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Abstract
• This article synthesizes and reviews the available information on the effects of forestry practices
on the occurrence of biotic and abiotic hazards, as well as on stand susceptibility to these damaging
agents, concentrating on mammal herbivores, pest insects, pathogenic fungi, wind and fire.
• The management operations examined are site selection, site preparation, stand composition, re-
generation method, cleaning and weed control, thinning and pruning, and harvesting. For each of
these operations we have examined how they influence the occurrence of biotic and abiotic damaging
agents, the susceptibility of European forests, and describe the ecological processes that may explain
these influences.
• Overall, we find that the silvicultural operations that have the largest influence on both biotic and
abiotic risks to European forest stands are closely related to species composition and the structure
of the overstorey. Four main processes that drive the causal relationships between stand management
and susceptibility have been identified: effect on local microclimate, provision of fuel and resources
to biotic and abiotic hazards, enhancement of biological control by natural enemies and changes in
individual tree physiology and development.
• The review demonstrates an opportunity to develop silvicultural methods that achieve forest man-
agement objectives at the same time as minimising biotic and abiotic risks.
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Résumé – Influences de la sylviculture sur le risque de dégâts biotiques et abiotiques dans les
peuplements forestiers.
• Cette revue bibliographique s’intéresse aux effets de la sylviculture sur la sensibilité des peuple-
ments forestiers aux principaux agents de dégâts biotiques et abiotiques que sont les mammifères
herbivores, les insectes ravageurs, les champignons pathogènes, le feu et les vents forts.
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• Les pratiques forestières analysées sont la sélection et la préparation des sites de reboisement, la
définition de la composition en essences et le choix du matériel génétique, les méthodes de régé-
nération et d’entretien, les modalités d’éclaircie et d’élagage, le mode de récolte finale. L’influence
de chacune de ces opérations sur l’occurrence des agents de dégâts biotiques et abiotiques et sur la
sensibilité des peuplements est examinée ainsi que les processus écologiques sous-jacents.
• Les opérations sylvicoles qui se révèlent les plus déterminantes pour la sensibilité des forêts en
Europe sont celles qui affectent la composition et la structure de la strate arborée. Quatre princi-
paux processus écologiques semblent expliquer la relation entre sylviculture et sensibilité des peu-
plements : la modification du micro-climat, l’apport de ressources ou de combustible aux agents de
dégâts, l’amélioration du contrôle biologique par les ennemis naturels et l’altération de la physiologie
et du développement des arbres.
• Cette revue permet donc d’envisager le développement de méthodes de gestion des peuplements fo-
restiers qui permettent d’atteindre les objectifs de production tout en minimisant les risques de dégâts
sanitaires.

1. INTRODUCTION

European forests are among the most intensively managed
forests in the world and only 0.4% of the European forest area
is covered by non-managed protected forests (MCPFE, 2002).
Forest ecosystems are a vital source of wood and non-wood
products and provide numerous services such as nature con-
servation, protection of soil and water, recreation, and car-
bon storage. The forest area is currently increasing by about
760 000 ha (0.4%) per year in Europe, the average growing
stock increased from 124 m3 ha−1 in 1990 to 141 m3 ha−1

in 2005 (FAO, 2007), and this trend is projected to continue
for the next few decades. However other trends give reason
for concern, particularly the increase in natural disturbances
to forests. Natural disturbances are defined here as any haz-
ard such as fire, windstorms, ice, flood, pest or pathogen out-
breaks, that disrupt ecosystem structure or function for time
periods longer than the current seasonal vegetation cycle. The
annual disturbed forest area in Europe is around 10 million ha
(6% of the total forest area) (FAO, 2007) with the disturbed
volume being about 8.1% of the annual harvest (Schelhaas
et al., 2003). Many types of disturbance have increased over
recent decades (Schelhaas et al., 2003), mainly in relation to
changes in forest resource characteristics such as forest area,
growing stock and the proportion of conifers, but possibly also
as a result of climate change.

Thus, evaluating the risk of damage is crucial for forest
planning. Risks can theoretically be described as the inter-
action between hazard likelihood, susceptibility and exposure
(Kron, 2002). Any change in one of these factors will lead
to a corresponding change in risk level. Hazard likelihood is
the probability of occurrence, which is related to external fac-
tors such as the climate or internal drivers like pest popula-
tion dynamics. Susceptibility relates to how easily the system,
e.g. the forest, is damaged by the disturbance agent under con-
sideration. Exposure can be understood as the values that are
at stake, i.e. to what extent forest functions will be impacted
(Fig. 1).

Forest management may have an effect on all three com-
ponents of the risk of damage. Silvicultural practices are in
principle designed to optimize one or several forest functions,
e.g. wood production, soil protection, and biodiversity con-
servation, and therefore they influence the forest exposure to

hazards. Forest functions are often determined according to
socio-economic constraints and managers are unlikely to limit
the forest value just to reduce exposure to hazards. In contrast,
once forest objectives have been settled, forest managers may
want to make compromises in management decisions in order
to minimize both hazard likelihood and stand susceptibility to
hazards. However they often do not have the information they
need to take these components of the risk into account. For ex-
ample, a recent study by Blennow and Sallnäs (2002) revealed
that in Southern Sweden although forest owners rank storm
damage highly as a potential risk, most do not know how to
change their forest management to reduce it. The choice of
tree species, the preparation of the site, and thinning or har-
vesting operations, will all have profound effects on the com-
position and structure of forest stands, and as a consequence,
on the occurrence of damaging agents and on stand suscep-
tibility (for example, see Wainhouse (2005) for forest pests,
Tainter and Baker (1996) for pathogens, Quine et al. (1995) for
wind, Peterson et al. (2005) for fire). However, there is a wide
variety of potential disturbance agents, and each may have a
specific response to stand management decisions. In order to
decrease the risk of future disturbances having large detrimen-
tal impacts on forest function, we need a clearer understanding
of how management decisions influence both the likelihood of
a range of different agents and the forest susceptibility to such
hazards.

