not in feces, OTUs identified within fecal samples were subtracted

from the OTUs found within each hide 16S amplicon library. After removal of sequences

identified as belonging to fecal bacterial populations, 135,202 total sequences remained.

Within this collection of sequences a total of 2,709 hide-only OTUs (97% identity) were

identified across the 182 hide swab libraries. For serogroup typing, the NeoSeek™assay

6



Figure 2.1: Rank abundance of OTUs. Rank for OTUs occurring at least twice. The
shade bars under the curve represent the percent abundance contained in that section
of the curve. Eighty percent, 90%, 95%, and 99% of the abundance was contained in
the top 225, 554,1165, and 4062 OTUs, respectively.

indicated that of the 182 hide samples, 28 were negative for STEC, 32 were positive

for E. coli O157, 55 were positive for at least one non-O157 serogroup, and 67 were

positive for E. coli O157 and at least one other non-O157 serogroup (both) (Stromberg

et al., 2015).

2.3.2 Bacterial Community Taxonomy

The principle bacterial families identified in the hide swab samples were Corynebac-

teriaceae, Ruminococcaceae, Lachnospiraceae, Clostridiaceae, and of these, the Corynebac-

teriaceae was the largest family regardless of contamination status (Fig. 2.2). When

the fecal OTUs were subtracted the dominant bacterial families in the hide-only dataset

were Moraxellaceae, Staphylococcaceae, Streptococcaceae and Pasteurellaceae, and of

7



these, the Staphylococcaceae was the dominant family in the STEC positive samples,

O157 (39%), non-O157 (33%), and both (34%), while the Moraxellaceae was the largest

in the STEC negative sample (33%) (Fig. 2.3). Streptococcaceae populations com-

prised a lower relative abundance in E. coli O157 (12%) than in the non-O157 (20%)

and STEC negative samples (21%).

2.3.3 Alpha Diversity Metrics by Contamination Status

Alpha diversity was lower in cattle hide samples grouped by contamination sta-

tus when STEC was detected, with the lowest diversity appearing in samples that

tested positive for both O157 and non-O157 (Fig. 2.4A). The trend continued regard-

less of whether the diversity was measured by phylogenetic distance, the Chao1 species

estimator or observed OTUs (Fig. 2.4A). Among the hide-only dataset this trend was

maintained as alpha diversity was lower for STEC positive samples when compared

to samples without detectable STEC (Fig. 2.5A). Additionally, samples were pooled

based on number of STEC serogroups identified, regardless of whether they were O157

or non-O157 positive. When the fecal OTUs were present alpha diversity decreased

significantly between STEC negative samples, and samples containing one, two, or

three or more serogroups, for each diversity metric tested (Fig. 2.4B). This trend was

maintained in the hide-only dataset (Fig. 2.5B).

2.3.4 Beta Diversity Metrics by Contamination Status

Beta diversity was compared between contamination status (i.e. samples con-

taining either O157, non-O157 or both; Fig. 2.6A) and the number of serogroups

identified within samples (i.e. 1, 2, or 3 or more serogroups; Fig. 2.6B) using a

three-dimensional principal coordinate analysis with and without fecal OTUs. The

comparison of contamination states with fecal OTUs showed clustering not only be-

tween STEC negative and positive samples, but also between O157 and non-O157

groups (Fig. 2.6A). Along PC1, which explains 36.49% of the difference, STEC pos-

itive samples grouped away from STEC negative samples, while along PC2, 35.57%
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Figure 2.2: Taxonomic distribution of bacterial families from hide samples according
to contamination status with all OTUs. Relative abundance charts were based on
distributions of bacterial families as a percentage of the total number of classified 16S
sequences. Samples were pooled based on STEC contamination status (STEC negative,
O157 positive, non-O157 positive, and both).
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Figure 2.3: Taxonomic distribution of bacterial families from hide samples according to
contamination status with hide-only OTUs. OTUs classified from the fecal 16S rRNA
survey were subtracted to create the hide-only category. Relative abundance charts
were based on distributions of bacterial families as a percentage of the total number of
classified 16S sequences. Samples were pooled based on STEC contamination status
(STEC negative, O157 positive, non-O157 positive, and both).
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Figure 2.4: Alpha diversity metrics for samples pooled by contamination status with all
OTUs. Jackknifed alpha diversity metrics (phylogenetic distance, chao1 estimator, and
observed OTUs) were calculated with Qiime’s alpha rarefaction.py script. Phylogenetic
distance, the chao1 index, and observed OTUs were calculated for ten jackknifes at a
depth of 95% of the reads contained in the smallest metadata group. Error bars
represent the standard error of the jackknife estimate. The width of the bar shows the
number of sequences contained in each metadata category, while the small numbers
inside the bars indicate the number of samples in each category. Within each chart,
bars with different letters were significantly different at an alpha level of 0.05 with
Bonferonni correction as determined by the Mann-Whitney U test. In (A), samples
were pooled by STEC contamination status into four groups: STEC negative, E. coli
O157 positive, non-O157 positive and positive for both E. coli O157 and any of the
tested non-O157 serogroups, whereas in (B) samples were pooled by number or STEC
serogroups present in the sample
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Figure 2.5: Alpha diversity metrics for samples pooled by contamination status with
hide-only OTUs. Alpha diversity retested after fecal OTUs were removed. Error
bars represent the standard error of the jackknife estimate. The width of the bar
shows the number of sequences contained in each metadata category, while the small
numbers inside the bars indicate the number of samples in each category. Within each
chart, bars with different letters were significantly different at an alpha level of 0.05
with Bonferonni correction as determined by the Mann-Whitney test. In (A), samples
were pooled by STEC contamination status into four groups: STEC negative, E. coli
O157 positive, non-O157 positive and positive for both E. coli O157 and any of the
tested non-O157 serogroups, whereas in (B) samples were pooled by number or STEC
serogroups present in the sample.
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of the difference, the samples positive for O157 clustered away from the other cate-

gories. When grouped by number of STEC strains (Fig. 2.6B) the negative samples (0

strains) and positive samples (1+ strains) again clustered away from each other along

PC1 (38.12% of the difference), while those with one STEC strain had the same parti-

tioning as O157 along PC2 (31.42% of the difference) as samples in the plot grouped by

contamination status (Fig. 2.6A). Within the one strain group there were 53 samples

(79.1%) that contained a non-O157 serogroup compared to 14 samples (20.9%) with

O157. Thus, the O157 group in Fig. 2.6A, is analogous to the one strain group in

Fig. 2.6B, with the non-O157 samples removed. Because both groups show similar

partitioning, it appears that O157 is driving the separation. When the fecal OTUs

were removed (Fig.2.7), the weighted Unifrac measure had to be employed. Along

PC1, which explains 55.36% of the difference, STEC categories grouped away from

each other (Fig. 2.7A). When grouped by number of STEC serogroups identified the

same portioning can be seen as in Fig. 2.6B. Along PC1 (72.72% of the difference) the

samples with one serogroup (O157) and the samples negative for all STEC (0 strains)

clustered away from samples with 1+ serogroups.

