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Direct numerical simulations (DNS) have been performed of turbulent flow in a plane
channel with a solid top wall and a permeable bottom wall. The permeable wall is a
packed bed, which is characterized by the mean particle diameter and the porosity.
The main objective is to study the influence of wall permeability on the structure and
dynamics of turbulence. The flow inside the permeable wall is described by means of
volume-averaged Navier–Stokes equations. Results from four simulations are shown,
for which only the wall porosity (εc) is changed. The Reynolds number based on
the thickness of the boundary layer over the permeable wall and the friction velocity
varies from Rep

τ = 176 for εc =0 to Rep
τ = 498 for εc = 0.95. The influence of wall

permeability can be characterized by the permeability Reynolds number, ReK , which
represents the ratio of the effective pore diameter to the typical thickness of the
viscous sublayers over the individual wall elements. For small ReK , the wall behaves
like a solid wall. For large ReK , the wall is classified as a highly permeable wall near
which viscous effects are of minor importance. It is observed that streaks and the
associated quasi-streamwise vortices are absent near a highly permeable wall. This is
attributed to turbulent transport across the wall interface and the reduction in mean
shear due to a weakening of, respectively, the wall-blocking and the wall-induced
viscous effect. The absence of streaks is consistent with a decrease in the peak value
of the streamwise root mean square (r.m.s.) velocity normalized by the friction velocity
at the permeable wall. Despite the increase in the peak values of the spanwise and
wall-normal r.m.s. velocities, the peak value of the turbulent kinetic energy is therefore
smaller. Turbulence near a highly permeable wall is dominated by relatively large
vortical structures, which originate from a Kelvin–Helmholtz type of instability. These
structures are responsible for an exchange of momentum between the channel and
the permeable wall. This process contributes strongly to the Reynolds-shear stress
and thus to a large increase in the skin friction.

1. Introduction
Turbulent flows over permeable walls, i.e. rigid porous walls with interconnected

pores through which fluid may flow, are encountered in a wide range of problems.
Examples are: flows in oil wells, catalytic reactors, heat exchangers of open-cell metal
foam (Lu, Stone & Ashby 1998), and porous river beds (Vollmer et al. 2002). To
some extent, densely built-up urban areas and plant canopies can be considered as



36 W. P. Breugem, B. J. Boersma and R. E. Uittenbogaard

permeable wall layers as well. Related research topics are dispersion of pollutants in
metropoles, the exchange of energy and oxide and carbon dioxide between forests and
the atmosphere (Finnigan 2000), and the propagation of forest fires (Séro-Guillaume &
Margerit 2002).

Despite its relevance to the aforementioned applications, only a few experimental
studies report on the effect of wall permeability on turbulence. Zagni & Smith (1976)
conducted experiments on open-channel flow over permeable beds composed of
spheres. It was found that the friction factor was higher than for flows over imper-
meable walls with the same surface roughness. Furthermore, after having reached
a constant value, at typically Re =O(105) the friction factor showed a tendency to
increase again with Reynolds number. Also Kong & Schetz (1982) reached the con-
clusion that in their experiments wall permeability alone could be responsible for an
increase in skin friction by as much as 30–40 % relative to an impermeable wall with
similar surface roughness. A rise in friction factor at high Reynolds numbers was
also observed by Zippe & Graf (1983) in wind-tunnel experiments on boundary-layer
flow over a permeable bed composed of grains. Zagni & Smith (1976) attributed
the increase in friction factor to additional energy dissipation caused by exchange of
momentum across the bed interface. Evidence of this exchange has been provided by
experiments of Ruff & Gelhar (1972) on turbulent flow in a pipe lined with highly
porous foam.

The experiments mentioned above clearly indicate that the effect of wall permeabil-
ity on turbulence is different from wall roughness. This implies that wall permeability
alters the structure and dynamics of turbulence. In this paper we aim to improve
our understanding of this alteration by means of direct numerical simulation (DNS)
of turbulent flow over a permeable wall. Unlike experiments, in DNS it is relatively
easy to isolate the effect of wall permeability from wall roughness. Furthermore, these
simulations provide very detailed information on the flow field both above and inside
a permeable wall, which is difficult to obtain from measurements. In literature two
different methods can be found for simulating flow over and through a permeable wall.

The first and computationally most simple method is the specification of boundary
conditions that incorporate the effect of wall permeability. This approach was followed
by Hahn, Je & Choi (2002) in DNS of turbulent flow in a plane channel with
permeable walls. The boundary conditions used were similar to those proposed by
Beavers & Joseph (1967) for laminar flow over a permeable wall, and allow for a slip-
velocity at the wall. The wall-normal velocity was put to zero, which is, however, not
realistic for high wall permeabilities at which exchange of momentum across the wall
interface takes place (Ruff & Gelhar 1972). As pointed out by Hahn, Je & Choi (2002),
a wall can be classified as highly permeable when the permeability Reynolds number
ReK ≡

√
Kuτ/ν � 1, where K is the wall permeability of the order of the square of

the characteristic pore diameter, ν is the kinematic viscosity and uτ is the wall friction
velocity. Therefore, for an accurate description of flow over a permeable wall at high
ReK , the flow inside the wall itself also has to be described.

The second method is the continuum approach where the flow inside the permeable
wall is modelled as a continuum, which is coupled to the flow over the wall. The
theoretical basis for this approach is provided by the volume-averaging method
(Whitaker 1999). In this method the flow is averaged over a small spatial volume
with dimensions sufficiently large to smooth inhomogeneities at pore scales, but on
the other hand sufficiently small to retain the flow dynamics of interest. The volume-
averaged flow field is governed by the volume-averaged Navier–Stokes (VANS) equa-
tions (Whitaker 1996). In order to solve the VANS equations, closures are required for
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the subfilter-scale stress and the drag force. The continuum approach has been used
in a number of recent large-eddy simulation (LES) studies of flows over forests (e.g.
Shaw & Schumann 1992; Dwyer, Patton & Shaw 1997; Watanabe 2004). Other studies,
in which a Reynolds-averaged form of the VANS equations was used, considered not
only flow over vegetation (Wilson 1988; Uittenbogaard 2003), but also flow over a
permeable wall layer with a porosity significantly lower than that of vegetation (De
Lemos & Pedras 2000; Silva & De Lemos 2003).

In a recent publication (Breugem & Boersma 2005), we verified that the VANS
equations can be used for an accurate simulation of turbulent flow over and through
a permeable wall. The VANS equations were solved in a DNS of turbulent channel
flow with a lower permeable wall consisting of a three-dimensional Cartesian grid
of cubes. The turbulence statistics agreed very well with the results of a different
DNS in which, by means of the standard Navier–Stokes equations, the flow field in
between the cubes was fully resolved. This gives us confidence for using the VANS
equations in the present study where we consider again flow in a plane channel with
a lower permeable wall. Different from the grid of cubes in our previous study, the
permeable wall in the present study is a packed bed, which is encountered in many
applications. In the DNS, the packed bed is characterized by the porosity and the
mean particle diameter. In order to isolate the effect of wall permeability from wall
roughness, we consider packed beds with relatively high wall porosities and small
mean particle diameters. Results from four simulations will be shown, each with a
different porosity.

This paper is organized as follows. Section 2 discusses the continuum approach for
flows through porous media. The next section deals with the coupling between the
flow in the channel and the flow inside the permeable wall. In § 4, a discussion is given
of the implications of wall permeability for the scaling of turbulence. Section 5 deals
with the numerical method. The DNS results are presented in § 6. In § 7, the results
are summarized and discussed.

2. Continuum approach for flows in porous media
In this section, we briefly discuss the continuum approach for flows in porous

media. See Breugem (2004) for a detailed discussion.
The first step in the derivation of the governing equations for the volume-averaged

flow is the definition of the superficial volume average, denoted by 〈· · ·〉s:

〈u〉s
x ≡

∫
V

γ (r)m( y)u(r) dV, (2.1)

where the subscript x means that the volume average is evaluated at the centroid x
of the averaging volume V , y = r − x is the relative position vector, γ is the phase-
indicator function that equals unity when r points in the fluid phase and zero when
r points in the solid phase, and m is a weighting function. The volume-averaging
technique is illustrated in figure 1. Notice that the volume-averaging operator acts as
a filter, which passes information only on the large-scale structure of the flow field.
Furthermore, we note that the volume-averaged flow field is continuous in the sense
that it is defined both in the fluid and the solid phase, provided of course that the
averaging volume is sufficiently large. This is the basis of the continuum approach
for flows in porous media.

In principle, the weighting function can be chosen freely, but it is desirable that the
volume-averaged flow field contains negligible variations on scales smaller than the
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Figure 1. Illustration of the volume-averaging technique for a disordered porous medium.

dimensions of the averaging volume. A customary averaging volume for a disordered
porous medium as sketched in figure 1, is a sphere with radius r0 and a top-hat
distribution for the weighting function (Quintard & Whitaker 1994):

m( y) =

{
3
/(

4πr3
0

)
, | y| � r0,

0, | y| > r0.
(2.2)

The velocity at a certain point in the porous medium can be decomposed into a
contribution from the volume-averaged velocity at this point and a subfilter-scale
velocity ũ according to (Gray 1975):

u = 〈u〉 + ũ, (2.3)

where 〈u〉 ≡ 〈u〉s/ε is the intrinsic volume average and ε is the porosity. The latter is
defined according to:

ε(x) ≡
∫

V

γ (r)m( y) dV. (2.4)

Later on in this paper we will also make use of a temporal decomposition according
to (Tennekes & Lumley 1999):

u = u + u′, (2.5)

where the overbar denotes the Reynolds- or ensemble-averaged value and the prime
denotes the deviation from the Reynolds-averaged value. It is easy to show that
the ensemble- and spatial-averaging operators commute (Pedras & De Lemos 2001):

〈u〉 = 〈u〉, 〈u〉′ = 〈u′〉, ũ = ũ and ũ′ = ũ′ .
The spatial averaging theorem (Whitaker 1969) relates the volume average of a

spatial derivative to the spatial derivative of the volume average:

〈∇p〉s
x = ∇〈p〉s

x +

∫
A

m( y)np(r) dA, (2.6)

where A is the contact area between the fluid and the solid phase inside the averaging
volume V , and n is the unit normal at A that points from the fluid into the solid
phase, see figure 1.
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Application of the spatial filter (2.1) and the spatial averaging theorem (2.6) to the
Navier–Stokes equations yields the volume-averaged Navier–Stokes (VANS) equa-
tions (Whitaker 1996):