The objective of this review is to synthesize available infor-
mation on the effects of management options on both the like-
lihood of, and susceptibility to, different disturbance agents
at the forest stand level. Agents considered here are the most
common biotic and abiotic hazards in Europe: mammal her-
bivores, pest insects, pathogenic fungi, wind and fire. Al-
though we focus on European conditions, literature from out-
side Europe has been included where it is relevant. We have
divided management operations into seven categories accord-
ing to a sequential order: site selection, site preparation, stand
composition (including tree genetic material), regeneration
method, cleaning and weed control, thinning and pruning, and
harvesting (Jactel et al., 2008). For each of these operations,
we review how they influence the occurrence of damaging
agents and the susceptibility of forest stands. We then propose
ecological explanations for the observed patterns.
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Figure 1. Diagram illustrating the influence of stand management on the three components of risk. Solid and dash arrows indicate that this
review focuses on hazard likelihood and forest susceptibility since exposure mainly depends on socio-economic issues.

2. SITE SELECTION

Site selection in the truest sense of the word is rarely a
real option, because the available forest land is usually lim-
ited in terms of area and location. The process of selection
mostly happens the other way round, in that forest managers
will adapt their choice of silvicultural measures to given site
characteristics. Matching given site conditions to the demands
of the target tree species may be suitable options for minimis-
ing forest susceptibility to damage. Hence, the causalities dis-
cussed in the following are of importance not only at the time
of forest establishment, but for all subsequent management de-
cisions until harvesting.

When comparing the occurrence of forest disturbance with
respect to site related parameters, some trends become evident.
There are specific microclimatic conditions which influence
even very different factors in a similar way and predispose
forests to damage. A striking example is the effect of temper-
ature. Thermal conditions play a crucial role in the success
of all organisms, influencing growth, population dynamics,
and survival. Relatively warm, protected sites serve as habi-
tats for a variety of species, being preferred to sites exposed to
harsher climates. A multitude of insect species find optimum
conditions for reproduction and development in thermally
favoured areas and will benefit from periods of high temper-
ature and/or precipitation deficits. As at the same time the vi-
tality of forests may be impaired, such climatic conditions fre-
quently trigger mass propagation of insect pests, e.g. of the
European spruce bark beetle, Ips typographus (Baier et al.,
2007; Netherer and Nopp-Mayr, 2005; Wermelinger, 2004),
the web-spinning sawfly, Cephalcia arvensis (Marchisio et al.,
1994) in stands of Norway spruce, or the gypsy moth, Lyman-
tria dispar in deciduous forests (Hlasny and Turèaní, 2008).
Most pathogenic fungi of the temperate forests need temper-
atures between 20 and 30 ◦C for optimal mycelium growth
(Tainter and Baker, 1996). Rising temperatures, e.g. under a
climate change scenario, will favour the development of for-
est pathogens that have been introduced from Mediterranean
or tropical countries, such as Sphaeoropsis sapinea, Phytoph-
thora spp. and Biscognauxia mediterranea (Desprez-Loustau
et al., 2006). In the case of fire, higher temperatures corre-
spond to higher stand susceptibility (Rothermel and Philpot,
1973). On the other hand there are several pathogen and pest
species that show a preference for lower temperatures and
therefore prefer sites of higher altitude and latitude, such as

Scleroderris canker on lodgepole pine (Pinus contorta) in
Sweden (Karlman et al., 1994), or the larch budmoth, Zeira-
phera diniana in the Alps (Baltensweiler and Fischlin, 1988)
and Sudeten (Capecki et al., 1989).

Temperature alone does not sufficiently explain site sus-
ceptibility to disturbances and cannot be considered detached
from other climatic conditions. Sites offering favourable con-
ditions for spore infection, such as high humidity or low air
movement, are to a greater extent susceptible to fungal dis-
eases. For example, the most severe damage caused by the
pine shoot blight and canker, Sphaeropsis sapinea, are found
in protected valley sites (Wingfield and Swart, 1994), while
spruce stands on slopes or hilltops with a high incidence
of fog and westerly winds of high humidity are highly dis-
posed to shoot blight, Sirococcus conigenus (Anglberger and
Halmschlager, 2003). In contrast, stands with lower moisture
are more susceptible to fire hazard (e.g. Gonzalez and Pukkala,
2007; Mermoz et al., 2005; Mouillot et al., 2003). Soil mois-
ture deficits resulting in moisture stress of host plants can
in many cases be correlated with elevated insect or fungal
damage (Caldeira, 2002; Desprez-Loustau et al., 2006; Major,
1990; Selander and Immonen, 1991; Stone, 2001; Worrell,
1983). Soil humidity plays an important role in the mortal-
ity of insects pupating in the upper soil or humus layers,
such as certain species of defoliators, e.g. the little spruce
sawfly, Pristiphora abietina (Netherer and Führer, 1999), the
false spruce webworm, Cephalcia abietis (Führer and Nopp,
2001) and the pine processionary moth Thaumetopeoa pity-
ocampa (Markalas, 1989). Soil water supply or soil tempera-
ture conditions are also crucial in the question whether forests
have to cope with harmless saprophytic organisms or with
pathogens. Depending on the species, e.g. Armillaria spp.,
Collybia fusipes, Heterobasidion annosum, Phytophtora cin-
namoni, pathogenicity may either be reduced or enhanced with
drought and increased stress of the host trees (Camy et al.,
2003; Desprez-Lousteau et al., 2006; Wargo and Harrington,
1991; Woodward et al., 1998).