2.3.5 OTUs demonstrating significant change with STEC contamination

status

OTUs at significantly higher or lower relative abundance depending on contam-

ination status were identified when fecal OTUs were present and absent (Fig. 2.8). No

OTUs were identified as occurring at a higher relative abundance in STEC positive

samples in either dataset (Fig. 2.8). Two OTUs genera that demonstrated higher

relative abundance in the hide-only STEC negative samples belonged to the genera

Streptococcus and Solibacillus, with the Streptococcus OTU #532232 being lower in

all STEC positive categories and Solibacillus OTU #606419 being significantly lower

in non-O157 infected samples (Fig. 2.8B). Three additional OTUs, Staphylococcus

(OTU #630141) and Streptococcus (OTU #270572 and #151098) were also lower in

non-O157 infected samples. Two Streptococcus OTUs (OTU #4441855 and #439035)

13



Figure 2.6: Beta diversity comparison of the bacterial communities by contamination
status and number of STEC serogroups with all OTUs. Jackknifed principal coordinate
analysis using the unweighted UniFrac metric was performed (100 jackknifes) on all hide
sequences. Sequences were pooled by contamination state (A), E. coli O157 positive,
non-O157 positive, positive for O157 and at least one non-O157 STEC positive group
and samples negative for all STEC serogroups tested and by number of STEC serogroup
detected (B). Percentage of variation explained by principal coordinate shown on each
of the axis.
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Figure 2.7: Beta diversity comparison of the bacterial communities by contamination
status and number of STEC serogroups with hide-only OTUs. Jackknifed principal co-
ordinate analysis using the weighted UniFrac metric was performed (100 jackknifes) on
hide-only OTUs by STEC contamination state (A) and by number of STEC serogroup
detected (B). Percentage of variation explained by principal coordinate shown on each
of the axis.
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were also lower in the both category and one from the O157 positive category (OTU

#532232). The other O157 positive OTUs that were lower were Deinococcus (OTU

#359868) and two additional Streptococci (OTU #288249 and #322775). These OTUs

(OTU #359868, #288249 and #32277) were all also lower in the both category along

withMannheimia (OTU #440422), Enhydrobacter (OTU #1114747), Moraxella (OTU

#8281, #334337, #367879), Alloiococcus (OTU #15238), and Acinetobacter (OTU

#4449979) (Fig. 2.8B).

The OTUs Brevibacterium (OTU #73538) and Ruminococcus (OTU #532187)

and Nocardioidaceae (OTU #528213) were at higher relative abundance in STEC neg-

ative samples when fecal OTUs were present. All three were also lower in non-O157,

while Brevibacterium (OTU #73538) and Ruminococcus (OTU #532187) were signifi-

cantly lower in non-O157 and in the both group (Fig. 2.8A). Thermoactinomycetaceae

(OTU #4400372), Dietzia (OTU #1126467), Clostridales (OTU #110678), and Ru-

minococcus (OTU #333948) were also lower in the non-O157 and the both category.

For the O157 positive category the remaining reduced OTUs were Mogibacteriaceae

(OTU #4295063), Selenomonas (OTU #311471), Rumiococcaceae (OTU #515308),

Streptococcus (OTU #532232) and Clostridales (OTU #560906), with all but Clostri-

dales (OTU #560906) shared with both. The remaining OTUs that were signifi-

cantly lower in the both category were largely gram-positive bacteria Lachnospiraceae

(OTU #299184 and #294440), Jeotgalicoccus (OTU #4404401), Fusobacterium (OTU

#2987631), Trichococcus (OTU#4403115), Clostridiales (OTU#4482650), Corynebac-

teria (OTU #412872, #235898, and #103606), Yaniella (OTU #115315), Clostridi-

aceae (OTU #4383953), Butyrivibrio (OTU #13983) and SMB53 (OTU #180516).
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Figure 2.8: OTUs with significantly different relative abundance according to contam-
ination status. A) All OTUs. B) Hide-only OTUs. White circles indicate contami-
nation status: STEC negative; blue, O157 only; orange, non-O157 only; yellow, both
non-O157 and O157; red. Black nodes are OTUs with significantly higher or lower
relative abundance. The shape of OTU nodes is based on class: Bacilli; Clostridia;
Actinobacteria; Gammaproteobacteria; Deinococci; Fusobacteria. Labels indicate the
genus of the OTU. A red line represents lower average relative abundance. Green lines
indicate higher relative abundance. Edge width is proportional to fold-change, with a
thicker line representing a higher shift in abundance. When genus information was not
available family or order is indicated.
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Chapter 3

METAGENOMICS OF BACTERIOPHAGE IN PRE-HARVEST

CATTLE FECES

3.1 Introduction

From our research on the bacterial communities of the cattle hide we know that

the alpha diversity decreases in the presence of STEC and the community composi-

tion changes depending on contamination state. In order to further understand this

relationship it is important to look at the co-occurring bacteriophage, an understudied

aspect of microbial ecology in STEC research. In all known environments phage are

at the heart of a complex microbial ecosystem. At each beat, phage drive the infec-

tion and lysis of host bacterial cells, propagating nutrient and biogeochemical cycles

and influencing the genetic architecture of their host (Clokie et al., 2011). However,

dissecting the population ecology of viral groups has proven to be technically difficult

as there is no gene, akin to 16S rRNA in bacteria, which can be used to examine the

diversity and distribution of viral populations in nature.

One way around this limitation has been shotgun viral metagenomics, a cultivation-

independent technique whereby purified viral nucleic acids from natural samples are

randomly sequenced to create large metagenomic datasets known as viromes. This

method has been employed to characterize the genetic diversity of environmental phage

from a wide variety of environments, including, oceans, estuaries, soils, hydrothermal

vents, hot springs, and organismal substrates (Breitbart et al., 2004a, Angly et al.,

2006, Bench et al., 2007, Fierer et al., 2007, Schoenfeld et al., 2008 and Anderson et

al., 2014). Despite the fact that over 60% of predicted open reading frames (ORFs)

have no homologous representatives among known references, these viomes have re-

vealed clues about the biology and ecology of environmental phage (Breitbart et al.,
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2002). For instance, studies on human adult feces have predicted roughly 1200-2000

viral genotypes, whereas feces from infants had only 8 viral genotypes (Breibart et al.,

2003 and 2008). Siphoviruses were found to be the dominant family of Caudovirales

in the fecal viromes of horses, sea lions and humans (Breibart et al., 2003, Cann et

al., 2005 and Li et al., 2011) Although no cattle fecal viral metagenome is currently

available, cattle rumen has been shown to house viral communities that are incredibly

diverse and unique, with an estimated 28,000 different viral genotypes reported in some

individuals (Berg Miller et al., 2012 and Ross et al., 2013).

One of the tools that have emerged from viral metagenomics and PCR-based

approaches, is the use of information proteins to explore a subset of phage diversity

including ribonucleotide reductases (Dwivedi et al., 2013 and Sakowski et al., 2015),

T4 vertex portal protein and major capsid protein (File et al., 2005 and Short et al.,

2005), and polymerase A (Breitbart et al., 2004b, Labont et al., 2009, and Schmidt et

al., 2014). For this study we sought to employ two of these marker genes, polymerase

A and ribonucleotide reductase.