∂〈u〉
∂t

+
1

ε
∇ · [ε〈u〉〈u〉] +

1

ε
∇ · [ετ ] = − 1

ερ
∇[ε〈p〉] +

ν

ε
∇2[ε〈u〉] + f , (2.7a)

∇ · [ε〈u〉] = 0, (2.7b)

where τ is the subfilter-scale stress, which in the LES literature is known as the
subgrid-scale stress, and f is the drag force per unit mass that the solid phase exerts
on the fluid phase. The expressions for τ and f are given by:

τ ≡ 〈uu〉 − 〈u〉〈u〉 ≈ 〈ũũ〉, (2.7c)

f ≡ 1

ε

∫
A

mn
[

−p

ρ
I + ν∇u

]
dA

≈ 1

ε

∫
A

mn
[

− p̃

ρ
I + ν∇ũ

]
dA +

〈p〉
ρε

∇ε − ν

ε
∇ε · ∇〈u〉, (2.7d)

where the approximations in the last two equations are valid when 〈〈u〉〉 ≈ 〈u〉.
In order to solve the VANS equations, closures are required for the subfilter-scale

stress and the drag force in terms of the volume-averaged flow quantities. In
Appendix A, we argue that, in porous media, subfilter-scale dispersion is normally
negligible with respect to the drag force and/or the Reynolds-shear stress of the
volume-averaged flow field.

Whitaker (1996) gives theoretical support to the following customary parameteriza-
tion of the drag force:

1

ε

∫
A

mn
[

− p̃

ρ
I + ν∇ũ

]
dA = −νK−1ε〈u〉 − νK−1Fε〈u〉, (2.8)

where K and F are, respectively, the permeability and the Forchheimer tensor. The
first term on the right-hand side of (2.8) represents the drag force in the limit of Stokes
flow in the pores, whereas the second term is a correction for inertial effects at higher
Reynolds numbers. In general, the permeability tensor depends only on the geometry
of the porous medium. The Forchheimer tensor depends on the Reynolds number
|〈u〉|df /ν, with df the typical pore diameter, on the geometrical parameters of the
porous medium and on the orientation of the solid obstacles relative to the direction
of the volume-averaged flow. Generally valid expressions for the permeability and
the Forchheimer tensor do not exist, as they are strongly related to the geometry
of the porous medium and the Reynolds number. They must be determined from
experiments or numerical calculations of flow through a representative region of
the porous medium. Numerical calculations of the permeability and the Forchheimer
tensor for several geometries are presented by Zick & Homsy (1982), Larson & Higdon
(1986, 1987), Sahraoui & Kaviany (1992), Ma & Ruth (1993), Lee & Yang (1997)
and Breugem, Boersma & Uittenbogaard (2004). A few references to experiments are
MacDonald et al. (1979), Fand et al. (1987), Kececioglu & Jiang (1994) and Lage,
Antohe & Nield (1997). For flows through packed beds, which are considered in the
present study, a widely used relation for the drag force is the modified Ergun equation
(Bird, Stewart & Lightfoot 2002). This equation can be written in the form of (2.8)
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Figure 2. Sketch of the flow geometry. (i) Centroid averaging volume that marks the beginning
of the interface region; (ii) centroid averaging volume that marks the end of the interface
region.

with the following relations for the permeability and the Forchheimer tensor:

K =
dp

2ε3

180(1 − ε)2
I, (2.9a)

F = F̃ |〈u〉|I, F̃ ≡ ε

100(1 − ε)

dp

ν
, (2.9b)

where dp ≡ 6Vp/Ap is the mean particle diameter with Vp the volume and Ap the
surface area of the solid obstacles. The coefficients in (2.9a) and (2.9b) were determined
from many experiments with different materials, in which the particle sizes, the
porosity and the Reynolds number were varied (MacDonald et al. 1979).

3. Flow geometry and drag model for the interface region
In our study, we consider the flow geometry as sketched in figure 2. The upper wall

is a solid wall. The lower wall is a homogeneous packed bed. The lower side of the
packed bed is bounded by a solid wall. Following Breugem & Boersma (2005), we
distinguish between three regions.

(a) The homogeneous fluid region or channel region between z = 0 and z = H in
which the porosity is equal to unity.

(b) A small interface region between z = −δi and z = 0, characterized by a spatially
varying porosity.

(c) The homogeneous porous region between z = −h and z = −δi , with a constant
porosity (ε = εc).
Below, we discuss how the flow is described in each region. As already mentioned
in § 1, the approach followed here has been successfully validated in Breugem &
Boersma (2005).

3.1. Homogeneous porous region

Based on the arguments given in Appendix A, in the homogeneous porous region
subfilter-scale dispersion can be neglected. The drag force is modelled by means of
the Ergun equation for packed beds. Combination of (2.7a), (2.7d) and (2.8), yields



Influence of wall permeability on turbulent channel flow 41

the following transport equation for the flow in the homogeneous porous region:

∂〈u〉
∂t

+ ∇ · 〈u〉〈u〉 = − 1

ρ
∇〈p〉 + ν∇2〈u〉 − νK−1(I + F)ε〈u〉, (3.1)

where K and F are given by (2.9a) and (2.9b), respectively.

3.2. Channel region

In the homogeneous fluid region, there are no solid obstacles (ε =1) and hence the
drag force exerted on the flow is zero. Thus the VANS equations reduce to the LES
equations. The subfilter-scale dispersion term is negligible only when the filter length
is sufficiently small. This may not be the case when the same filter length is used for
the channel region as for the homogeneous porous region. In our DNS, we aim to
completely resolve the flow field in the channel region. This can be accomplished by
assuming that in the channel region the filter length is set by the computational mesh
spacing �, such that, provided that � is sufficiently small, subfilter-scale dispersion is
negligible. Consequently, in the channel region, 〈u〉 = u holds and the VANS equations
reduce to the standard Navier–Stokes equations, i.e. (3.1) without the drag term.

3.3. Interface region

Like for the homogeneous porous and the homogeneous fluid region, it is assumed
that subfilter-scale dispersion can be neglected in the interface region too. The drag
force cannot be neglected, however. It is modelled by means of the Ergun equation
in combination with a variable-porosity model, which ensures that the drag force is
continuous over the interface region. A similar approach has been used by Ochoa-
Tapia & Whitaker (1995) to study the laminar flow in a plane channel with one
permeable wall and one solid wall and by Vafai (1984) to analyse the channelling
effect in a porous medium near a solid boundary. Below we discuss the variable-
porosity model in more detail.

By definition the upper boundary of the interface region (z = 0 in figure 2) is the
position of the centroid of the averaging volume for which the lower part of the averag-
ing volume just touches the solid obstacles in the top region of the permeable wall.
The porosity is still equal to unity. When the averaging volume is shifted into the
permeable wall, the porosity gradually decreases, until it reaches the value of ε = εc for
z = −δi . In principle, when the topology of the permeable wall is known, the porosity
in the interface region can be calculated from (2.4), but this is not a straightforward
calculation. The porosity is only a function of the height z, equal to unity at z =0
and equal to εc at z = −δi . Furthermore, it is required that the VANS equations are
continuous at the boundaries of the interface region with the homogeneous fluid
and the homogeneous porous region. This leads to four additional constraints for
the porosity, because it implies that the porosity must have continuous first and
second-order derivatives. The simplest profile for the porosity, which satisfies all six
constraints, is a fifth-order polynomial in z:

−δi � z � 0: ε(z) = −6(εc − 1)

(
z

δi

)5

− 15(εc − 1)

(
z

δi

)4

− 10(εc − 1)

(
z

δi

)3

+ 1. (3.2)

The above model for the porosity requires a specification of the thickness δi of the
interface region. As illustrated in figure 2, δi is of the order of the filter length.
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Combining (2.7a), (2.7d) and (2.8) yields the following transport equation for the
flow in the interface region:

∂〈u〉
∂t

+
1

ε
∇ · [ε〈u〉〈u〉] = − 1

ρ
∇〈p〉 + ν∇2〈u〉 +

ν

ε
∇ε · ∇〈u〉

+
ν

ε
[∇2ε]〈u〉 − νK−1[I + F]ε〈u〉, (3.3)

with the porosity described by (3.2), and K and F given by (2.9a) and (2.9b), respec-
tively.

We remark that the governing equations given in this section do not contain
any explicit information on the spatial filter by which they were derived from the
Navier–Stokes equations. In a way, we could say that some information on the filter
is ‘hidden’ in the closure for the drag force, the neglect of the subfilter-scale stress,
and the prescribed porosity profile and thickness of the interface region. However, we
emphasize that no explicit information on the filter is required to solve the governing
equations.

To simplify the notation, from now on we will omit the brackets denoting the
intrinsic volume average of a quantity.

4. Implications of wall permeability for scaling of turbulence
In this section, the implications of wall permeability on the scaling of turbulence

are discussed. In the DNS, the permeable wall is characterized by three different
length scales: the thickness h, the mean particle diameter dp and the square root of
the permeability

√
Kc ≡

√
K(ε = εc). The latter scale can be interpreted as the effective

pore diameter. The thickness δi of the interface region is related to the filter length and
hence to dp , and is thus not an independent length scale. To avoid any influence of
the impermeable wall at z = −h below the porous medium on the flow in the channel,
it is required that h is much larger than the penetration depth of turbulence inside
the permeable wall. In that case, h is no longer a relevant length scale for the flow.
This is in contrast to flow over vegetation where the penetration depth of turbulence
is usually of the same order as the whole vegetation height (Finnigan 2000).