Microclimatic conditions are modified by site related fea-
tures such as elevation, aspect and topography. Slopes exposed
to high rates of solar irradiation or stands on upper slopes,
ridges or hilltops are particularly prone to storm damage
(Führer and Nopp, 2001; Ni Dhubhain et al., 2001; Winterhoff
et al., 1995). The probability of storm damage on slopes of
certain gradients and exposure depends on the wind direc-
tion prevailing in a specific area (Ni Dhubhain et al., 2001;
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Schreiner et al., 1996; Werner and Armann, 1955). In the case
of fire, altitudinal patterns in stand susceptibility are the result
of variations in moisture and temperature, but also in human
ignitions, as altitude is usually negatively correlated with pop-
ulation density. A slope affects the speed of fire spread, and
its intensity, by increasing the radiant energy transfer from
flaming fronts to upslope fuels (Agee, 1993; Pyne et al., 1996;
Rothermel and Philpot, 1983).

Forest health is strongly dependant on soil conditions and
the adaptation of plants to given states of soil structure, acidity
or nutrient availability. Adverse conditions in the rhizosphere
leading to lesions of the root system render forest stands es-
pecially susceptible to fungal diseases and windthrow. Any
factor that decreases rooting depth, such as frequent waterlog-
ging (Laiho, 1987; Offergeld, 1986; Poeppel, 1994; Schreiner
et al., 1996; Van Nispen tot Sevenaer, 1975) or soil com-
paction (Andersen, 1954) can negatively affect anchorage
(Nicoll et al., 2006). The effect of such adverse conditions on
stand stability varies with the tree species, as well as the root-
ing system’s ability of adaptation (Nicoll and Ray, 1996; Xu
et al., 1997). Forest stability is also affected by the previous
land use of a site, as conifer stands on former arable land are
especially susceptible to Heterobasidion root rot (van Soest,
1954). Many studies of fungal diseases point to a positive re-
lationship between soil fertility and the susceptibility to infec-
tion (e.g. Blodgett et al., 2005; Woodward et al., 1998). There
is considerable evidence that the enhanced availability of ni-
trogen is also a key factor in the improved nutritional quality
of host tree foliage to various, but not all, forest pests (Kytö
et al., 1996a, 1996b; Pinkard et al., 2006). Therefore, forest
sites affected by nitrogen input, either originating from fer-
tilised, adjacent agricultural land or from atmospheric deposi-
tion of pollutants, may be especially prone to herbivory.

3. SITE PREPARATION

Site preparation techniques to improve the conditions for
afforestation or regeneration and growth are common in inten-
sive forestry, and include water management, such as drainage
and irrigation, and soil cultivation, such as ploughing, harrow-
ing, scarification or mounding. These silvicultural treatments,
as well as decisions concerning brash and stump management,
weed control, prescribed burning, fertilisation, and the use of
fallow periods may affect the susceptibility to forest biotic and
abiotic agents in either positive or negative ways, depending
on the type of application and the hazard.

Positive effects on forest health of stump, brash or un-
derstorey removal during site preparation may result from a
reduction in the amount of resources for biotic and abiotic
damaging agents. In particular, stumps represent the breed-
ing substrate of Hylobius abietis (Speight and Wainhouse,
1989), Armillaria (Legrand et al., 2005) and Heterobasidion
annosum (Gibbs et al., 2002; Korhonen et al., 1998), which
are among the most severe pests and pathogens in European
conifer forests, and removal of the substrate should decrease
the risk of infection to neighbouring living trees. The use of
a fallow period between final harvesting and reforestation is

one method to reduce the quality of the breeding substrate,
taking advantage of progressive decomposition of the stumps
(Gibbs et al., 2002; von Sydow, 1997). Similarly some bark
beetles, e.g. Ips pini (Gara et al., 1999; Six et al., 2002),
Hylastes angustatus (Wingfield and Swart, 1994) or Pityo-
genes chalcographus (Grodzki, 1997) find breeding resources
in woody debris, and slash management prevents them from
building up their population to the high levels that would
lead them to attack living trees. Small rodents can use brash
and then cause significant damage on newly planted seedlings
(Wingfield and Swart, 1994). Brash removal and prescribed
burning will also significantly decrease susceptibility to fire
hazard, as fuel load is a key aspect influencing fire ignition,
spread and intensity (Rothermel and Philpot, 1983). Mechani-
cal (scarification) or chemical applications to remove under-
storey vegetation have been shown to reduce browsing by
roe and red dear (Huss and Olberg-Kalfas, 1982; Roth and
Newton, 1996) as well as by voles (Clethrionomys spp. and
Microtus spp.) and to decrease damage by the pine weevil
Hylobius abietis (Örlander and Nordlander, 2003; Petersson
et al., 2006; Pitkanen et al., 2005). Site preparation operations
which provide even resources around trees for symmetrical de-
velopment of tree roots may increase stand resistance to strong
winds (Coutts et al., 1999), just as drainage and tilling can in-
crease the effective rooting depth (Ni Dhubhain et al., 2001;
Ray and Nicoll, 1998). In contrast prescribed burning may im-
prove conditions for some root diseases such as Rhizina inflata
(Savill et al., 1997) and R. undulata (Germishuizen, 1984),
and ploughing may favour H. annosum (Redfern, 1984) and
Armillaria ostoyae (Lung et al., 1997) via the dissemination
of rhizomorphs.