Family A polymerase (PolA) has proven to be a suitable marker gene for phylo-

genetic characterization and diversity analyses, appearing in 25% of all known dsDNA

phage genomes (Wommack et al., 2015), particularly tailed phages (i.e. Podovirdi-

dae and Siphoviridae). The primary function of PolA in bacteria, bacterial eukaryotic

organelles, and bacteriophage is DNA repair and lagging strand synthesis. Within bac-

teriophage the polymerase gene lacks the 5’-3’ exonuclease domain found in bacteria,

making it the chief polymerase for phage genome replication (Doublie et al., 1998).

Using PCR based approaches PolA genes in T7-like podoviruses have been identified

across multiple environments and, in some cases, exhibiting environmental specificity

(Breitbart et al., 2004a, Labont et al., 2009, Schmidt et al., 2014). It has also been

reported that an amino acid mutation at position Phe762 relative to E. coli introduces

biochemical changes within the polymerase that may be indicative of lifestyle (Tabor

and Richardson, 1987, Tabor and Richardson, 1995 and Suzuki et al., 2000). A Phe762
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to tyrosine substitution (Phe762Tyr) was shown to produce a faster less accurate poly-

merase, characteristic of virulent phage. Conversely, a Phe762 to leucine mutation

(Phe762Leu) produced a slower more accurate polymerase suitable to a temperate

lifestyle (Schmidt et al., 2014).

Ribonucleotide reductase (RNR), another prolific maker, is a core housekeeping

gene responsible for the formation of deoxyribonucleotides from ribonucleotides, a key

step in DNA synthesis (Jordan and Reichard, 1998 and Nordlund et al., 2006). RNRs

appear in roughly 17% of dsDNA-tailed phage, particularly virulent Myoviruses and

Siphoviruses (Wommack et al., 2015). Analogous to PolA, RNRs can be biologically

predictive due to their reactivity with O2. Class I RNRs are O2-dependent, Class

II RNRs are O2-independent, but need adenosylcobalamin (vitamin B12), and Class

III RNRs are O2-sensitive (Jordan and Reichard, 1998 and Nordlund et al., 2006).

Therefore, we can leverage the information from these two vital proteins to assess

virus biology and ecology within our viromes.

Using a metgenomic approach on isolated viral DNA from 11 fecal samples we

sought to survey the first cattle fecal viromes to determine how they vary among in-

dividuals and correlate that with existing 16S rRNA sequencing and STEC metadata.

Additionally, we aimed to explore connections between the fecal viromes and what we

have uncovered about the diversity and composition of commensal bacterial communi-

ties on the hide.

3.2 Methods

3.2.1 Sampling and STEC identification

Over a 12-week period (June to August 2013) fecal samples from pen floors

were collected from a large commercial cattle feedlot. Samples were snap frozen and

a portion sent for microbial nucleic acid extraction and STEC prevalence detection.

For culture based detection of STEC serogroups a collaborating lab (Dewsbury et

al., 2015) enriched 2 grams of each fecal sample in E. coli broth and an aliquot of

980 µl was added to serogroup-specific IMS beads (Abraxis®, Warminister, PA), for
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the STEC serogroups of interest (O26, O45, O103, O111, O121, O145, and O157).

The IMS suspensions were spread on MacConkey agar with cefixime and potassium

tellurite for O157 and/or modified Poss (Poss et al., 2008) for the non-O157. Following

incubation for 24 h, 6 colonies were chosen from each plate and streaked on blood agar

plates for another 24 h incubation at 37°. Colonies positive for latex agglutination and

indole production on the O157 plates were used in a mulpliex PCR for O157 genes:

fliC (encodes the E. coli flagellum), rfbE (encodes the E. coli O157 serotype), ehxA

(enterohemolysin), stx1, stx2 (Bai et al., 2010). Non-O157 colonies were PCR tested

for serogroup specific genes (O26, O45, O103, O111, O121, and O145; Paddock et al.,

2012) and, if positive, virulence genes (eae, stx1, stx2) (Bai et al., 2012).

3.2.2 Viral Concentrate Construction and Enumeration

An adaption of the FeCl3 method (John et al., 2011) was used to create cell-free

viral concentrates. Fecal samples (0.75g) at varying states of STEC contamination were

diluted with 50 mL of phosphate buffered saline and gently shaken for 1 h. Diluted

samples were filtered with a 0.22 µm polycarbonate filter and spiked with 50µl of FeCl3.

Following incubation at room temperature for 1 h, the FeCl3 flocculate was filtered

onto a 1.0 µm polycarbonate filter. Phage within the Fe precipitates were resuspended

with 500 µl of oxalic acid buffer. Resuspended samples were digested with 2 h DNAse

incubation to eliminate free cellular DNA and then 0.22 µm filtered again. A 16S

rRNA PCR was performed to ensure all phage concentrates were free of cellular DNA.

Outlined protocol is depicted in Appendix A.

Viral particles were enumerated via epifluorescence microscopy (Winget et al.,

2009) with 20l of viral concentrate. Pictures were taken at 1000x magnification with an

Olympus BX61 microscope under 100x UPlanFI oil objective and counted with iVision

viral test software. Phage morphology was visualized for one sample via transmission

electron microscopy.
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3.2.3 Viral metagenome sequencing and analysis

The phenol-chloride ”crack” method (as described in Appendix B) was used for

DNA isolation. DNA was quantified with the Qubit® Fluorometer and roughly 20 ng

of cell-free viral DNA from each sample were sequenced with paired-end Illumina HiSeq

2500 (2 x 151 cycles, 1 lane). Fecal 16S rRNA libraries were processed as described in

Chapter 1.

SPAdes version 3.5.0 with the BayesHammer read correction module was used

to assemble each of the eleven viromes (Bankevich et al., 2012). To account for the

variability in coverage inherent in a metagenomic library, the SPAdes was run in single

cell mode with kmer sizes of 21, 27, 33, and 41. Assemblies were input into the

metagenomic analysis web-tool VIROME (Wommack et al., 2012). Phage taxonomy,

top functional proteins and virulence genes were compared.

ORFs were predicted in each virome using MetaGeneMark (Zhu et al., 2010),

queried against a database of RNR and PolA UniRef90 clusters with an e-value cutoff

of 1e-5 (Altschul et al., 1990 and Suzek et al., 2007), and sorted based on length

(200aa) and NCBI’s Conserved Domain BLAST online tool (Marchler-Bauer et al.,

2011). PolAs were aligned with MAFFT using the FFT-NS-i 1000 algorithm and region

with conserved residues (S582-Y766 relative to E.coli) was selected and clustered at

75% using the furthest neighbor algorithm in mothur (Schloss et al., 2009). Cluster

representatives were than used to generate an unrooted maximum likelihood tree with

100 bootstrap replicates with PhyML via Geneious 6.0.5 (Guindon et al., 2003 and

Katoh et al., 2002). This procedure was repeated for RNR classes I, II and III with

selected regions L264-D581, L492-and A741, respectively. Nodes were annotated with

tailed phage BLASTp assignment with an e-value cutoff of 1e-20 (Altschul et al., 1990).
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3.3 Results

3.3.1 Viral abundance and morphology

Free virus particles were successfully isolated from 11 fecal samples at varying

states of STEC contamination. STEC negative samples had the greatest overall abun-

dance of viral particles at an average of 1.07 x 1010 viruses g-1, followed by samples

positive for E.coli O157 and any of the non-O157 serogroups at 7.36 x 109 viruses g-1.