Permeable walls are usually also rough. In principle, the additional effect of surface
roughness could be quantified by comparing the flow over the permeable and rough
wall with the flow over an impermeable wall with the same surface roughness. In
literature, it is common practice to characterize a rough wall by the typical height of
the roughness elements, which in our case is the mean particle diameter dp . The effect
of roughness depends on the roughness Reynolds number, defined according to:

Red ≡ dpuτ

ν
. (4.1)

Based on Nikuradse’s experiments on flows through circular pipes with a sand-
roughened wall, Hinze (1975, p. 635) defines a fully rough wall, for which the thickness
of the viscous sublayer is much less than the height of the roughness elements, by the
condition that Red > 55. According to Hinze’s classification, the effect of roughness
is negligible when Red < 5. Although this classification is based on experiments with
rough and simultaneously impermeable walls, it gives a clue to the importance of
roughness for cases where the wall is not only rough, but also permeable.
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Similarly to (4.1), the effect of wall permeability depends on the permeability
Reynolds number, defined according to:

ReK ≡
√

Kcuτ

ν
. (4.2)

This number can be interpreted as the ratio of the effective pore diameter to the
typical length scale of the viscous sublayers over the individual wall elements. Wall
permeability is expected to have only an influence on the turbulent flow when this
ratio is sufficiently large. For small ReK , the discontinuous viscous sublayers over the
wall elements are relatively thick and they coalesce and form a continuous classical
viscous sublayer covering the complete wall. This sublayer in turn prevents penetration
of turbulent eddies into the wall. Thus, for small ReK a permeable wall is effectively
impermeable.

In this work, we aim to study exclusively the effect of wall permeability. Therefore
it is required that Red is sufficiently small and that ReK is sufficiently large. This can
be accomplished by choosing a small value for dp and a high value for εc.

4.1. Channel region

In the channel region of our flow geometry, two boundary layers can be distinguished:
one above the permeable wall and one below the solid top wall. The border between
the two boundary layers corresponds to the location of the mean velocity maximum
or, equivalent to this, the height z = δw at which the total shear stress τxz is equal
to zero. An expression for the total shear stress is found from integration of the
Reynolds-averaged momentum equation:

τxz

ρ
≡ −u′w′ + ν

∂u

∂z
= −

[(
up

τ

)2
+

(
ut

τ

)2] z

H
+

(
up

τ

)2
, 0 � z � H, (4.3)

where up
τ ≡

√
τxz(0)/ρ is the friction velocity at the permeable wall and ut

τ ≡√
−τxz(H )/ρ is the friction velocity at the top wall. An expression for δw can then be

obtained by substituting τxz(δw) ≡ 0 into the above equation:

δw

H
=

(
up

τ

)2(
u

p
τ

)2
+

(
ut

τ

)2
. (4.4)

According to the well-known classic theory (Hinze 1975; Tennekes & Lumley 1999)
for turbulent flow over a solid wall, in the boundary layer at the top wall, an inner
and an outer region can be distinguished. The characteristic velocity scale for both
regions is the friction velocity ut

τ at the top wall. Characteristic length scales are ν/ut
τ

and H − δw for the inner and the outer regions, respectively.
As for the boundary layer at the top wall, we expect also an inner and an outer

region in the boundary layer above the permeable wall. The characteristic velocity
scale for both regions is the friction velocity up

τ at the permeable wall. The boundary-
layer thickness δw is a typical length scale for the outer region. For ReK � 1 it can
be expected that the effect of viscosity on the flow is negligible. As we have assumed
that Red is small, the single relevant turbulence length scale left over for the inner
region is

√
Kc.

Just as for turbulent flows above solid and rough walls, for a sufficiently high
Reynolds number up

τ δw/ν, a logarithmic layer can be expected in the boundary layer
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above the permeable wall as well. A customary parameterization of the log law reads:

u

u
p
τ

=
1

λ
ln

(
z + d

z0

)
, (4.5)

where d is the displacement height, z0 the equivalent roughness height, and λ is
equivalent to the von Kármán constant of approximately 0.4.

4.2. Homogeneous porous region

We now take a closer look at the scaling of turbulent flow inside a permeable wall. In
the homogeneous porous region the Reynolds-averaged VANS equations reduce to:

0 = − 1

ρ

∂p

∂x
− ∂u′w′

∂z
+ ν

∂2u

∂z2
− νεc

Kc

u − νεcF̃ c

Kc

|u|u, (4.6a)

0 = − 1

ρ

∂p

∂z
− ∂w′w′

∂z
− νεcF̃ c

Kc

|u|w, (4.6b)

where the subscript c refers to the constant porosity in this region, and F̃ c ≡ F̃ (ε = εc)
with F̃ defined in (2.9b). For small ReK , (4.6a) and (4.6b) reduce to the Brinkman
equations (Brinkman 1948):

0 = − 1

ρ

∂p

∂x
+ ν

∂2u

∂z2
− νεc

Kc

u, (4.7a)

0 = − 1

ρ

∂p

∂z
. (4.7b)

The solution is a decaying exponential function, which matches the velocity Ui at
z = −δi to the Darcy velocity Ud further down inside the permeable wall:

u = Ud + (Ui − Ud) exp

[
z

√
εc

Kc

]
, z � −δi, (4.8a)

Ud = − 1

µ

Kc

εc

∂p

∂x
. (4.8b)

Equation (4.7a) expresses the balance between viscous diffusion of momentum from
the channel into the permeable wall and the Darcy drag force. For a high value
of ReK , turbulent diffusion and Forchheimer drag become important. However, in
that case it is difficult to obtain an analytical expression for the velocity profile from
(4.6a). For flow in plant canopies the mean velocity is usually parameterized by
an exponential function, and, as will be shown in § 6.1, this appears to be a good
approximation:

u ≈ Ud + (Ui − Ud) exp

[
αz

√
εc

Kc

]
, z � −δi, (4.9a)

where α is an empirical coefficient. The velocity Ud is found from the balance between
the pressure gradient and the two drag terms in (4.6a):

Ud =

(
1 − 4

µ

Kc

εc

∂p

∂x
F̃ c

)1/2

− 1

2F̃ c

. (4.9b)

If ReK is small, then (4.9a) reduces to (4.8a) with the value of α equal to unity. For
very large ReK , turbulent diffusion is balanced solely by Forchheimer drag. In this
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case the value for α can be estimated from:[
−∂u′w′

∂z

]
[

−νεcF̃ c

Kc

|u|u
] ∼

[
α

√
εc

Kc

(
up

τ

)2

]
[
ν

εc

Kc

F̃ c

(
up

τ

)2

] ∼ 1 ⇒ α ∼ ν

√
εc

Kc

F̃ c, (4.10)

where it is assumed that the velocity scales with up
τ . We remark that the scaling factor

(1/α)
√

Kc/εc in (4.9a) is now equal to Kc/(νεcF̃ c), which is the length scale associated
with Forchheimer drag, see the last term in (4.6a). Thus, α has the expected limit for
large ReK .

5. Numerical method
In § 3, the VANS equations were given for the homogeneous porous region, the

interface region and the homogeneous fluid region. In a general and dimensionless
form they read:

∂u
∂t

= −1

ε
∇ · [εuu] − ∇p +

1

Reb

∇2u +
1

εReb

∇ε · ∇ u

− 1

Reb

Fo

Da
ε|u|u +

1

Reb

[
∇2ε

ε
− ε

Da

]
u, (5.1a)

∇ · [εu] = 0, (5.1b)

where Reb ≡ UbH/ν is the bulk Reynolds number with Ub the bulk velocity in the
channel (between z = 0 and z = H ), Da ≡ K/H 2 the Darcy number, and Fo ≡ F̃Ub the
Forchheimer number. The boundary conditions are the no-slip and no-penetration
conditions at z = −h and z = H .

To solve (5.1a) and (5.1b), we consider a channel with finite dimensions and
use periodic boundary conditions in the wall-parallel directions. The equations are
discretized in space on a Cartesian mesh, which is non-uniform and staggered in
the z-direction. The mesh points are clustered around z =0 (permeable wall) and
z = H (top wall). The stretch factor, i.e. the difference in cell width between two
neighbouring cells, is always less than 3.3 %. It is largest at z = −h and z = H/2, and
it gradually becomes smaller near z = 0 and z = H . We use a pseudospectral method
for the spatial derivatives in the wall-parallel directions, and a finite-volume method
with the central-differencing scheme for the wall-normal direction. The equations
are advanced in time with a pressure-correction method. All terms, except the last
one, on the right-hand side of (5.1a) are integrated in time with the second-order
explicit Adams–Bashforth scheme. For the last term, the second-order implicit Crank–
Nicolson scheme is used (Wesseling 2001). This avoids a small computational time
step in case of small values of the Darcy number. Our scheme reads:

ûi − un
i

�t
= 3

2
Rn

i − 1
2
Rn−1

i − dP

dx
δi1 + 1

2
Si

(
ûi + un

i

)
, (5.2a)

∂

∂xi

(
ε

∂p̂

∂xi

)
=

1

�t

∂εûi

∂xi

, (5.2b)

un+1
i = ûi − �t

∂p̂

∂xi

, (5.2c)

pn+1 = p̂ + 2pn − pn−1, (5.2d)
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Case εc Dac Foc Ret
τ �xt+ �yt+ �zt+

c �zt+
p �tt+ �Tb N

E95 0.95 1.9 × 10−4 10.5 407 7.9 6.4 0.5–5.3 0.5–8.5 0.014 53 60
E80 0.8 7.1 × 10−6 2.2 354 6.9 5.5 0.4–4.6 0.4–7.4 0.015 65 100
E60 0.6 7.5 × 10−7 0.83 350 6.8 5.5 0.4–4.6 0.4–7.3 0.017 66 86
E0 0 0 0 350 6.8 5.5 0.4–4.6 – 0.017 89 58

Table 1. Characteristics of the simulations. Ret
τ ≡ ut

τH/ν. �xt+ and �yt+ are the mesh spacings
in, respectively, the streamwise and the spanwise direction, normalized by ν/ut

τ . �zt+
c and �zt+

p

are the dimensionless mesh spacings in the wall-normal direction in, respectively, the channel
and the permeable wall. �tt+ is the time step, normalized by ν/(ut

τ )
2, �Tb is the time interval

over which the statistics are obtained in units of H/Ub , and N is the number of instantaneous
data fields used for the statistics.

where ûi and p̂ are, respectively, the prediction velocity and the correction pressure,
dP/dx is the mean pressure gradient that drives the flow, and Ri and Si are defined as:

Ri ≡ −1

ε

∂εuiuj

∂xj

− ∂p

∂xi

+
1

Reb

∂2ui

∂x2
j

+
1

εReb

∂ε

∂xj

∂ui

∂xj

− 1

Reb

Fo

Da
ε|u|ui, (5.2e)

Si ≡ 1

Reb

(
1

ε

∂2ε

∂x2
j

− ε

Da

)
. (5.2f)

The value of dP/dx is adjusted in time to enforce a constant bulk velocity in the
channel. In the Crank–Nicolson scheme, the velocity at time step n+ 1 is estimated
by the prediction velocity, but it can be shown that our pressure correction scheme
is still second-order accurate. The time step �t is calculated from the constraints
for numerical stability as derived by Wesseling (2001) for the second-order Adams–
Bashforth scheme.