The effects of fertilisation on forest health is somehow
more difficult to interpret as experiments have shown both
positive and negative effects, sometimes on the same pest,
or where the use of alternative fertilisers, such as N or P,
may lead to opposite effects. However beside these appar-
ent contradictions, causal relationships between fertilisation
and tree resistance have been demonstrated (e.g. Kytö et al.,
1996a,b; Wainhouse, 2005). Fertilisation can improve the
quality of food for some mammal herbivores, insect pests and
pathogenic fungi. For example, the use of nitrogen fertilisers
results in increased leaf N content which benefits leaf chew-
ers, including voles (Microtus agrestis, Rousi et al., 1993),
hares (Lepus timidus, Mattson et al., 2004), some sawflies
(Gilpinia hercyniae, Wainhouse et al., 1998), moths (Rhyacio-
nia frustrana, Sun et al., 2000), and aphids (Adelges piceae,
Carrow and Betts, 1973; Elatobium abietinum, Wainhouse
et al., 1998). Similarly, nitrogen fertilisation has been shown
to promote infection by Mycosphaerella pini, Mycosphaerella
quercina, Cryptodiaporthe populea and Melampsora pini-
torqua (Lopez-Upton et al., 2000) and phosphorus fertilisation
can induce changes in the nutritional status of pines, making
them more susceptible to damage by twisting rust Melampsora
pinitorqua (Desprez-Loustau and Wagner, 1997b). Fertiliza-
tion can also favour tree growth which in turn benefits primary
pests and pathogens, such as Dioryctria sylvestrella (Jactel
et al., 1996) and Hylobius abietis (Zas et al., 2006). When fer-
tilization results in faster understorey growth, it may increase
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fire risk. The nitrogen fertilization which favours the devel-
opment of branches and leaves may also reduce the bending
resistance of trees (Mitchell, 2003). In contrast fertilization of
nutrient-limited plants is predicted to increase the synthesis
of secondary chemicals like terpenic and phenolic compounds
that are toxic for many pest insects and fungal pathogens
(Herms, 2002) which would explain the negative effects of
fertilization on some pests and pathogens. For example, in-
sect defoliators such as the pine sawflies Neodiprion swanei
and Neodiprion sertifer (Larsson and Tenow, 1984; Smirnoff
and Bernier, 1973), or the poplar chrysomelids Chrysomela
tremulae and Phratora vitellinae (Gruppe et al., 1999) are ad-
versely affected by nitrogen fertilization of trees. Similarly, it
has been observed that the number and size of resin ducts in-
creases in fertilised conifers (Kytö, 1999; Wainhouse et al.,
2005). Because resin compounds are toxic for bark feeders
such as bark beetle and weevils (Wainhouse et al., 2005) or re-
pellent for mammal herbivores such as voles and hares (Harju
and Tahvanainen, 1997), it follows that fertilised trees would
be less damaged by these agents.

4. STAND COMPOSITION

The primary decision to make before afforesting or reforest-
ing is to select the tree species. This will obviously depend on
both site conditions and on market or public demand for forest
products or services, but once the decision is made it will in-
fluence most of the silvicultural practices to be implemented.
Forest managers must then decide if the selected species will
be grown alone or in association with others.

At the forest level the maintenance of tree diversity has
the advantage of spreading risk. Because different species will
not be equally susceptible to particular biotic or abiotic haz-
ards, the more tree species in a stand, the more likely it is
that the stand contains trees that will escape infection, infes-
tation, windthrow, or fire damage. These surviving trees may
then fill the gaps, maintaining the structure and the function-
ing of the forest. A major argument for mixed stand forestry
is therefore the “insurance hypothesis” (Loreau et al., 2001;
Pautasso et al., 2005), which states that diverse ecosystems
will respond in a more buffered way to disturbance (higher
resistance) and recover more quickly (higher resilience) than
monocultures. This is well illustrated by forest stand suscepti-
bility to wind and fire. Different species present different char-
acteristics in terms of morphology, shade tolerance, moisture
content, and chemical composition that influence the avail-
ability and combustibility of the forest fuels (Dimitrakopoulus
and Papaioannou, 2001; Wang, 2002). For example, conif-
erous species are highly flammable due to the high content
of resins and essential oils (Bond and Van Wilgen, 1996;
Dimitrakopoulus and Papaioannou, 2001; Velez, 1990), in-
creasing not only the probability of fire occurrence in pine
dominated forest (González et al., 2006; Moreira et al., 2001)
but also the potential damage caused by fire in terms of
severity and tree mortality (González et al., 2007b; Wang,
2002). Thus, the fire hazard in pure conifer stands is usually
higher than in deciduous hardwoods, whereas mixed conifer-

deciduous stands have intermediate fire hazard (González
et al., 2006; Moreira et al., 2001). Likewise, some tree species
are more susceptible to windthrow than others (Colin et al.,
2008; Wolf et al., 2004). In general, broadleaves are re-
garded as being more stable than conifers (Bryndum, 1986;
Holmsgaard, 1986), probably because broadleaves are usually
leafless in winter, the period where most storms occur. Sev-
eral authors report a higher stability of mixed species stands
as compared to monocultures (Grodzki et al., 1999; Lekes
and Dandul, 2000; Schütz et al., 2006; Slodicak, 1995) but
others argue that damage to a mixed species stand will only
be reduced equal to the share of the stable species (Lüpke
and Spellmann, 1997). Dhôte (2005) also concluded that tree
species identity is more important in predicting wind damage
to mixed stands than species richness.