The E.coli O157 and non-O157 positive samples had the least amount at 7.00 x 109

and 6.70 x 19 viruses g-1, respectively (Fig. 3.1). Due to the limited sampling depth,

there was only a limited statistical power, thus, none had a p value less than 0.05.

(STEC negative samples to O157 positive, p value 0.0595, and STEC negative to non-

O157, p value 0.08536). Additionally, all three families of the dsDNA-tailed phages,

Caudovirales, appeared to be present in transmission electron microscopy images of a

non-O157 positive fecal sample (Fig. 3.2).

3.3.2 Virome sequencing and assembly

The MiSeq Illumina sequencing and SPAdes assembly yield is described in Table

3.1. Due to its low sequencing yield, sample 141 was not used for the remaining virome

analyses.

3.3.3 Viral and bacterial taxonomy

The dominant bacterial OTUs in the fecal 16S rRNA libraries that corresponded

to the viromes were Firmicutes followed by Bacteroidetes, regardless of STEC contam-

ination state (Fig. 3.3A). For STEC negative samples 123 and 130 Firmicutes and

Bacteroidetes were 68.71% and 12.29% and 83.83% and 35.09%, respectively. The

O157 positives samples 111, 100, 140 and 117 were 62.07% and 28.84%, 83.96% and

9.84%, 73.79% and 12.29%, and 52.50% and 29.10% for Firmicutes and Bacteroidetes,

respectively. For the non-O157 positive sample 144 Firmicutes was 62.98% and Bac-

teroidetes was 25.80% and sample 141 Firmicutes was 64.58% and Bacteroidetes was
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Figure 3.1: Epifluorescence viral counts for fecal viromes. Counts were taken in repli-
cate during processing of fecal mater from pre-harvest cattle at varying states of STEC
contamination, which is denoted by bar color: Blue is STEC negative, orange is O157
positive, yellow is non-O157 positive and red is both O157 and non-O157 positive.
Error bars represent standard error.
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Figure 3.2: Transmission electron microscopy of phages in non-O157 positive fecal sam-
ple. Red boxes denote intact phage particles and yellow boxes signify phage parts: (A)
Siphoviridae and Podoviridae, (B,C) Siphoviridae, and (D) Siphoviridae and contacted
sheath from T4-like Myoviridae as described in Basler et al., 2012.
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Table 3.1: Virome sequencing and assembly data

Sample ID STEC Contamination Reads Contigs ORFs

100 O157 Positive 35,000,438 46,112 114,863
140 O157 Positive 14,142,984 74,128 124,680
117 O157 Positive 25,314,174 111,602 193,934
111 O157 Positive 41,216,564 136,965 188,312
144 Non-O157 Positive 47,960,050 34,858 82,140
141 Non-O157 Positive 2,575,462 18,372 18,280
109 Both 31,426,278 96,945 163,992
118 Both 44,336,940 128,399 207,025
135 Both 26,349,376 254,720 417,854
123 Negative 30,527,942 75,216 126,055
130 Negative 27,474,050 64,022 101,263

14.65%. Finally, the both category samples 109, 118, 135 for Firmicutes and Bac-

teroidetes were 65.41% and 21.31%, 46.76% and 35.09%, and 69.51% and 17.48%. The

ratio of the two phyla varied between individual samples and did not appear to be

influenced by STEC metadata category.

At the class level (Fig. 3.3B) the most abundant OTU was Clostridia at greater

than 50% of the OTUs in all STEC categories (123 - 64.0%, 130 - 77.80%, 111 - 59.70%,

100 - 68.50%, 140 - 67.40%, 117 - 48.30, 144 - 60.0%, 141 - 58.70%, 109 - 62.0%, 118

- 45.40%, and 135 - 65.40). The second most abundant class was Bacteroidia in all

samples, except 123 (negative) in which Spirochaetes had the second largest abundance

(12.03% to 14.10%). The other bacterial classes greater than 1.00% were Spirochaetes

(except for 130 at .80%) and Bacilli (except for 118 at .60%).

For the fecal viromes, the online web-tool VIROME (Wommack et al., 2012)

was used for taxonomic and functional classification (Fig. 3.4 and Table 3.2 and 3.3),

however, sample 144 (non-O157) was not available through VIROME and was excluded

from this section of the results. The order of dsDNA-tailed phages, Caudvirales, was

the majority contributor to viruses in all categories. The other viruses category refers
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to viruses outside of Caudovirales, such as ssDNA bacteriophage, eukaryotic viruses

(i.e. Marseillevirus), and Tectiviridae. The proportion of families within Caudvirales

(Siphoviridae, Podoviridae and Myoviridae) also did not appear to be dependent on

STEC metadata category. Siphoviridae was the dominant viral family for samples

109 (27.8%; both), 135 (36.7%; both) and 130 (21.0%; negative) (Fig. 3.4A). For

these samples Podoviridae was the second most abundant followed by Myoviridae.

Podoviridae were the dominant family in samples 123 (21.1%; negative), all the O157

samples (111 - 31.8%, 100 - 36.5%, 140 - 31.5%, and 117 - 37.8%), and 118 (27.4%;

both) followed by Siphoviridae and Myoviridae (Fig. 3.4A).

At the genus level, the top 20 phage for each samples were identified (Fig. 3.4B).

Within the top 20 Bacillus phage, Clostridium phage, Actinomyces phage, Lactobacil-

lus phage, Croceibacter phage, Cellulophaga phage, Bacteroides phage, Lactococcus

phage, Streptococcus phage and Staphylococcus phage were present in all the samples,

regardless of STEC contamination. Other genera that appeared in the top 20 in at

least one of the samples were Chlamydia phage (123, 130, 109 and 118), Microviridae

phage (123, 130, 100, 140, 117, 109, and 118), Bdellovibrio phage (123, 130, 117, 109

and 118), Persicivirga phage (123, 130, 100, 140, 109 and 118), Salicola phage (123, 100

and 140), Dragonfly-associated phage (123 and 130), Sphingomonas phage (123, 111,

and 118), Spiroplasma phage (123 and 130) Paramecium phage (123, 130, 111, 140,

and 117), Enterobacteria phage (111, 100, 140, 117, 109, 118, and 135), Campylobac-

ter phage (130, 111 and 118), Escherichia phage (111, 117 and 118), Mycobacterium

phage (111, 100, 117 and 109), Shigella phage (111), Synechococcus phage (111, 100,

140, 117, 10, and 135), Pseudomonas phage (111, 100, 117, 109, 118 and 135), Tetras-

phaera phage (100 and 140), Enterococcus phage (100, 140, 117 and 135), Listeria

phage (117), Corynebacteria phage (135), Vibrio phage (130, 109, 118 and 135) and

Aeromonas phage (135).