We will show results from four simulations, for which we only changed the porosity
εc in the homogeneous porous region. We will refer to them as E95, E80, E60
and E0, with corresponding porosities of, respectively, 0.95, 0.8, 0.6 and 0 (solid
wall). In all simulations the mean particle diameter is fixed at dp/H = 0.01. The
thickness of the interface region is taken equal to δi/dp =2. The thickness of the
permeable wall is h/H = 1, and has been chosen deliberately large to avoid any
influence of the solid wall at z = −h on the flow in the channel. The horizontal
dimensions of the computational domain are, respectively, Lx/H = 5 and Ly/H = 3.
The number of mesh points is equal to 256 × 192 × (128 + 192) in, respectively, the
streamwise, spanwise and wall-normal direction. The bulk Reynolds number is fixed
at Reb = 5500. More characteristics are given in table 1.

The initial conditions for the simulations were either a random velocity field with
a prescribed mean velocity profile, or an instantaneous velocity field from a previous
simulation. In each simulation, the time step was initially adapted to the largest value
for which the criteria for numerical stability were satisfied. When the value of dP/dx

had reached a steady state, the time step was fixed in time at the value given in table 1.

6. Numerical results
6.1. Mean velocity

Figure 3 shows the mean velocity profile for different values of the wall porosity
εc. The permeable wall in case E60 behaves apparently similarly to a solid wall,
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Figure 3. (a) Mean-velocity profile for different values of εc , normalized by the bulk velocity
Ub and shown as a function of the dimensionless height z/H . For clarity, the region
−1 � z/H < −0.5 is omitted because of a nearly uniform flow. (b) Enlargement of the
region around the wall interface. —, case E0; · · ·, case E60; – · –, case E80; - - - , case E95.

Case εc Rep
τ ReK Red δw/H Rep

δ Ret
δ Ct

f (×10−3) C
p
f (×10−3)

E95 0.95 678 9.35 6.78 0.74 498 108 10.9 30.4
E80 0.8 398 1.06 3.98 0.56 222 156 8.3 10.5
E60 0.6 353 0.31 3.53 0.50 176 175 8.1 8.2
E0 0 352 0 0 0.50 176 175 8.1 8.2

Table 2. Additional flow characteristics of the simulations. The superscripts t and p refer to,
respectively, the top wall and the permeable wall region. Rep

τ ≡ up
τ H/ν, ReK ≡

√
Kcu

p
τ /ν,

Red ≡ dpup
τ /ν, δw is defined by (4.4), Re

p
δ ≡ δwup

τ /ν, Ret
δ ≡ (H − δw)ut

τ /ν and Cf ≡ 2(uτ /Ub)
2.

because the velocity profiles of cases E60 and E0 overlap. For higher wall porosities,
the velocity profile is more skewed, with its maximum Um located closer to the top
wall. Based on (4.4), this implies that the skin friction coefficient Cf ≡ 2 (uτ/Ub)

2 is
larger for the permeable bottom wall than for the solid top wall. In case E95, the
difference amounts to almost a factor of three, see table 2. The large skin friction at
the permeable wall in case E95 is responsible for a significant increase in the ratio

Um/Ub as compared to case E0, because by definition (1/H )
∫ H

0
(u/Ub) dz = 1 must

hold. It even causes an increase of about 35 % in the skin friction coefficient at the
top wall.

From figure 3(b) it can be seen that the mean velocity profile exhibits a point of
inflection (d2u/dz2 = 0) just below the interface with the permeable wall. According to
Rayleigh’s criterion (Drazin & Reid 1981), a point of inflection in the velocity profile
is a necessary condition for an inviscid instability, at least for the case of unidirectional
laminar flow in a homogeneous fluid region. The velocity profile could therefore give
rise to instabilities of the Kelvin–Helmholtz type, similar to the instabilities pre-
sent in a plane mixing layer, as has been suggested before by Raupach, Antonia &
Rajagopalan (1991) and Finnigan (2000) for flows over plant canopies.

Figure 4 shows a two-dimensional snapshot of an instantaneous flow field in case
E95. Near the permeable wall, relatively large vortical structures are present, which
seems to substantiate the hypothesis of a Kelvin–Helmholtz type of instability. Notice
furthermore that the turbulence structure is clearly very different in the boundary
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Figure 4. Two-dimensional snapshot of an instantaneous flow field (u′, w′) in case E95. Note
that the lower part of the permeable wall is not shown, because velocities in this region are
much smaller than in the channel region.
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Figure 5. (a) (z + d) dup+/dz as function of zp+ ≡ zup
τ /ν for case E0 with dp+ = 0. (b) The

same but for case E80. The lines correspond to different values of dp+: · · ·, dp+ = 0; —,
dp+ = 21; – · –, dp+ = 40. Note that the lines are plotted as function of zp+, rather than
(z + d)p+, because of the different values for d .

layer above the permeable wall compared to the boundary layer below the top wall.
Near the top wall, elongated streaky structures are observed, which are absent near
the permeable wall.

To investigate the properties of the mean flow, the log law (4.5) has been fitted
to the mean velocity profile. First the extent of the logarithmic layer is determined
from a plot of (z + d) dup+/dz as a function of zp+ ≡ zup

τ /ν for several values of dp+.
Inside the logarithmic layer this quantity must be a constant equal to 1/λ. Plots of
(z+d) dup+/dz are shown in figure 5 for cases E0 and E80. In case E0, d = 0, because
the channel walls are impermeable. A logarithmic layer is present for approximately
zp+ ∈ [50 : 120]. The value of λ is equal to 0.40, which is in agreement with the value
of approximately 0.4 for the von Kármán constant for flows over smooth walls. In
case E80, a logarithmic layer is found in the range zp+ ∈ [60 : 140] when dp+ is taken



Influence of wall permeability on turbulent channel flow 49

Case λ z0/
√

Kc z0/dp z0/δw z
p+
0 d/

√
Kc d/dp d/δw dp+ dp+(JM) α

E95 0.23 5.30 7.32 0.10 49.6 11.3 15.6 0.21 105.6 16.7 0.70
E80 0.31 1.33 0.35 0.006 1.41 20.0 5.3 0.10 21.2 4.7 0.99
E60 0.40 0.35 0.03 0.0006 0.11 0 0 0 0 3.4 –
I 0.40 ∞ ∞ 0.0006 0.11 0 0 0 0 0 –

Table 3. Fit parameters. λ is equivalent to the von Kármán constant for a solid wall. d and z0

are the length scales in the log law (4.5), normalized by, respectively,
√

Kc , dp , δw and ν/up
τ .

The value of dp+ in the penultimate column is obtained from Jackson’s model (JM), equ-
ation (6.1). α is obtained from a least-squares fit of (4.5) to the mean velocity profile in the
region z/H ∈ [−0.85 : −0.02].

100 101 102 103 100 101 102 103
0

5

10up+
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20
(a) (b)

0
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ut+

(z + d) p+ (H – z) t+

Figure 6. (a) Mean velocity up+ in the region above the permeable wall for different bottom
wall porosities, shown as a function of the dimensionless shifted height (z+d)p+. (b) The same,
but now in the region below the top wall with ut+ ≡ u/ut

τ and (H − z)t+ the distance to the
top wall. —, case E0; – · –, case E80; - - - , case E95. The dotted straight lines are least-square
fits of the logarithmic law to the velocity profiles. The fit parameters are given in table 3. The
dotted curved lines correspond to up+ = zp+ and ut+ = (H − z)t+, respectively.

equal to 21. The corresponding value of λ is 0.31 and this is significantly lower than
0.4. We emphasize that it is not possible to choose dp+ such that λ is close to 0.4,
which is clear from figure 5(b). In case E95, λ is even found to be 0.23. A similar
low value for λ has also been found for the DNS of Breugem & Boersma (2005)
of channel flow over a grid of cubes, although not discussed in their paper. These
values are slightly dependent of the choice of the fit interval, but the variation in λ
is small. In case E60, the value of dp+ was too small to obtain a conclusive value,
and therefore it was taken as zero. The corresponding value of λ is equal to 0.40, the
same as in case E0. The values of d , z0 and λ obtained from a least-squares fit of (4.5)
to the velocity profile in the logarithmic layer, are given in table 3. A lin–log plot of
the mean velocity in the boundary layer above the permeable wall, along with the
logarithmic fits, is shown in figure 6(a). Figure 6(b) shows a lin–log plot of the mean
velocity near the solid top wall. The profiles coincide, which indicates that the scaling
of the mean flow near the top wall is not altered by the presence of the permeable
bottom wall.
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Figure 7. Profiles of the pressure gradient, the drag force and the effective drag force in case
E95, normalized by ρU 2

b /H and shown as functions of z/H . · · · , f ; - - - , −dp/dx; — fe . d1

and d2 are contributions to the displacement height based on Jackson’s model.

For both smooth and rough walls, λ is usually found to be approximately 0.4
(Raupach et al. 1991). The value of λ in cases E80 and E95 is significantly smaller
than this. Also the ratio of z0/dp in cases E80 and E95 is much larger than the value
of approximately 1/30 found from Nikuradse’s experiments of flows over fully rough
walls covered with homogeneous sand roughness (Yaglom 1979, p. 513). According
to Hinze (1975; p. 637), for fully rough walls, the displacement height in the log law is
found to scale with the mean particle diameter dp according to d/dp ≈ 0.3. For case
E95, d/dp = 15.6 and for case E80, d/dp = 5.3, see table 3, which is much larger than
0.3. Thus, the permeable walls in cases E80 and E95 behave very differently from fully
rough walls. We note that according to the classification of Hinze (1975), the effect
of surface roughness is negligible in these cases, because in case E80, the roughness
Reynolds number Red = 4 and in case E95, Red = 6.8, see table 2. The unusual values
for λ, d and z0 are apparently related to the permeability of the wall.