When considering a particular tree species, two main eco-
logical constraints should be taken into account in the deci-
sion of whether growing it in a mixed stand would reduce
the risk of biotic damage: i.e. the accessibility of host trees,
and the impact of natural enemies (Jactel et al., 2005). The
admixture of other species with a focus tree species is ex-
pected to reduce its accessibility, and then its use, by graz-
ers, insect pests or fungal pathogens (Jactel et al., 2005). First,
for a given stand, increasing the number of tree species will
decrease the abundance of trees from the focus species. The
lower concentration of food resources may in turn prevent pest
and pathogens from developing and building up their popula-
tions thus reducing the risk of damage on focus trees (Jactel
and Brockerhoff, 2007). Second, non-host trees may provide
physical or chemical barriers to host location or colonization.
Forest insects (e.g. Matsucoccus feytaudi, Jactel et al., 2006)
and pathogens that are passively wind dispersed have a lower
chance of landing on the appropriate host tree in mixed stands
(Heybroek, 1982). Several tree diseases (such as H. annosum)
spread through root contacts and the presence of non-host
trees may limit this process (Linden and Vollbrecht, 2002).
Some forest insects (Watt, 1992) and mammalian herbivores
(Pietrzykowski et al., 2003) use visual cues to locate their
host, and the presence of other tree species can effectively hide
the host trees. Conifer-inhabiting bark beetles are able to per-
ceive non-host volatiles released by angiosperm trees and to
use them to avoid non-suitable habitats (Zhang and Schlyter,
2004). In mixed stands host tree saplings can also be protected
against mammalian grazers by non-host, nurse plants in the
form of physically (thorns) or chemically (toxins) defensive
species (Smit et al., 2007). Third, damage by generalist in-
sect or mammalian herbivores on a focus tree species may
also be reduced in tree mixtures that contain other, more palat-
able, secondary tree species, which would be exploited first.
Such a diversion process has been demonstrated in mixed eu-
calypt stands for Amblypelta cocophaga (Bigger, 1985) and
Chrysophtharta bimaculata (Elek, 1997) by planting alterna-
tive, preferred shrub or tree species that concentrated pest at-
tacks. However, polyphagous pests or generalist pathogens can
cause more damage in mixed stands. This process is compara-
ble to contagion and happens when a generalist herbivore first
builds up its population on a more palatable tree species, ex-
ploits the main part of this resource, and then transfers to other
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host trees (White and Whitham, 2000). In their meta-analysis
comparing insect herbivory in pure vs. mixed stands, Jactel
and Brockerhoff (2007) found twenty-one studies where more
palatable host trees were included in the mixture and these
mixed stands were more damaged overall than pure stands.
The presence of a preferred species (high quality food re-
source) in a mixed stand increased the level of damage on less
preferred species (low-quality food) by mammalian herbivores
such as vole and moose (Pusenius et al., 2003; Vehviläinen
and Koricheva, 2006). The intensity of Armillaria damage
increases with the number of susceptible conifer species in
mixed plantations (Gerlach et al., 1997). Associating particu-
lar tree species may also increase mixed stand susceptibility to
heteroecious fungal pathogens. These fungi require two alter-
native, unrelated hosts to complete their life cycle and if both
of these host trees are present in the same mixture, the stand is
more likely to experience severe damage. The best known ex-
ample is the pine twisting rust caused by Melampsora pini-
torqua which uses Scots pine and aspen (Populus tremula)
as main hosts (Mattila, 2002; 2005). Recently, Phytophthora
ramorum and P. kernoviae have been found infecting oak and
beech in England with rhododendron and viburnum serving as
reservoir hosts (Brasier et al., 2005).

The second main explanation of why mixed stands would
be less prone to pest and pathogen damage than pure stands is
the enhancement of control by natural enemies (Jactel et al.,
2005; Root, 1973). Generalist predators and parasitoids would
benefit from the range of alternative preys or hosts (Siemann
et al., 1998). Tree mixtures are also more likely to accommo-
date plants providing a better supply of complementary food
that help adult specialised parasitoids to prolong their lifespan.
The longevity is significantly increased in parasitoids of Rhy-
acionia buoliana (Syme, 1975) or Ips typographus (Hougardy
and Grégoire, 2000) when the wasps are exposed to nectarifer-
ous flowers commonly found in conifer stands. Because they
are structurally more complex, mixed forests also offer more
shelters from adverse conditions to natural enemies (Finke and
Denno, 2002) and more nesting sites to insectivorous birds
(Barbaro et al., 2007; Dickson, 1979). Finally, it has been sug-
gested that mixtures of tree species would better accommodate
antagonistic fungi that slow the spread of fungal pathogens
such as H. annosum (Fedorov and Poleschuk, 1981; Johanson
and Marklund, 2008) and Phytophthora cinnamomi (Murray,
1987).

Once a tree species has been chosen for afforestation, no-
tably in pure stands, selecting adequate tree genetic material
for a specific site is a key step in forest planning. Among other
implications this selection process may prevent or limit forest
damage by avoiding susceptible plant materials in high haz-
ard areas to a given damage agent (e.g. Wingfield and Swart,
1994). To date, genetic selection has been focussed mostly
towards an increase in tree productivity and an improvement
in the quality of forest products (e.g. Dini-Papanastasi, 2008;
MacDonald et al., 1997). However, forest susceptibility, in par-
ticular related to the risks to intensive forestry and the invasion
of exotic pests and diseases, is a major concern and justifies
attempts to breed for tree resistance (e.g. Heimburger, 1962;
Robin and Desprez-Loustau, 1998; Toda et al., 1993).