Bacillus phage was at the highest relative abundance of identifiable phage for

all the samples followed by Clostridium phage, except sample 111 (O157 positive) in

which Clostridium phage was slightly more abundant (18.1% to 17.9%; Fig. 3.4B). In
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the remaining samples, Clostridium phage was the second most abundant, excluding

sample 100 where it was Cellulophaga phage (10.2% to 9.6%; Fig. 3.4B). In addition,

a large percentage of each sample were unidentified phage.

To determine whether the most abundant phage genera (Bacillus and Clostrid-

ium) were similar to virulent or temperate phage a literature search was conducted on

the phage species identified by VIROME (Table 3.2 and 3.3). Those that could not be

characterized by the literature were sorted based on 762 positions. In both cases, the

majority was similar to virulent phage species. Out of the Bacillus group, at least 80%

were similar to virulent phage, with an average of 93% virulent among the 9 viromes

(Table 3.2). For the Clostridium, an average of 71.3% of identified species were virulent

between the 9 viromes, with all samples having at least 50% virulent phage (Table 3.3).

3.3.4 Viral functional characteristics

The top annotated functional proteins occurring in all samples were DNA poly-

merase, single-stranded DNA-binding protein and phage terminase (Table 3.4). In ad-

dition, structural proteins (i.e capsid protein and phage tail fiber protein) were among

the top annotated proteins in all samples, except 140 and 135 where anaerobic RNR

is in the top 5 (O157).

Using VIROME the virulence and pathogenic categories were explored in the

SEED database (Overbeek et al., 2005). No STEC associated virulence factors were

identified, however, Staphylococcus aureus superantigen pathogenicity islands (SaPI)

was identified in all samples and Listeria monocytogenes pathogenicity island 1 (LIPI-

1) was identified in all samples excluding all the STEC negative and O157 positive 111

(Table 3.5). Toxin genes for Streptolysin were identified in samples 135 (both) and 140

(O157). In addition, toxin genes for Streptolysin (140;O157 and 135; both), Chlorea

(123; negative) and Diphtheria (135; both) were found.
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Figure 3.3: Distribution of fecal bacterial taxonomy. Relative abundance charts based
on distributions of bacterial phyla (A) and class (B) as a percentage of the total number
of classified 16S rRNA sequences. Legend is in order as appears on the bar. Samples
are grouped based on STEC infection status and separated by a dotted line (None,
Only O157, Non-O157, and Both).
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Figure 3.4: Distribution of fecal viral taxonomy. Relative abundance charts as deter-
mined by the VIROME web-tool (Wommack et al., 2012) by family (A), whereas (B)
compares the top 20 phage genera present in each sample. Samples are grouped based
on STEC infection status and separated by a dotted line (None, only O157 and both).
The other viruses category refers to viruses outside of Caudovirales. Legend is in order
as appears on the bars.
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Table 3.5: VIROME identified virulence genes. Number within parentheses denotes
amount of ORF hits.

Sample ID STEC Contamination Pathogencity Islands Toxins

100 O157 Positive Listeria LIPI-1 (1)
Staphylococcus SaPI (5)

140 O157 Positive Listeria LIPI-1 (1) Streptolysin(1)
Staphylococcus SaPI (6) (1)

117 O157 Positive Listeria LIPI-1 (3)
Staphylococcus SaPI (14)

111 O157 Positive Staphylococcus SaPI (10)
109 Both Listeria LIPI-1 (2)

Staphylococcus SaPI (6)
118 Both Listeria LIPI-1 (2)

Staphylococcus SaPI (10)
135 Both Listeria LIPI-1 (6) Streptolysin(2)

Staphylococcus SaPI (39) Diphtheria toxin (1)
123 Negative Staphylococcus SaPI (7) Chlorea (1)
130 Negative Staphylococcus SaPI (6)
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3.3.5 Marker gene analysis, ribonucleotide reductase

After sorting, RNRs were grouped by class and metadata category (negative,

O157, non-O157, both) (Fig. 3.5). The O157 positive samples had an average of 3

Class I RNRs, 22 Class II RNRs, and 112 Class III RNRs. The non-O157 positive

sample had 5 Class I RNRs, 10 Class II RNRs, and 53 Class III RNRs. Both O157

and non-O157 positive had an average of 15 Class I RNRs, 33 Class II RNRs, and 158

Class III RNRs. The negative category had no Class I RNRs, an average of 15 Class II

RNRs, and 30 Class III RNRs. The counts were normalized by sequencing depth and

are depicted in Fig. 3.5.

All the classes of RNR were aligned and clustered separately. At 75% Class I

assembled into 11 clusters with no clusters having STEC negative samples (Fig. 3.6)

There were 2 clusters containing all categories of STEC positive (O157, non-O157 and

both) with similarity to Enterococcus phage phiEF24C (cluster #1) and Pelagibacter

phage HTVC019P (cluster #8). E.coli O157 positive had 3 clusters Listeria phage spp.

(cluster #0,5) and Cellulophaga phage phiST (cluster #2). The both only category had

2 clusters Caulobacter phage spp. (cluster #3) and Mycobacterium phage spp. (cluster

#6). Non-O157 and both grouped into 2 clusters both similar to Staphylococcus phage

SA11 (cluster #4, 9). Non-O157 and O157 positive also grouped into 2 clusters with

similarity to Caulobacter phage rogue (cluster #7) and Staphylococcus phage SA11

(cluster #10). There were no clusters with non-O157 only.

At 75% Class II assembled into 18 clusters. Only 1 cluster had all the categories

(non-O157, O157, both and negative), homologous Roseovarius sp. 217 phage 1 (cluster

#1). In addition, 3 clusters had any of the STEC positive categories and a negative,

which were homologous to Roseovarius sp. 217 phage 1 (cluster #7), Dinoroseobacter

phage vBDshPR2C (cluster #2) and Sulfitobacter phage phiCB2047-B (cluster #4).

STEC negative was found alone in one cluster, Dickeya phage Limestone (cluster #17).

E.coli O157 positive had 3 clusters with similarity to Clostridium phage c-st (cluster

#16) and Roseophage DSS3P2 (cluster #5). The both only category had 6 clusters with

homology to Thermus phage P2345 (cluster #15), Mycobacterium phage Gaia (cluster
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#14), and Sulfitobacter phage phiCB2047-B (cluster #11). E.coli O157 positive and

the both category grouped in 2 clusters similar to Roseophage spp. (cluster #0) and

Dinoroseobacter phage vBDshPR2C (cluster #3). E.coli non-O157 positive and the

both category formed 1 cluster also similar to Sulfitobacter phage phiCB2047-B (cluster

#9). Only 1 cluster had all three STEC positive categories, homologous to Sulfitobacter

phage phiCB2047-B (cluster #8).