For boundary-layer flow over a porous wall in the absence of a mean pressure
gradient, Jackson (1981) proposed that the displacement height d in the log law
is related to the level inside the wall at which the height-averaged drag force acts.
Consistent with this idea, we argue in Appendix B that in the presence of a mean
pressure gradient, d could then be calculated from:

d = d1 + d2, d2 = −

∫
(z + d1)fe dz∫

fe dz

with z < −d1, (6.1)

where fe is the effective drag force (i.e. drag force minus mean pressure gradient), and
where z = −d1 is the level at which fe = 0. Figure 7 presents profiles of f , −dp/dx

and fe in case E95. Also indicated are d1 and d2 calculated from (6.1). Their sum
is equal to dp+ = 16.7 which is more than six times smaller than the value obtained
from a log fit to the velocity profile. For all simulations, the values for d calculated
from (6.1) are given in table 3. Although the trend is correct, i.e. d increases with
increasing permeability, the modified Jackson model strongly underpredicts d . The
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Figure 8. Velocity defect U
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m − up+ for different wall porosities, plotted as functions of

(a) (z + d)/δw; (b) z/δw . —, case E0; – · –, case E80; - - - , case E95.
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Figure 9. Mean velocity up+ in the top region of the permeable wall as a function of the
dimensionless height αz

√
εc/Kc . – · –, case E80; - - - , case E95. The solid lines are fits of the

exponential function (4.9a) to the velocity profiles. The coefficient α is given in table 3.

assumption that z = −d is the level at which the height-averaged effective drag force
acts, is apparently not correct for the present simulations.

Figure 8(a) shows the velocity defect Up+
m − up+ as a function of (z + d)/δw . It is

observed that the velocity defect does not scale with (z+d)/δw , as is the case for flows
over a rough wall at sufficiently high Reynolds number. Figure 8(b) shows instead
that the velocity defect seems to scale with z/δw for z/δw � 0.2. This observation
suggests that the large eddies in the outer region are blocked by the permeable wall,
or sheltered by the mean-shear layer at the interface (Hunt & Durbin 1999).

We will now investigate the velocity profile inside the permeable wall. As discussed
in § 4, the mean flow is expected to decrease exponentially inside the permeable wall.
This is confirmed by figure 9, which shows the mean velocity in the top region of
the permeable wall as a function of αz

√
εc/Kc. The value of α is obtained from a
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least-squares fit of (4.9a) to the velocity profile in the homogeneous porous region.
In case E60, α could not be determined, because at z/H = −0.02 the mean velocity
has already reached the Darcy velocity Ud . In case E80, the value of α is 0.99. This
indicates that in the homogeneous porous region, the mean flow is governed by the
Brinkman equations with the corresponding solution given by (4.8a). In case E95,
α ≈ 0.70, which suggests that turbulent diffusion dominates over viscous diffusion in
the top layer of the permeable wall. Notice that the exponential solution (4.9a) gives
not only a good fit in the homogeneous porous region, but also in the interface region
up to z = 0.

6.2. Mean kinetic energy

To gain insight into the dynamics of the mean flow, the terms in the transport equation
for the mean kinetic energy (MKE) u2/2 have been investigated. This equation is
obtained from multiplying the equation for the mean velocity by u:

0 = −u
dp

dx︸ ︷︷ ︸
P

+ u′w′ ∂u

∂z︸ ︷︷ ︸
WS

−1

ε

∂εuu′w′

∂z︸ ︷︷ ︸
TT

+
1

Reb

∂2 1
2
u2

∂z2︸ ︷︷ ︸
VD

− 1

Reb

(
∂u

∂z

)2

︸ ︷︷ ︸
D

+
1

Reb

1

ε

∂ε

∂z

∂ 1
2
u2

∂z
+

1

Reb

1

ε

∂2ε

∂z2
u2︸ ︷︷ ︸

POR

− 1

Reb

ε

Da
u2︸ ︷︷ ︸

DAR

− 1

Reb

εFo

Da
|u|uu︸ ︷︷ ︸

FOR

. (6.2)

Term P represents the work by the mean pressure gradient, term WS represents
the loss due to deformation work by the Reynolds-shear stress, terms TT and
VD represent, respectively, turbulent transport and viscous diffusion, and term D

represents viscous dissipation. The last three terms on the right-hand side are only
non-zero inside the permeable wall. The POR-terms originate partly from viscous
diffusion and partly from viscous drag, and represent transport and dissipation of
energy by local changes in the porosity. The DAR- and the FOR-terms represent
the transfer of resolved-scale MKE, i.e. the MKE of the volume-averaged flow, to
subfilter-scale MKE by Darcy drag and Forchheimer drag, respectively. The terms in
(6.2) are plotted in figure 10 for cases E95, E80 and E0. The ultimate source of MKE
is the work by the mean pressure gradient −u dp/dx, and that is why we have chosen
to normalize the budget terms by Um[(up

τ )2 + (ut
τ )

2]/H . For clarity, the terms POR,
DAR and FOR are shown separately from the other terms. The sum of all computed
terms in (6.2) is very small compared to the dominant terms.

It is observed from figure 10(b, d, e) that sufficiently far away from the permeable
wall, term P is in local balance with terms WS and TT. Term TT is responsible for
transport of MKE from the channel towards the permeable wall. Close to the wall,
there are considerable differences between the cases. In case E95, terms VD and D are
almost negligible. Term TT peaks just below the wall interface, balancing terms WS
and FOR. This observation confirms our suggestion in the previous section, based
on the value of α ≈ 0.7, that in case E95, turbulent diffusion dominates over viscous
diffusion in the top layer of the permeable wall. In the core of the permeable wall
(z/δw � −0.15), term P balances terms DAR and FOR.

In case E80, term TT peaks just above the permeable wall and vanishes just below
the interface, in a region where viscous diffusion is balanced by viscous dissipation.
Further down in the porous medium, term P balances term DAR. These observations
show that in case E80 the mean flow inside the permeable wall is governed by the
Brinkman equations, as suggested in the previous section based on the value of α ≈ 1.
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Figure 10. Terms in the transport equation for the mean kinetic energy u2/2 for different wall
porosities, normalized by Um[(up

τ )2 + (ut
τ )

2]/H and shown as function of z/δw . (a, b) case E95;
(c, d) case E80; (e) case E0.

Comparing cases E95, E80 and E0, we observe that in case E95, viscous effects
are almost negligible and that in case E80, viscous effects are more confined to the
permeable wall relative to case E0. Similar to the classification of rough walls, where
a fully rough wall is defined as a wall where the thickness of the viscous sublayer



54 W. P. Breugem, B. J. Boersma and R. E. Uittenbogaard

is much less than the roughness height, we give the following classification of the
permeable walls in cases E95, E80 and E60.

(i) The permeable wall in case E95 is highly permeable.
(ii) The permeable wall in case E80 is partially permeable.
(iii) The permeable wall in case E60 is effectively impermeable.

As discussed in § 4, whether or not a wall is permeable for the turbulent flow above the
wall is basically determined by the permeability Reynolds number ReK ≡

√
Kcu

p
τ /ν.

The values of ReK for the different simulations are given in table 2. In case E95,
ReK = 9.35, which is apparently in the highly permeable regime, whereas a value of
0.31, as in case E60, corresponds to an effectively impermeable wall.

6.3. Velocity and pressure fluctuations

Figure 11 presents the profiles of the r.m.s. velocities for different values of the wall
porosity εc. The r.m.s. velocities are normalized by the friction velocity ut

τ at the top
wall and plotted as a function of z/H . The symbols represent the profiles from the
DNS of Kim, Moin & Moser (1987) of turbulent flow between two solid walls, which
are in excellent agreement with the profiles of case E0. Close to the top wall the
profiles coincide, as expected, which indicates that the influence of the permeable wall
on the r.m.s. velocities near the top wall is negligible. In the boundary layer above
the permeable wall, a strong increase is observed in the r.m.s. velocities with respect
to the boundary layer below the top wall. This increase is most pronounced for the
spanwise and wall-normal fluctuations, which can be attributed to weakening of the
wall-blocking and wall-induced viscous effects (Perot & Moin 1995) near a permeable
wall relative to an impermeable wall. Note that the r.m.s. velocities vanish rapidly
inside the permeable wall. This indicates that the turbulent flow in the channel is not
influenced by the presence of the solid wall at z/H = −1, as we had assumed.

Figure 12 shows again the r.m.s. profiles of the velocity components, but now
normalized by the friction velocity up

τ at the permeable wall and plotted as function
of z/δw . The profiles of the streamwise r.m.s. velocity coincide for z/δw � 0.4. This
observation seems to substantiate the wall similarity hypothesis (Raupach et al. 1991),
which states that for large Reynolds numbers, turbulence in the outer region of a
boundary layer is unaffected by the geometrical properties of the wall. The profiles
of the spanwise and the wall-normal r.m.s. velocities however, exhibit, less similarity.
Similar observations were made in the experiments of Kr̊ogstad, Antonia & Browne
(1992) and Kr̊ogstad & Antonia (1999) on boundary-layer flows over rough walls.
They reported a significant increase in the wall-normal r.m.s. velocity, which was
attributed to a weakening of the wall-blocking effect, whereas the streamwise r.m.s.
velocity remained unchanged as compared to a smooth wall.

Close to the permeable wall, the peak in the streamwise r.m.s. profile is lower for
higher wall porosity, whereas the peaks in the profiles of the two other r.m.s. velocities
are higher for higher wall porosity. The smaller peak in the streamwise r.m.s. profile
is consistent with the absence of streaky structures above a highly permeable wall
(see figure 4). The peak in the turbulent kinetic energy (u2

rms + v2
rms + w2

rms)/2 therefore
decreases for higher wall porosity, as can be observed from figure 12(d).

The r.m.s. velocities decrease rapidly when moving downwards inside the permeable
wall, which is a consequence of drag. Deep in the permeable wall, the velocity
fluctuations are governed by Darcy’s law with the linearized Forchheimer correction:

0 = −∂p′

∂xi

− εc

RebDac

u′
i − εc

RebDac

Foc[uu′
i + u′ui ]. (6.3)
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Figure 11. Profiles of the r.m.s. velocities, normalized by the friction velocity ut
τ at the

top wall, as function of z/H . The symbols refer to the DNS data of Kim et al. (1987).
(a) streamwise component; (b) spanwise component; (c) wall-normal component. —, case E0;
· · · , case E60; – · –, case E80; - - - , case E95.