Regarding abiotic agents, genetic variation was found on
root architecture, anchorage and stem properties which could
be related with resistance to windstorm (e.g. Nicoll et al. 1995;
Silen et al., 1993; Stokes et al., 1997). Concerning fire, the
survival capability of a tree to fire has been related to vari-
ables such as the tree size, bark thickness, tree architecture
and vigour (Hély et al., 2003; Linder et al., 1998; Ryan and
Reinhardt, 1988; Van Mantgem et al., 2003) which are at least
partly under genetic control.

Tree susceptibility to pests or pathogens relies on two major
mechanisms: tolerance, which reflects tree ability to compen-
sate for damage by sustaining growth and reproduction levels;
and resistance, which reflects the ability to escape herbivory,
through phenological isolation, dissuading traits and limiting
insect or pathogen performance (Restif and Koella, 2004).
These mechanisms are partly genetically inherited and sev-
eral studies have shown differences in susceptibility between
host species and intra-specifically within clones or families
(e.g. Barre et al., 2002; Pasquier-Barre et al., 2000; Zas et al.,
2005). Thus, selecting tolerant/resistant families or clones may
be an effective strategy in minimizing losses caused by pests
and pathogens.

Although genetic variability has been extensively reported
in relation to tree resistance to pests, pathogens and abiotic
agents, breeding for resistance may raise several difficulties.
Resistance is commonly highly specific, necessitating breed-
ing programs directed to a particular agent. Further, heritabil-
ity of resistant traits is frequently low (< 0.5) (Dungey et al.,
1997; Kleinhentz et al., 1998), making the selection process
difficult. Resistant traits may be negatively correlated with
growth or wood quality traits, and therefore compromises may
be needed (Kleinhentz et al., 1998). An alternative could be
breeding hybrids associating productive and resistance traits
(e.g. Harfouche and Kremer, 1995; Kraus, 1986). Yet, a ten-
dency for F1 hybrid to be more susceptible than resistant par-
ents may hinder its use (e.g. Dungey et al., 1997; Highsmith
et al., 2001). Plants with high levels of induced resistance to a
specific agent may also be susceptible to others. These short-
comings explain why very few tree breeding programs have in-
cluded such traits (FAO, 2007). However, there are a few good
examples, such as tree breeding programmes in Europe for elm
resistance to Ophiostoma ulmi (Pinon and Cadic, 2007) and
poplar resistance to foliar rust (Berthelot et al., 2005).

As for the tree species composition of forest stands, it has
been suggested that planting genotypes mixtures that differ in
susceptibility may reduce pest and disease incidence in com-
parison with monoculture of one genotype. Although few stud-
ies have tested this assumption, focussing mainly on poplars
and willows, overall they have shown a reduction of damage
in mixtures. Lower infestation of rust disease was reported in
polyclonal plots compared with monoclonal plots in poplar
(Melampsora epitea, McCracken and Dawson 1997; Melamp-
sora larici-populina, Miot et al., 1999) as well as in genotypes
mixtures of willow (Melampsora spp., Peacock et al., 2001).
A reduction in the overall density and damage of leaf beetles
(Phratora vulgatissima) was observed in mixtures of willow
genotypes compared with monocultures (Peacock and Herrick
2000, Peacock et al., 2001). Proposed mechanisms to interpret
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these patterns are dilution of susceptible individuals and phys-
ical barriers provided by resistant plants (Miot et al., 1999).

Anticipating what will happen over time in a genetically
improved resistant forest plantation is a pertinent concern.
The insect or pathogen response to a given genetic material
is not static but the outcome of a dynamic evolutionary pro-
cess (Neuhauser et al., 2003). This is illustrated by the increase
in susceptibility of transgenic materials resistant to insects af-
ter some generations (e.g. Frutos et al., 1999). Conservation
of the genetic diversity of trees is therefore vital, for future
use in adapting forests, not only towards new products or new
silvicultural practices, but also as sources of possible genetic
resistant materials for when climate change, new silvicultural
techniques, or introduced pests or diseases increase forest sus-
ceptibility.

5. REGENERATION METHODS

The favoured tree species dictates, to a large extent, the
chosen method of forest regeneration, along with site condi-
tions and local forest practice. A wide range of forest regener-
ation methods have been applied throughout Europe, ranging
from intensive to “close-to-nature” forestry. Replanting after
clear-felling is still a common practice for regenerating a range
of native and non-native forest tree species including Nor-
way spruce, Sitka spruce, Scots pine, lodgepole pine, maritime
pine, eucalyptus and genetically selected cultivars of, for ex-
ample, poplar and birch. In many cases this results in uniform,
even-aged stands. In less intensively managed forests, there
is a trend towards the maintenance of continuous forest cover
over time. Mature individuals are removed from the stand, cre-
ating small forest gaps that are filled by natural regeneration,
finally ending with multi-layered stands that have a diversity
of tree species and age classes. It is therefore the choice of re-
generation method which mainly determines stand structure.