Class III assembled into 11 clusters at 75%. There were 6 clusters containing

all categories (O157, non-O157, both and negative) with similarities to Clostridium

phage phiCD211 (cluster #2,0), Aeromonas phage phiAS5 (cluster #4), Citrobacter

phage Moogle (cluster #6), Cronobacter phage vBCsaPGAP52 (cluster #9), and Vib-

rio phage pVp-1 (cluster #10). In addition, there were 2 clusters containing any of the

STEC positive categories and a STEC negative with similarity to Clostridium phage

phiCD211 (cluster #3) and Vibrio phage ICP1 (cluster #7). E.coli O157 positive

and the both category grouped in 3 clusters with similarity to Klebsiella phage KP15

(cluster #5), Citrobacter phage Moogle (cluster #8) and Clostridium phage phiCD211

(cluster #1). There were no clusters that contained just one of the categories.
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Figure 3.5: Distribution of RNR gene copies by STEC infection status.Viromes grouped
by STEC state: O157 positive, non-O157 positive, positive for both and negative for
any STEC and RNR class. Header indicates the biochemical class with regards to oxy-
gen dependency. RNRs were normalized by total RNRs/ (total peptides/10,000,000).
Error bars represent standard deviation. Bars with different letters were significantly
different at an alpha level of 0.05 with Bonferonni correction as determined by the t
test. No bar is present in the non-O157 because it was a single sample.
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3.3.6 Marker gene analysis, polymerase A

PolAs were sorted as in the RNRs, grouped by 762 position and metadata

category (Fig. 3.7). The O157 positive samples had an average of 12 Leu762, 16

Phe762, and 1 Tyr762. The non-O157 positive sample had 28 Leu762, 16 Phe762, and

no Tyr762. Both O157 and non-O157 positive had an average of 21 Leu762, 22 Phe762,

and 2 Tyr762. The negative category had an average of 8 Leu762, 8 Phe762, and no

Tyr762. The counts were normalized by sequencing depith and are depicted in Fig.

3.7.

At 75% the PolAs assembled into 50 clusters. There were 4 clusters containing

all categories (O157, non-O157, both and negative) with similarities to Thermus phage

TMA (cluster #13), Paenibacillus phage Emery (cluster #33), Pseudomonas phage

KPP25 (cluster #42) and Bacillus phage SP10 (cluster #35). In addition, 4 clusters

had any of the STEC positive categories and a negative, which were homologous to

Pseudomonas phage spp. (cluster #27), Bacillus phage spp. (cluster #36), Mycobac-

terium phage spp. (cluster #5), and Listeria phage spp. (cluster #10). There was

just 1 cluster for negative only (cluster #21), homologous to Bacillus phage SP10.

The both only category had 19 clusters with similarity to Vibrio phage spp.

(clusters #0 and 16), Mycobacterium phage spp. (clusters #1, 29 and 30), Bacil-

lus phage spp. (clusters #2, 23, 24, 25 and 39), Listeria phage LP-026 (cluster

#12), Achromobacter phage JWF (cluster #26), Streptococcus phage P9 (cluster #40),

Clostridium phage phiCTP1 (cluster #7). E.coli O157 positive had 6 clusters Bacillus

phage spp. (clusters #18 and 45), Endosymbiont phage APSE-1 (cluster #41), Listeria

phage LP-026 (cluster #11), Pseudomonas phage KPP23 (cluster #32), and Enter-

obacteria phage K1F (cluster #20). There was just 1 cluster for non-O157 only (cluster

#44) with hits to Pseudomonas phage KPP25. In addition, there were 15 clusters with

STEC positive (any combination of both, non-O157, and/or O157). These clusters had

similarity to Bacillus phage spp. (clusters #22, 9, 34 and 38), Salmonella phage FSL

SP-076 (clusters #17 and 31), Gordonia phage GTE2 (cluster #3), Clostridium phage

spp. (clusters #8 and 14), Celeribacter phage P12053L (cluster #19), Croceibacter
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phage P2559Y (cluster #37), Pseudomonas phage KPP25 (cluster #43), Streptococcus

phage Dp-1 (cluster #6) and Mycobacterium phage spp. (cluster #4).
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Chapter 4

DISCUSSION

Understanding the complex dyanmics occurring among the viral and bacterial

members of a biome may be key in assessing the risk of pathogen invasion. Cur-

rent research suggests that the indigenous microbial community of the skin is on the

forefront of defense against the growth of invading bacteria (Chiller et al., 2001 and

Cogen et al., 2008). For instance, Staphylococcus epidermidis, a commensal bacterium

found on the skin of humans, has demonstrated the ability to prevent the colonization

of pathogens, such as S. aureus and Group A Streptococcus, through the binding of

keratinocyte receptors and the production of phenol-soluble modulins and other an-

timicrobial peptides (Bibel et al., 1983, Cogen et al., 2010a, Cogen et al., 2010b, and

Grice et al., 2011). Additionally, increased diversity on healthy intact skin in humans

has been speculated to reduce the spread of opportunistic pathogens present in wounds

(Gontcharova et al., 2010). This complex and varied ecosystem is poorly understood

in cattle and may provide a rich source of information for the mitigation of pathogen

invasion and colonization.

Our analyses showcased the relationship between the composition of hide bacte-

rial communities and the incidence of STEC contamination on cattle hides. However,

to validate whether these correlations were hide associated and not just a result of

varying degrees of fecal contamination, OTUs identified in cattle fecal bacterial com-

munities sampled from the same location were removed to create an artificial hide-only

bacterial community. Bacterial families known to inhabit skin and soil environments

dominated the hide-only group, while the original dataset also contained dominant

families found in the digestion tract of mammals (Fig. 2.2 and 2.3). Alpha diversity

metrics indicated an association between low bacterial diversity and STEC occurrence
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on cattle hide (Fig. 2.4 and 2.5). Because our data is observational we can only hypoth-

esize about cause and effect. For instance, it is difficult to assess whether a genomic

adaption within the pathogen enabled it to outcompete the local hide microbiota or if

a disturbance within the microbial community presented STEC with the opportunity

to colonize an unoccupied niche.

Shiga-toxigenic E. coli is an opportunistic pathogen that carries a number of

genes that enable it to survive within the low pH conditions of the stomach and within

nutrient-limited environments (van Elsas et al., 2011). Almost 20% of E. coli O157

genome is composed of foreign DNA not present in commensal E. coli K12 genome

(Hayashi T et al., 2001). This additional reservoir of genomic DNA may provide

the pathogen with the ability to survive and compete in novel environments, like cattle

hide. However, a healthy commensal microbiome may supersede the genomic plasticity

of STEC. Generally, antagonism between bacteria can occur indirectly, via competitive

exclusion, or directly, by the production of antimicrobial agents or the modification of

the environment to unfavorable conditions.

In an established microbial community all the available environmental niches

are filled, generating a protective barrier against colonization by an opportunistic

pathogen (Hibbing et al., 2010). Therefore, a diverse bacterial community may prevent

STEC from taking purchase in a novel environment. Researchers found that competi-

tive interaction with enteric bacteria can displace or inhibit the growth of E. coli O157

in vitro (Stavric et al., 1992, Zhao et al., 1998 and 2003). In addition, one study

reported the survival of E. coli O157 was decreased by 20-30 fold in the presence of

Enterobacter asburiae, a competitor for the carbon and nitrogen substrates used by

the pathogen (Cooley et al., 2006). The reduced diversity that was present in a subset

of our hide samples may have enabled STEC to gain a foothold in a vacant niche (Fig.