The Forchheimer correction is negligible in case E80, but not in case E95, although
in that case, the Darcy term dominates far down in the permeable wall. Taking the
divergence of this equation and assuming that ∂u/∂z ≈ 0, we obtain a Laplace equation
for the pressure fluctuations inside the permeable wall:

∂2p′
i

∂x2
i

≈ 0. (6.4)

The solution of this equation reads:

p′(x, y, z) ∝
∑
kx ,ky

A(kx, ky)e
kz exp(i(kxx + kyy)), z < 0, (6.5)
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Figure 12. Profiles of the r.m.s. velocities and the turbulent kinetic energy, normalized by
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τ and (up
τ )2, and plotted as function of z/δw . (a) r.m.s. streamwise velocity;

(b) r.m.s. spanwise velocity; (c) r.m.s. wall-normal velocity; (d) turbulent kinetic energy. —,
case E0; · · ·, case E60; – · –, case E80; - - - , case E95.

where i =
√

−1, kx = 2πnx/Lx and ky = 2πny/Ly are the wavenumbers in, respectively,
the streamwise and spanwise directions with nx and ny integer numbers, k = (k2

x+k2
y)

1/2,
and A is a function of kx and ky . The value of A is related to the amplitude
of the pressure fluctuations at the interface between the permeable wall and the
channel. This solution predicts that the wave components of the fluctuations decrease
exponentially, and that small-scale fluctuations decrease more rapidly than large-scale
fluctuations. This behaviour is also observed in the streamwise pressure spectra shown
in figure 13(a). Substitution of (6.5) into (6.3) shows that the wave components of
the velocity components must also decrease exponentially when moving down in
the permeable wall. This is confirmed by the streamwise spectra of the wall-normal
velocity in figure 13(b) and it explains the exponential-like tail of the r.m.s. profiles
inside the permeable wall (see figure 11).

Figure 14 presents the r.m.s. profiles of the pressure. The profiles of case E80
and case E0 coincide for z � 0.3, which substantiates the wall similarity hypothesis.
However, in the same range, the profile of case E95 lies significantly above the other
profiles. The peak near the permeable wall is increasing for higher wall porosity.
This can be related to the weakening of the wall-blocking effect; more details can
be found in Breugem (2004). Inside the permeable wall the r.m.s. profiles exhibit an
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Figure 14. Root mean square profile of the pressure for different wall porosities, normalized
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τ )2, as a function of z/δw . —, case E0; · · ·, case E60; – · –, case E80; - - - , case E95.

exponential-like tail, in agreement with (6.5). This result is in agreement with the
findings of Vollmer et al. (2002). They performed experiments on open-channel flow
over a gravel bed with the objective of investigating the effect of turbulent pressure
fluctuations on the exchange of solutes between the flow in the channel and the
flow inside the bed. Pressure gauges were used to measure pressure fluctuations at
several heights inside the bed. The r.m.s. pressure was found to decrease exponentially
inside the bed, where high-frequency oscillations were vanishing more rapidly than
low-frequency oscillations.

6.4. Vorticity fluctuations

Figure 15 presents the r.m.s. profiles of the vorticity fluctuations for different values
of the wall porosity εc. The scale used to normalize the r.m.s. vorticities is based on
the following consideration. The sum of the variances of the vorticity fluctuations can
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normal component. —, case E0; – · –, case E80; - - - , case E95.

be written in the following form:

(w′
k)

2 =
εd

ν
−

∂u′
j

∂xi

∂u′
i

∂xj

, (6.6)

where the Einstein summation convention applies to all indices and where εd =
ν(∂u′

i/∂xj )2 is the dissipation rate of turbulent kinetic energy. In the outer region of
the boundary layer above the permeable wall, the second term on the right-hand side
of (6.6) is very small compared to the first term. In the same region, the dissipation rate
of turbulent kinetic energy is approximately in local equilibrium with the deformation
work by the Reynolds-shear stress: εd ≈ u′w′(∂u/∂z). Because u′w′ scales with (up

τ )2

and ∂u/∂z scales with up
τ /δw according to figure 8(b), this then implies that the r.m.s.

vorticities scale with (up
τ /δw)

√
u

p
τ δw/ν. This is substantiated by figure 15, which shows

that similarity exists for z/δw � 0.35.
In figure 15(a), it can be seen that the profile of wx,rms has a different shape in

cases E80 and E95 to that in case E0. Kim et al. (1987) associated the local minimum
and maximum in wx,rms in case E0 with the average position of the edge and the
centre of quasi-streamwise vortices. These quasi-streamwise vortices originate from
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the presence of low- and high-speed streaks above the wall. In cases E80 and E95,
no local minimum is present near the permeable wall, which indicates a change in
the turbulence structure. The latter becomes obvious from figure 16, which shows
snapshots of the wall-normal vorticity at z/H = 0.05. In case E0, elongated streaky
structures are present above the wall. These are the result of high- and low-speed
streaks and quasi-streamwise vortices, which cause locally large values of |∂u′/∂y|
and |∂v′/∂x|. The snapshot of case E80 shows a more irregular structure. Figure 16(c)
shows that in case E95 the streaky structures have completely vanished. For the
existence of high- and low-speed streaks, a strong mean velocity gradient is required
(Lee, Kim & Moin 1990) and this condition is not satisfied above the highly permeable
wall of case E95. Moreover, because of the weakening of the wall-blocking effect, in
case E95, strong wall-normal velocities are present near the permeable wall and this
also prevents the development of elongated streaky structures.
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In figure 15, it can be seen that the r.m.s. profiles of the vorticity decay faster inside
the porous medium than the r.m.s. profiles of the velocity in figure 11. This is consistent
with the earlier conclusion based on (6.3) that small-scale velocity fluctuations decay
faster than large-scale velocity fluctuations. These large-scale velocity variations
contribute to the r.m.s. of the velocity, but they do not contribute much to the
r.m.s. of the vorticity.

6.5. Reynolds and total shear stress

Figure 17 shows profiles of the Reynolds and the total shear stress for different values
of the wall porosity εc. The total shear stress is the sum of the viscous and the
Reynolds-shear stress. Figure 17(a) shows that the total shear stress is a linear function
in z, in agreement with (4.3). The stress profiles are normalized by (ut

τ )
2. At the top

wall the total stress is therefore equal to −1 in all cases. The total shear stress peaks
at the interface with the permeable wall. In case E80 and especially in case E95, the
peak is much larger than in case E0. It is observed that in case E95, the contribu-
tion from the viscous shear stress is almost negligible, which can be explained by
the relaxation of the no-slip condition at the permeable wall. The strong increase
in the total shear stress is caused solely by a strong increase in the Reynolds-shear
stress, which in turn is caused by the weakening of the wall-blocking effect. Turbulent
flow may penetrate the permeable wall (w′ < 0), thereby transporting fluid with
relatively high streamwise momentum (u′ > 0) into the permeable wall. By virtue
of mass conservation, fluid with relatively low streamwise momentum (u′ < 0) is
transported from the permeable wall into the channel (w′ > 0).

Figure 17(b) presents again the profiles of the Reynolds-shear stress, but now
normalized by (up

τ )2 and plotted as a function of z/δw . As expected, similarity is
observed in the outer region for z/δw � 0.25.

Figure 18 shows the correlation coefficient ruw of the velocity fluctuations u′ and
w′, which is a measure for the efficiency of wall-normal motions in transporting
streamwise momentum. Figure 18 shows that in all three cases, in a large part of the
outer region, the correlation coefficient scatters around a value of 0.45. The peak close
to the permeable wall is larger for higher values of εc, with a value of approximately
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0.7 in case E95 against 0.5 in case E0. At the location of this peak, relatively large
vortical structures are present in case E95 (see figure 4) which clearly contribute to the
Reynolds-shear stress. The increase in the peak of ruw with increasing εc indicates that
the increase in the Reynolds-shear stress is not just the result of a strong increase in
the wall-normal turbulence intensity, but originates also from an increased efficiency
of wall-normal velocity fluctuations to transport streamwise momentum. Notice the
rapid decay of ruw inside the permeable wall. This observation is consistent with (6.3),
which expresses that inside the permeable wall the velocity fluctuations are induced
by pressure fluctuations. They are inactive in the sense that they do not contribute to
the Reynolds-shear stress.

6.6. Turbulent-kinetic-energy budgets

To gain more insight into the dynamics of turbulence near a highly permeable wall,
we take a closer look at the turbulent-kinetic-energy (TKE) budgets of (u′2)/2 and

(w′2)/2. The transport equation for (u′
α)

2/2 can be obtained from (5.1a), which yields:

0 = −u′
αu

′
j

∂uα

∂xj︸ ︷︷ ︸
WS

−u′
α

∂p′

∂xα︸ ︷︷ ︸
VPG

− 1

ε

∂
[
ε 1

2
(u′

α)
2u′

j

]
∂xj︸ ︷︷ ︸

TT

+
1

Reb

∂2 1
2
(u′

α)
2

∂x2
j︸ ︷︷ ︸

VD

− 1

Reb

(
∂u′

α

∂xj

)2

︸ ︷︷ ︸
D

+
1

Rebε

∂ε

∂xj

∂ 1
2
(u′

α)
2

∂xj

+
1

Rebε

∂2ε

∂x2
j

(u′
α)

2︸ ︷︷ ︸
POR

− ε

RebDa
(u′

α)
2︸ ︷︷ ︸

DAR

− εFo

RebDa
|u|uαu′

α︸ ︷︷ ︸
FOR

, (6.7)

where α is fixed and where the Einstein summation convention applies to the subscript
j . Term WS represents production by means of deformation work performed by
the Reynolds-shear stress, term VPG is the velocity-pressure-gradient term and is
responsible for a redistribution of TKE over the coordinate directions, terms TT
and VD represent turbulent transport and viscous diffusion, respectively, and term D

accounts for viscous dissipation of TKE. The last three terms on the right-hand side
are non-zero only inside the permeable wall. The POR-terms represent transport and
dissipation of TKE by local changes in the porosity. The DAR- and the FOR-term
represent the transfer of resolved-scale TKE, i.e. the TKE of the volume-averaged
flow, to subfilter-scale TKE by Darcy drag and Forchheimer drag, respectively.
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Figure 19. Terms in the TKE budget of u′2/2 for the case E95, normalized by (up
τ )3/δw as a

function of z/δw . For clarity, the terms POR, DAR and FOR, which are non-zero only inside
the permeable wall, are shown in (a) and the other terms in (b).