There is no clear reason why uneven-aged or multi-storied
forest stands would differ in susceptibility to biotic hazards
from even-aged or regular stands. On one hand uneven-aged
pure stands may provide a more diverse diet to different pests
and pathogens and therefore may suffer from a larger array
of aggressors. On the other hand even-aged stands can rep-
resent a large, stable and predictable food resource that can
benefit food density-dependant pests (e.g. Hylobius abietis,
Lof et al., 2005; Nordlander et al., 2003; Pitkanen et al.,
2005) and pathogens (e.g. Heterobasidion annosum, Korhonen
et al., 1998). Barthod (1995), Landmann (1998) and Muzika
and Liebhold (2000) indicate in their reviews that the effect
of stand structure has never been adequately addressed and
that too many confounding factors, such as stand composition,
history of management and site conditions, probably obscure
the issue. The same uncertainty remains for susceptibility to
forest gales. Quine et al. (1995) argue that even and closely
packed stands are better from an aerodynamic viewpoint to
resist strong winds. Dhôte (2005) suggests that even-aged
forests may be more resistant because of their lower canopy
roughness, better dissipation of wind energy between sway-
ing crowns of similar heights and lower crown-exposed area.

However, many authors expect greater stability of uneven-
aged systems due to overstorey trees becoming acclimated
to the wind (Cameron, 2002; Mason, 2002). Selection forests
would be more wind resistant mainly due to higher individual
tree stability resulting from better shape (lever arm and bole
taper) and better acclimation to wind (Dhôte, 2005). Stand
structure is linked to fire hazard through its influence on fuel
availability at the crown (live and dead material in the canopy
of trees) and surface (shrubs, grass, litter, and woody debris in
contact with the ground) levels. Modification of any of these
fuel strata by silvicultural operations will thus have implica-
tions for fire behaviour, severity and suppression effective-
ness (Peterson et al., 2005). Mature even-aged stands are usu-
ally more resistant to fire than multi-layered or young stands
(Agee et al., 2000; Fernandes and Rigolot, 2007; González
et al., 2007b; Omi and Martinson, 2004; Pollet and Omi,
2002), and have lower probability of being affected by fire
(González et al., 2006). Thus, regeneration methods that drive
the development of stands to even-aged structures (clear cut-
tings followed by planting or very intense shelterwood meth-
ods) are expected to reduce susceptibility to fire. On the other
hand, these methods usually require intensive cuttings that can
produce large amounts of slash. This accumulation of dead
fuel can produce a temporal increase in the risk of fire if
no additional treatment is considered to reduce it (Carey and
Schumman, 2003). Additionally, during early stages of devel-
opment, even-aged stands are characterized by abundant un-
derstorey vegetation due to canopy opening, which can lead to
the accumulation of very flammable surface fuels (Gonzalez
and Pukkala, 2007; Gonzalez et al., 2007a; Moreira et al.,
2001; Pollet and Omi, 2002).

Nursery practices including irrigation, fertilisation, fungi-
cide applications and short rotations are considered to be the
main drivers for the persistence of asymptomatic pathogens
in young seedlings. Fertilised seedlings may be also more ap-
petent for insects (Hylobius abietis, Selander and Immonen,
1991; Zas et al., 2006) and mammal grazers (Rousi et al.,
1993) and more susceptible to some pathogens. For exam-
ple the higher susceptibility of planted, compared to sown,
pine to the twisting rust M. pinitorqua may result from a
larger amount of susceptible tissues in the elongating shoot
(Desprez-Loustau and Wagner, 1997a; 1997b). On the other
hand fertilised seedlings may better resist secondary pests and
pathogens which prefer stressed trees (see above, site prepa-
ration). Nurseries are also the main gateways for the introduc-
tion of disease to forests, and therefore there is a higher risk of
infection in plantations. The density of seedlings is relevant
to predict the susceptibility of plantation forests. Low den-
sity plantings may favour pest insects that select more isolated
seedlings, such as shoot moths like R. buoliana, or tree defo-
liators like T. pityocampa which are visually attracted by tree
silhouettes against clear background (Demolin, 1969). High
density plantings are more prone to disease that spread through
root contacts such as H. annosum (Woodward et al., 1998)
and Armillaria sp. (Morrison and Mallett, 1996). The succes-
sion of clear-cutting and regeneration through planting offers
the best conditions for development of pests and pathogens,
such as pine weevil H. abietis (Långström and Day, 2002)
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and the root rot H. annosum (Woodward et al., 1998), which
first colonise stumps and then damage neighbouring seedlings.
These two operations should therefore be separated in time or
space to avoid severe damage to conifer plantations.

6. CLEANING AND WEED CONTROL

In intensively managed forests, cleaning and weed control
are operations that are considered to improve tree growth by
decreasing competition (e.g. Nowak et al., 2003; Ross et al.,
2005). Depending on the techniques and the objectives, the
understorey vegetation can be totally removed or some vegeta-
tion between lines can be left so that the impact on biodiversity
is reduced. Commonly, the removal of understorey vegetation
can be achieved through the use of mechanical operations, ap-
plication of chemicals, or prescribed burning.