2.4 and 2.5). Still, commensal hide bacterial species may inhibit STEC through the

production of antimicrobial compounds such as organic acids and bacterocins.

In our study, the bacterial OTUs that were at higher relative abundance in

the absence of STEC were Ruminococcus, Brevibacterium, and Nocardioidaceae, while
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in the hide-only dataset the bacteria at higher relative abundance were Soilbacillus

and Streptococcus (Fig. 2.8). By looking at the dynamics of the compounds pro-

duced by certain species of these bacteria we can begin to decipher the possible impact

these groups may have on STEC invasion. Several Ruminococcus spp. (e.g. R. al-

bus, R. flavefaciens) can yield fermentation products succinate acetate, formate and

ethanol in the gut, some of which have been shown to impact the survival of STEC

(Russel and Rychlik, 2001). Ruminococcus, along with Clostridium and Bacterodies,

have also been identified as members of the human microbiota that can inhibit Stx2

production and, thus, potentially limit STEC propagation (deSablet et al., 2009). In-

terestingly, a species of Soilbacillus, Solibacillus silvestris, has the ability to degrade

N-Acylhomoserine lactones (AHLs) (Morohoshi et al., 2011). AHLs are widely used

for the cellular communication phenomena known as quorum sensing in Gram-negative

bacteria. Escherichia coli do not produce AHLs themselves, but utilize the AHL re-

ceptor of the LuxR family, SdiA. SidA recognize AHLs produced from surrounding

bacteria to assess the environment and modulate gene expression as necessary (Speran-

dio, 2010). Previous research has demonstrated that AHL perception in E. coli O157

is utilized for intestinal colonization in cattle and is speculated to be critical in E.

coli survival outside the host (Dziva et al., 2004 and Van Houdt et al., 2006). While

the role of AHLs in hide colonization is unknown, Solibacillus silvestris and other

AHL-degrading bacteria may be interfering with STECs ability to perceive commensal

bacteria, thereby decreasing their chances of a successful invasion.

The remaining OTU identified as inversely proportioned between STEC neg-

ative and O157 positive is a member of the genus Streptococcus. In fact, 7 differ-

ent Streptococcus OTUs were recognized as down regulated in the presence of STEC

positive samples in the hide-only dataset (Fig. 2.8). Species of Streptococcus (e.g.

Streptococcus thermophiles, Streptococcus bovi, etc.) are lactic acid producers. Lactic

acid, in addition to lowering the pH of the environment, has been shown to cause

permeabilization of the outer membrane of Gram-negative bacteria, including E. coli

O157 (Alakomi et al., 2000). Lactic acid producing bacteria (LAB) have been widely
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studied as probiotics to inhibit E.coli O157, with the majority of these experiments

involving Lactobacillus spp. (Brashears et al., 2003, Peterson et al., 2007). High levels

of lactic acid bacteria were shown to inhibit the growth of E. coli O157 in ground beef

(Vold et al., 2000) and experimentally infected cattle saw a decrease in E.coli O157

shedding when given a probiotic culture of Streptococcus bovis and Lactobacillus gal-

linarum (Ohya et al., 2001). Additionally, sheep fed a cocktail of probiotic bacteria

including several Lactobacillus species, Streptococcus thermophilus and Enterococcus

faecium showed a reduction in non-O157 STEC fecal shedding (Rigobelo et al., 2014).

Thus, Streptococcus may be a useful in the prevention of STEC colonization in the gut

and on the hide. However, more research is needed to assess the complex interactions

occurring between the pathogens and the commensal, including phage-host dynamics.

The cattle gut is a complex environment, hosting a diverse population of micro-

bial life (Shanks et al., 2011 and Rice et al., 2012). Despite their role in the evolution

of these microbial communities, viruses have been left largely unexplored in STEC

research. Therefore, by characterizing the viromes of cattle feces we can hypothesis

about the interactions within the microbial network and how it may be facilitating

pathogen invasion.

The “kill-the-winner” (ktw) model of phage-host dynamics hypothesizes that

the most competitive fast-growing host population will encounter and select for more

viruses and, as a result, increase the rate at which the host is killed (Thingstad,

2000). This facilitates turnover of the dominant microbial species, sustaining diversity

(Thingstad, 2000). However, not all experimental observations have supported this

hypothesis and some reports show abundant viruses infecting rare fast-growing hosts

and rare viruses infecting dominant slow-growing hosts (Winter et al., 2010 and Suttle,

2007). To explain this, revisions to the ktw model have been designed to include a

“cost of resistance”, whereby species gain defense strategies at a cost to fitness (Vage

et al., 2013). Because our data is a snapshot of the phage-host dynamics it is diffi-

cult to fit into a model. However, we can speculate that because the phage at the

highest abundance in the viromes (Bacillus phage and Clostridium phage; Fig. 3.4)
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had hosts within the same class at high relative abundance in the matching 16S rRNA

libraries (Clostridia and Bacilli; Fig. 3.3) that there is active phage lysis of some of

these hosts. This is even more convincing due to the high percentage of virulent phage

species within the Bacillus and Clostridium phage groups (Table 3.2 and 3.3). The

high turnover in the dominant phage species may provide the conditions for a pathogen

or other commensal species to takeover a newly vacant niche. Therefore, it is important

to look at other members of the phage population that may be acting on competing

bacterial species.

Ribonucleotide reductases (RNRs) are found chiefly in virulent phage and the

class of RNR found within viromes reflects the oxygen availability and host bacteria

present within the ecosystem sampled (Dwivedi et al., 2013). Class III RNRs are

typically absent in marine viromes, but have been identified in environments such

as hot springs, fermented foods, low/medium salinity solar salterns, and freshwater

metagenomes (Dwivedi et al., 2013). In our viromes, the Class III RNRs were the

most abundant class of RNR found, regardless of STEC contamination state (Fig. 3.5).

They were even among the top 5 functional proteins found in O157 positive sample 140

and O157 and non-O157 positive samples 135 (Table 3.4). The Class III RNR clusters

were largely shared among all the STEC categories, with similarity to phage infecting

facultative anaerobes (Cronobacter, Vibrio, Aeromonas, and Citrobacter) and anaerobe

(Clostridium) (Fig. 3.6). This reflects the anaerobic nature of the gut, whereby phage

with only class III RNR genes infect strict anaerobes, while phage with class I and III

RNRs generally can infect facultative anaerobes (Guarner and Malagelada, 2003 and

Dwivedi et al., 2013).

Class I and II RNRs primarily come from phage infecting aerobes or facultative

anaerobes and have been identified in various seawater metagenomes (Dwivedi et al.,

2013). We found very few Class I RNRs, with none identified in STEC negative samples

(Fig. 3.5). One of the clusters of the Class I RNRs had homology to Enterococcus

phage phiEF24C, which has been shown to be virulent against Enterococcus faecalis,

a commensal bacterium found in the gastrointestinal tract of mammals (Fig. 3.6). It
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has been revealed to have a broad host range, a short latent stage and a large burst

size (Uchiyama et al., 2008), making them suitable to diminish commensals in the

gut and provide a means for STEC invasion. In addition, three non-O157 containing

clusters for of Class I RNRs have similarity to Staphylococcus phage SA11. This agrees

with the reduction in relative abundance of Staphylococcus OTUs in non-O157 positive

hide samples (Fig. 2.8). Thus, we are begining to see possible phage-host interactions

between the fecal virome and the hide 16S communities.