Figure 19 depicts the terms in the TKE budget of (u′)2/2 for case E95. For
clarity, terms POR, DAR and FOR are shown in figure 19(a), whereas the other
terms are shown in figure 19(b). The terms are normalized by (up

τ )3/δw , based on the
characteristic scales for the outer region. The sum of all computed terms is negligible
compared to the dominant terms.

For z/δw � 0.2, term WS is in local balance with term VPG and to a minor extent
term D. Close to the permeable wall, the terms are very different from the terms in case
E0. The latter are not shown here, but they can be found in Mansour, Kim &
Moin (1988). Close to the wall in case E0, term VD is in balance with term D.
Close to the highly permeable wall in case E95, however, viscous effects are of minor
importance because of the relaxation of the no-slip condition. Instead, term WS is
the most important source term, which originates from the weakening of the wall-
blocking effect, and terms VPG and TT are the dominant loss terms. In the top region
of the permeable wall, term WS reaches its top value. The most important loss term
in this region is term FOR. For z � −0.1, term VPG is in local balance with terms
DAR and FOR, which is in agreement with (6.3).

In figure 20, the TKE budget of (w′)2/2 is shown for case E95. A major difference
with respect to case E0 is the importance of term TT above the permeable wall. In
a small layer around the interface it is the most dominant source term, whereas in
case E0 it has about the same magnitude as term VPG. This is clearly related to the
weakening of the wall-blocking effect near the highly permeable wall in case E95,
which allows for an enhanced turbulent transport of TKE from the channel towards
the permeable wall. Inside the permeable wall, term VPG is balanced by terms DAR
and FOR, in agreement with (6.3).

6.7. Turbulence structure

In this section, we take a closer look at autocorrelation functions in order to investi-
gate the turbulence structure in more detail. Figure 21 presents the spanwise autocor-
relation of the streamwise velocity. Figure 21(a) corresponds to case E0, figure 21(b)
to case E95. In case E0, the spanwise autocorrelation exhibits a local minimum at
yp+ ≈ 50 in the region close to the wall. This local minimum is usually associated with
the average spanwise distance between a low-speed and a neighbouring high-speed
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Figure 20. As figure 19, but for terms in the TKE budget of w′2/2.
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streak. The oscillations in the autocorrelation for larger spanwise spacings indicate a
periodicity in the presence of the streaks. We have already observed from figure 16 that
in case E95, these streaky structures have vanished. The larger correlation distance
and the absence of oscillations in figure 21(b) confirm this. We note that the larger
correlation distance is consistent with our earlier observation that turbulence near a
highly permeable wall is dominated by relatively large vortical structures.

Figure 22 presents the spanwise autocorrelation of the wall-normal velocity. In case
E0, a local minimum at roughly yp+ ≈ 30 is observed close to the wall. This local
minimum in case E0 is consistent with the presence of quasi-streamwise vortices with
a typical diameter of 30 wall units. This local minimum is absent in case E95. Notice
that in this case, the autocorrelation function is almost independent of the height.

In figure 23, isocontours of the streamwise autocorrelation of the streamwise
velocity are shown. Notice that this is a one-dimensional correlation, but plotted
across the permeable wall and the channel. Figure 23(a) corresponds to case E0 and
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figure 23(b) to case E95. In case E0, we observe a significant correlation over large
distances, especially close to the walls. This behaviour is associated with the presence
of streaks. The streaks have typically a length of the order of 1000 wall units. In case
E0, this would correspond with a correlation distance of roughly 2.5 H . In case E95,
the correlation distance close to the permeable wall is much smaller than in case E0,
which is consistent with the absence of streaks. Inside the permeable wall, cell-like
patterns are observed. According to (6.3), these originate from large-scale pressure
fluctuations just above and inside the permeable wall. As can be seen from the stream-
wise spectrum of the pressure in figure 13(a), the most dominant streamwise wave-
number of the pressure fluctuations is kxH = 4π/5. This is also clearly reflected in
figure 24(b), which shows a similar cell-like pattern for the streamwise autocorrelation
of the pressure as for the streamwise velocity in figure 23(a). Notice from figure 24(b)
that in case E95, there is even a significant increase in the streamwise correlation
distance for the pressure close to the top wall as compared to case E0. In fact,
inspection of the streamwise spectrum of the pressure revealed that kxH =4π/5 is the
dominant wavenumber throughout the flow domain.

7. Summary and discussion
Direct numerical simulations have been performed of turbulent flow in a plane

channel with a solid top wall and a permeable bottom wall. The permeable wall is a
packed bed characterized by the porosity and the mean particle diameter. In order to
separate the effect of wall permeability from wall roughness, these parameters have
been chosen such that in the simulations, the roughness Reynolds number is small
and the permeability Reynolds number is relatively large. The VANS equations are
used to describe the volume-averaged flow inside the permeable wall. The drag force
is modelled by means of the Ergun equation in combination with a variable-porosity
model for the interface region, whereas it is shown that subfilter-scale dispersion can
be neglected. This method has been verified in a previous study (Breugem & Boersma
2005).

Numerical results are reported of four simulations, for which only the wall porosity
εc in the homogeneous porous region is varied. A key parameter is the permeability
Reynolds number ReK . This is the ratio of the length scale of the drag, ∝

√
K , to

the viscous length scale ν/uτ . This number can also be interpreted as the ratio of
the effective pore diameter to the characteristic length scale of the viscous sublayers
over the individual wall elements. Similar to the classification of rough walls, a highly
permeable wall is classified as a permeable wall near which viscous effects are of
minor importance, which corresponds to ReK � 1. Just above such a wall, turbulent
transport of MKE is counterbalanced by the work performed by the Reynolds-shear
stress, and just below the wall interface, the Forchheimer drag force is an addi-
tional source of dissipation. For ReK � 1, a permeable wall is effectively impermeable.
Close to such a wall, viscous diffusion of MKE is counterbalanced by viscous
dissipation.

In all simulations, the logarithmic law could be fitted to the mean velocity in the
boundary layer over the permeable wall. The values found from this fit for the slope
(1/λ), the displacement height (d) and the equivalent roughness height (z0), were very
different from the literature values for fully rough walls and suggest a relation to the
permeability of the wall. Furthermore, the large values for d could not be explained
by the modified Jackson model. It cannot be excluded that the fitted values are
obscured by a low-Reynolds-number effect. In our simulations, the highest Reynolds
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number based on the friction velocity and the boundary-layer thickness is found
for case E95: Rep

δ = 498 (see table 2). This number may still be considered as fairly
small, and one may doubt whether the conditions are satisfied for the existence of
a logarithmic overlap region between the inner and outer scaling regions. On the
other hand, in case E0, the Reynolds number Rep

δ is almost three times smaller, but
λ=0.4 was found to be in agreement with the generally accepted value of 0.4 for
the von Kármán constant. Besides, as can be seen from figure 6(a), the extent of the
logarithmic layer in case E0 is also significantly smaller than in case E95 (both in
wall units and as a fraction of the boundary-layer thickness). At this moment we
have no explanation for the unusual fit values, and we recommend experiments at
high(er) Reynolds numbers to investigate this further.

It is found that the mean velocity profile decreases exponentially inside a permeable
wall. For a highly permeable wall, the exponential decay is governed by the balance
between turbulence diffusion of momentum into the permeable wall on the one hand
and the removal of momentum by Forchheimer drag on the other.

It is shown that the structure and dynamics of turbulence near a highly permeable
wall are different compared to an effectively impermeable wall. Above a highly
permeable wall, no low- and high-speed streaks and the associated quasi-streamwise
vortices are present, which are typical features of turbulence near a solid wall. The
absence of streaks can be explained by a strong reduction in mean shear, which in
turn originates from the relaxation of the no-slip condition. Furthermore, turbulent
transport across the wall interface, which is due to a weakening of the wall-blocking
effect, also prevents the development of elongated streaks. Turbulence near a highly
permeable wall is dominated by relatively large vortical structures, which are respons-
ible for the exchange of momentum between the top layer of the porous medium
and the channel. These vortical structures originate from a Kelvin–Helmholtz type
of instability of the mean velocity profile, which exhibits a point of inflection, as
hypothesized by Raupach et al. (1991) and Finnigan (2000). The exchange of momen-
tum between the channel region and the top layer of the permeable wall induces a
strong increase in the Reynolds-shear stress relative to the case of a solid wall. Near
a highly permeable wall, a significant increase is observed in the correlation coefficient
ruw . This indicates that the vortical structures near the permeable wall are very efficient
in transporting streamwise momentum in the wall-normal direction.

The strong increase in the Reynolds-shear stress explains the strong increase in
the skin friction at a highly permeable wall as compared to an impermeable wall.
This result is in contrast to the decrease in skin friction found in the simulations of
Hahn et al. (2002). They, however, assumed that the flow near the permeable wall is
essentially laminar, and, because wall permeability causes a decrease in the viscous wall
shear stress, they therefore found a decrease in the skin friction. As discussed in § 1,
there is experimental evidence that wall permeability causes an increase in skin friction
in the turbulent-flow regime (Zagni & Smith 1976; Zippe & Graf 1983; Kong &
Schetz 1982), whereas it causes a decrease in the skin friction in the laminar-flow
regime (Beavers & Joseph 1967).

The absence of streaks above a highly permeable wall is consistent with a decrease
in the peak of the streamwise r.m.s. velocity. Despite the increase in the peak of
the spanwise and wall-normal r.m.s. velocities, owing to a relaxation of the no-slip
and no-penetration conditions, the peak in the turbulent kinetic energy is therefore
smaller. Inside the permeable wall, the r.m.s. profiles exhibit an exponential-like tail. It
is shown that the turbulence motions inside the wall are inactive in the sense that they
are induced by pressure fluctuations. They do not contribute to the Reynolds-shear



Influence of wall permeability on turbulent channel flow 67

stress. Furthermore, inside the permeable wall, small-scale fluctuations decrease more
rapidly than large-scale fluctuations.

A large increase is found in the r.m.s. of the pressure above a highly permeable wall,
which is related to transport of fluid across the wall interface and hence to a weakening
of the wall-blocking effect. Besides an increase in the r.m.s. of the pressure, also the
velocity–pressure-gradient term in the TKE budget for u′2/2 gained in importance
near the permeable wall. In the channel region, this term is responsible for the transfer
of streamwise TKE to spanwise and wall-normal TKE. Near a highly permeable wall
the velocity-pressure-gradient term is the most dominant loss term of streamwise
TKE, whereas near a solid wall, viscous dissipation is the most important loss term.

Some statistics exhibit similarity in the outer region, such as the streamwise r.m.s.
velocity, the r.m.s. vorticities and the Reynolds-shear stress. This substantiates the
wall similarity hypothesis. However, other statistics show significant deviations from
similarity, such as the spanwise and wall-normal r.m.s. velocities and the r.m.s. of
the pressure. This could be a low-Reynolds-number effect, but Kr̊ogstad et al. (1992)
have suggested that the departure from similarity in the outer region originates from
the weakening of the wall-blocking effect. By means of strong ejection and sweep
events, fluid can be transported over a large vertical distance. As a consequence, the
outer region is able to communicate with the inner region and this might explain the
observed departures from similarity.
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Organization for Scientific Research (NWO). The authors would like to thank
Professor F. T.M. Nieuwstadt and Professor J. C. R. Hunt for discussions and
comments on the manuscript.

Appendix A. Closure problem for the subfilter-scale stress
The nature of the subfilter-scale stress in a porous medium is more complex than

the subgrid-scale stress in LES. In a homogeneous fluid region, subgrid-scale turbulent
motions contribute to diffusion of resolved-scale momentum when a resolved-scale
strain field is present. We refer to this as turbulent dispersion. In a porous medium,
the fluid is forced to move around the solid obstacles, and this causes an additional
contribution to diffusion of volume-averaged momentum. This is known as mechanical
dispersion (Bear 1988). Both types of dispersion are shown in figure 25. In this section,
we argue that in general both the mechanical and the turbulent subfilter-scale stress
have a negligible influence on the volume-averaged flow field.

From figure 25, it can be inferred that mechanical and turbulent dispersion take
place only when a volume-averaged strain field is present. This motivates a customary
parameterization of the subfilter-scale stress according to:

τij = −(νp + νt )

(
∂〈ui〉
∂xj

+
∂〈uj 〉
∂xi

)
, (A 1)

where νp and νt are, respectively, the mechanical and the turbulent viscosity. The
summation of the two viscosities in (A 1) is allowed, provided that they do not
mutually correlate.

When a fluid element with a velocity ũ approaches a solid obstacle of diameter
dp , it has to move around it. From this consideration we estimate the mechanical
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Local volume-averaged
velocity profile

Eddy of
volume-averaged flow

Trajectory of a fluid element

Net transport by
mechanical and
turbulent dispersion

Solid obstacle

Subfilter-scale
eddy

Drag force

dp

df

Viscous and turbulent
diffusion at scale of volume-averaged flow

Figure 25. Illustration of turbulent and mechanical dispersion in a porous medium. The figure
also shows the presence of large-scale eddies, which are responsible for turbulent diffusion at
the scale of the volume-averaged flow, and the drag force that the solid obstacles exert on the
volume-averaged flow.

viscosity by:

νp = cpdp

√
e, (A 2)

where e ≡ 〈uiui〉/2 − 〈ui〉〈ui〉/2 ≈ 〈ũi ũi〉/2 is the subfilter-scale kinetic energy, and cp

is a coefficient that depends on the structure of the porous medium. It is expected
that for porous media for which solid obstacles are aligned relative to each other,
cp will be very small, whereas this coefficient will be larger for porous media where
the solid obstacles are staggered or randomly distributed. The turbulent viscosity is
estimated by a similar consideration. It is assumed that the typical length scale of the
subfilter-scale eddies is proportional to the typical pore diameter df . This yields:

νt = ctdf

√
e, (A 3)

where ct is a coefficient that depends on the characteristic Reynolds number for
the flow in the pores. For low Reynolds numbers, the flow in the pores is laminar
and consequently the coefficient ct is very small, but for large Reynolds numbers,
the flow in the pores is turbulent and ct is of order unity. This was recognized by
Uittenbogaard (2003), who developed a k–ε turbulence model for flow over aquatic
vegetation, where a parameterization similar to (A 3) was employed for the turbulent
subfilter-scale stress inside the vegetation layer.

Let us consider two extreme cases, namely the case where turbulent dispersion domi-
nates over mechanical dispersion, and the opposite case where mechanical dispersion
is dominant.

(i) Mechanical dispersion dominates strongly over turbulent dispersion

Mechanical dispersion dominates strongly over turbulent dispersion for df /dp � 1
and/or a low characteristic Reynolds number for the flow in the pores, |〈u〉|df /ν � 1.
These conditions are often encountered in packed beds. In this case, mechanical
dispersion turns out to be of minor importance as compared to the influence of drag
on the volume-averaged flow. From (2.3), it can be inferred that for df /dp � 1, the
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subfilter-scale kinetic energy will be of the order of the kinetic energy of the volume-
averaged flow: e = O(〈ui〉2/2). The dispersion term in the VANS equation (2.7a)
can therefore be estimated by:

1

ε

∂ετij

∂xj

= O

(
cpdp|〈u〉|〈ui〉

L2
u

)
,

where Lu is a typical length scale of the volume-averaged flow. An estimate for
the drag term is found from (2.8). Neglecting Forchheimer drag and modelling the
permeability tensor according to (2.9a), the drag term in (2.7a) reads:

fi = −ν
180(1 − ε)2

d2
pε2

〈ui〉.

The ratio of the dispersion term to the drag term in (2.7a) can thus be estimated by:∣∣∣∣ 1

fi

1

ε

∂ετij

∂xj

∣∣∣∣ = O

(
cp

180

ε
[
1 − ε1/3

]3

[1 − ε]2

[
|〈u〉|df

ν

][
df

Lu

]2)
� 1,

in which we used the estimate that (dp/df )3 = O([1−ε1/3]3/ε). This result shows that if
mechanical dispersion dominates over turbulent dispersion, then the influence of drag
on the volume-averaged flow is much more important than mechanical dispersion.

(ii) Turbulent dispersion dominates strongly over mechanical dispersion

Turbulent dispersion dominates strongly over mechanical dispersion when both
the Reynolds number |〈u〉|df /ν and the ratio df /dp are large. The last condition is
equivalent to a very high porosity, close to unity, which can be encountered in a
forest. In this case, the turbulent subfilter-scale stress can be neglected if the turbulent
viscosity νt is much smaller than the eddy viscosity νT of the turbulent volume-
averaged flow. The difference between the eddies of the subfilter-scale flow and of the
volume-averaged flow is illustrated in figure 25. The value of νT can be estimated by
νT = LU, where L is the mixing length and U = [〈ui〉′〈ui〉′/2]1/2 is a characteristic
velocity scale of the large-scale eddies. The ratio of νt to νT is given by:

νt

νT

= ct

df

L

√
e

U .

If df /L � 1 holds, then also
√

e/U � 1 holds, because the large eddies are much
more energetic than the small eddies. Thus, when df /L � 1 holds, the turbulent
subfilter-scale stress can be neglected. This is typically the case in a forest in which
turbulence is dominated by scales of the order of the height of the forest (Finnigan
2000). Turbulent dispersion can be neglected because the height of the forest (scale
for L) is much larger than the typical length scale of the individual forest elements
(scale for df ).

The above analysis suggests that for both extreme cases the effect of dispersion on
the volume-averaged flow field is generally negligible. This suggests that subfilter-scale
dispersion may always be neglected, and also in cases where mechanical and turbulent
dispersion are equally important.

Appendix B. Modification of Jackson model for presence of pressure gradient
For boundary-layer flow over a porous wall in the absence of a mean pressure

gradient, Jackson (1981) proposed that the displacement height d in the logarithmic
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law is the level at which the height-averaged drag force acts. This suggests that d can
be calculated from:

d = −

∫
zf dz∫
f dz

, (B 1)

where f is the height-dependent drag force and where the integral extends over the
entire height of the porous medium. We remark that in the absence of a mean pressure
gradient, the drag force is balancing viscous and turbulent diffusion. As shown by
Jackson, d could therefore also be interpreted as the displacement thickness of the
total shear stress in the porous medium.

In the presence of a mean pressure gradient, the drag force is not only balancing
diffusion of momentum, but also the mean pressure gradient. This balance is expressed
by the Reynolds-averaged momentum equation for the streamwise direction, which
can be obtained from (5.1a):

− 1

Reb

ε

Da
u − 1

Reb

εFo

Da
|u|u − 1

Reb

1

ε

∂ε

∂z

∂u

∂z
− dp

dx
=

1

ε

∂

∂z

[
εu′w′ − 1

Reb

∂εu

∂z

]
. (B 2)

We now define the left-hand side of (B 2) as the effective drag force fe:

fe ≡ f − dp

dx
= − 1

Reb

ε

Da
u − 1

Reb

εFo

Da
|u|u − 1

Reb

1

ε

∂ε

∂z

∂u

∂z
− dp

dx
. (B 3)

Consistent with the interpretation of d as the displacement thickness of the total
shear stress inside the porous medium, we propose the following modification of (B 1)
to account for the presence of a mean pressure gradient:

d = d1 + d2, d2 = −

∫
(z + d1)fe dz∫

fe dz

with z < −d1, (B 4)

where z = −d1 is the height at which fe =0. In a way, z = −d1 could be interpreted
as the location of the effective interface between channel and permeable wall, where
for z < −d1 the effective drag force is responsible for absorption of momentum. Note
that d approaches the correct limits when Kc → 0 and Kc → ∞. When Kc → ∞, i.e.
no solid obstacles, the effective drag force becomes equal to −dp/dx. Consequently,
d = d1 = h, where h is the whole thickness of the permeable wall, which is the correct
value as in this case, the impermeable wall at z = −h is the actual wall. When Kc → 0,
i.e. when the permeable wall is completely impermeable, there is no flow inside the
permeable wall and hence the effective drag force is equal to zero. This leads to the
correct limit of d = 0.
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