In the fecal viromes, DNA polymerase was among the top 5 functional proteins

in all libraries (Table 3.4). Due to their biochemistry, we can infer information about

phage lifestyle from looking at the PolA 762 position. For instance, the fecal viromes

have a large distribution of viral PolAs with a Phe762 position or a Phe762Leu po-

sition. The Phe762 are generally lytic phage, characteristic of Enterobacteria phage

T5, Bacillus phage SP10/ SP01, Lactobacillus phage Lb338-1, whereas the Phe762Leu

position are typical of lysogenic phage, like Roseobacter phage RDJL Phi 1 and Ed-

wardsiella phage eiDWF. The Phe762Tyr PolAs are limited within our fecal viromes,

only identified in E. coli O157 positive and the both category. These are usually highly

virulent and can be found in the genomes of phage such as Enterobacteria phage T3

and T7 and Cyanophage S-CBP3 (Schmidt et al., 2014).

The PolA clusters were similar to phage found in the environment and in the

gut (Fig. 3.8). A majority of the PolA clusters have similarity to Bacillus phage spp.,

regardless of STEC contamination state and largely among the Phe762 clusters (Fig.

3.8). Bacillus phage are not uncommon in humans, animals and the environment and

were determined to be the largest identified taxonomic group of phage in our viromes

(Breibart et al., 2008, Schuch et al., 2010, Haynes and Rohwer, 2011; Fig. 3.7 and 3.8).

A notable phage species similar to one of the few virulent Phe762Tyr STEC positive

clusters was Enterobacteria phage K1F (Fig. 3.8), a member of the genera of phage

(Enterobacteria) that were among the top 20 abundant phage for all STEC positive

categories (Fig. 3.8. Enterobacteria phage K1F requires the K1 polysaccharide capsule

for infection. This K1 antigen is found in both generic and pathogenic E.coli, but is not
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carried by STEC (Scholl and Merril 2005). The appearance of this phage may indicate

the lysis of competitive E.coli with the K1 antigen. Furthermore, two clusters of PolA,

which were only found in the lysogenic STEC positive fecal samples, were similar to

Streptococcus phage Dp-1 and P9 (Fig. 3.8). Streptococcus phage Dp-1 is known

to produce an amidase phage-associated-lysin active against at least 15 serotypes of

Streptococcus pneumococci and evolutionarily similar to the lysin found in Lactococcous

lactis infecting phage (Sheehan et al., 1997, Loeffler et al. 2001 and O’Flaherty et

al., 2009). This powerful enzyme, in combination with the other Streptococcus phage

species found in STEC positive samples, may explain the reduction in Streptococcus

OTUs found in STEC positive samples (Fig. 2.8). This also agrees with the overall

gene copy counts, in which the Phe762Leu phage in STEC negative samples were

significantly less abundant than the O157 positive Phe762Leu phage (Fig. 3.7).

Phage are also responsible for the exchange of genetic material, driving the

evolution of new pathogens. In fact, lambdoid bacteriophages carrying the stx gene (Stx

phage) are recognized to have conferred pathogenicity to E. coli O157:H7 (O’Brien et

al., 1983). Stx phage incorporate the Shiga-like toxin producing genes (stx1 and stx2)

into the host genome through the lysogenic replication strategy (Allison, 2007) and

release the toxin upon entry into the lytic cycle (Wagner et al 2002 and Bergan et al.,

2012). Previous research has determined that the presence of stx-phage can influence

the indigenous bacterial community by infecting commensal gut E. coli populations,

thus propagating the diseased state (Gamage et al., 2003). This is especially significant

because several stx-phage are known to have a broad host range that enable it to

infect E. coli spp. and potentially Enterococcus and Shigella spp as well (James et al.,

2001). We were unable to detect any STEC virulence genes within our viromes, most

likely due to their rarity within populations, lysogenic lifestyle and lack of database

completeness (Allison et al., 2007). However, other genes were found that are associated

with pathogenic bacteria. For instance, superantigen-encoding pathogenicity islands

of Staphylococcus aureus (SaPIs) were detected in all the viromes (Table 3.5). These

superantigens induce disease in humans (i.e toxic shock syndrome), as well as cattle
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(i.e. mastisis) (Lindsay et al., 1998 and Fueyo et al., 2005). In addition, all the

STEC O157 positive samples, except 111, had ORFs with similarity to the Listeria

pathogenicity island, LIPI-1, present in L. monocytogenes and L. ivanovii (Table 3.5).

LIPI-1 encodes the hemolysin Listeriolysin O (LLO) responsible for Listeriosis (Cossart,

1988 and Vzquez-Boland et al., 2001). These data suggests that the exploration of

viral communities may enlighten not only our knowledge of STEC and its prevalence

on cattle hide, but also other human and animal pathogens that may be lurking in

your hamburger.

Overall, these data indicates that the microbial community diversity and viral

interaction is actively linked to the survival of STEC on the hide. Additional research

is needed to assess the validity of some of the hypotheses presented in this thesis.

For instance, a bacterial metagenomic survey and enzyme assay may provide evidence

for the contribution of AHL-degrading bacteria in the decline of STEC on the hide.

With further elucidation we could use the information from this research to build

risk assessment tools from community profiles. Individual OTUs could be used as

biotherapeutic agents to mitigate STEC contamination and targeted phage knockout

could be used to bolster a strong diverse community of STEC-limiting commensals,

thereby providing a natural method for pathogen control and food protection.
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Appendix A

PHAGE ISOLATION PROTOCOL

An abbreviated protocol for viral particle isolation.
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Appendix B

PHENOL CHLORIDE CRACK METHOD FOR DNA ISOLATIONL

1. Add 1 volume of Phenol Chloroform and 1/10 volume of 3M NaOAc to

sample.

2. Spin at 14,000 rpm, room temperature for 10 minutes.

3. Transfer supernatant to a clean eppendorf tube (this contains your DNA)

i. You may back extract to try and get more DNA by adding 200 µl of Elution

Buffer to the bottom layer and spinning again at 14,000 rpm, room temperature, for

10 minutes.

ii. The supernatant can then be transferred to the eppendorf tube from the

first spin. 4. Add an equal volume of chloroform to the supernatant and spin at 14,000

rpm, room temperature, for 10 minutes to remove residual phenol.

5. Transfer supernatant to a new clean eppendorf tube, this is you clean DNA.

6. Add 2 volumes of 100% EtOH to the supernatant and incubated at least 24 hours

at −20°.

7. Spin at 14,000 rpm, 4°for 30 minutes to an hour (DNA pellet will be visible at the

bottom of the tube).

8. Decant ethanol, careful not to touch the pellet.

9. Add 300 µl of fresh 70% EtOH and spin at 14,000 rpm, room temperature for 10

minutes.

10. Decant off all EtOH and allow pellet to dry for roughly 5 minutes (careful not to

over dry the pellet).

11. Re-suspend in 20-50 µl of Elution Buffer.
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