Understorey vegetation may reduce herbivory by limit-
ing access to seedlings and diverting herbivores with other
food sources, but, conversely, it may favour herbivores and
pathogens by providing shelters and alternate hosts.. First,
dense vegetation or heavy slash may impede mammal herbi-
vore movement (Emmingham et al., 1989; Rochelle, 1992),
and unmanaged understorey, especially with a high concen-
tration of thorny species such as Rubus or Ulex, may simply
be impenetrable, even for deer. The seedlings become more
noticeable to foraging deer when the understorey vegetation
is removed around them (Black, 1992; Brandeis et al., 2002;
Guibert et al. 1992). Likewise pine tip moths (Rhyacionia sp.)
probably locate host tree seedlings that stand out from the
understorey layer so that high vegetation may better conceal
young conifer seedlings (Ross et al., 1990; Sun et al., 1998,
2000). Second, the presence of other palatable species in the
understorey may provide an alternative to planted seedlings as
herbivores primarily forage on their preferred plant species,
this is particularly true when broadleaved shrub species are
present in the understorey of conifer plantations (Brandeis
et al., 2002; Guibert et al., 1992; Örlander et al., 2001). How-
ever, when the preferred food resource becomes scarce, there
is a risk of spill over of herbivores onto less preferred but
still present host species such as tree seedlings. Yet, shrubs
can also provide shelters for small mammal herbivores such as
hares (Oxenham, 1983) and insect pests (e.g. Hylobius abietis
Björklund et al., 2003) where they can hide and repeatedly
return to feed on seedlings, thereby causing serious damage.
For several pathogenic fungi such as Phytophthora, the under-
storey vegetation may also serve as a reservoir thus increas-
ing the inoculum pressure on neighbouring trees or seedlings
(Brasier et al., 2005; Maloney et al., 2005; O’Hanlon-Manners
and Kotanen, 2004). Some heteroecious fungal pathogens,
such as the rust disease Melampsora pinitorqua, need to al-
ternate between two different host plants, one of which is of-
ten present in the understorey vegetation. The survival of the
spores depends on the distance between individuals of these
two hosts which obviously increases following weeding op-
erations (Nageleisen et al., 2002). Similarly several bark bee-
tle species can benefit from slash to maintain their population
in forest stands or clearings. The influence that surface fuels,

i.e. living or dead ground vegetation, have on the risk of fire
is clear and has been widely studied (e.g. Agee and Skinner,
2005). The abundance of these fuels increases the probability
of fire ignition, and favour an easy spread of surface fires. It
determines the intensity of surface fires, and if the understorey
height reaches the base of the canopy it can also initiate crown
fires (Finney, 1999; Rothermel and Philpot, 1983).

Understorey vegetation may also provide microclimatic
conditions that are favourable to spore dispersal and germi-
nation, in particular due to an increase in air humidity (e.g.
Melampsora larici-populina, Maugard et al., 2000). In con-
trast, the mildew Erysiphe alphitoïdes requires dry and warm
temperatures to develop and is therefore more frequent in low
density oak stands (Nageleisen et al., 2002).

Finally, the understorey vegetation may provide a suitable
habitat for natural enemies that can control pest insects (Miller
and Stephen, 1983; Ross et al., 2005). A large part of the nat-
ural enemy fauna, which comprises predators and parasitoids,
lives and feeds in the understorey vegetation, hence the impor-
tance of maintaining some. It has been shown for example that
removing competing vegetation in loblolly pine (Pinus taeda)
plantations can reduce total parasitism of the pine tip moth
Rhyacionia sp. (McCravy et al., 2001 in Ross et al., 2005).

Management of understorey vegetation may be detrimen-
tal to a forest stand’s ability to withstand strong winds. Both
wind tunnel studies (Gardiner et al., 2005) and field experi-
ments (Wellpott, 2008) in conifer plantations have shown that
the presence of an understorey reduces the wind loading to the
overstorey trees, and is therefore expected to reduce the risk of
windthrow.

7. THINNING AND PRUNING

Thinning is the mechanical removal of some trees in a for-
est stand, in order to enhance the tree growth, vitality, and stem
and wood quality of the remaining trees. It is either applied
once, or repeatedly, during the period after stand establishment
and prior to final harvesting. The type of thinning (frequency,
timing, intensity, selection objectives) may change tree species
composition and influence the vertical and horizontal struc-
ture of the stand. Thinning also creates stumps and dead wood.
Pruning is a silvicultural tool to accelerate the otherwise nat-
ural loss of branches regulated by stand density. Trees grown
at a wide spacing retain more of their branches, and if un-
pruned, their branches grow thicker, thus reducing the qual-
ity and value of the wood through the presence of large knots.
Therefore these living branches are removed, normally by saw,
from the lower part of the crown.

There are several direct and indirect effects of thinning
which influence the risk of pest and pathogen damage. Sun-
nier conditions may favour insects pests (e.g. Pissodes strobi,
Taylor et al., 1996; bark beetles, Fettig et al., 2007) and higher
temperatures may lead to a larger number of generations or
sister broods in the warm season (voltinism), increasing the
risk of damage (Amman, 1973; 1989). Thinning can result in
warmer conditions that increase the risk of infections by some
pathogens (e.g. H. annosum, Brandtberg et al., 1996; Thor and
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Stenlid, 2005). For this reason, thinning during the winter is
recommended, when no air-borne H. annosum basidiospores
are present (Rönnberg et al., 2006).

Thinning or pruning, living fresh stumps and logging scars,
can open several routes for infection by pathogens or attack
by pests that can subsequently spread to neighbouring trees
(e.g. H. annosum: Korhonen et al., 1998; Piri and Korhonen,
2007; Ronnberg et al., 2006; Armillaria root rot: Legrand
et al., 2005; Robinson, 2003). Mechanical injuries during thin-
ning and pruning operations create wounds that provide en-
try sites for many forest pathogens, such as cankers, stains
and rot fungi (Bruhn et al., 2002; Chou and MacKenzie,
1988; Hessburg et al., 2001; Metzler, 1997; Rönnberg, 2000;
Zolciak and Sierota, 1997). Several bark beetles such as Ips
typographus (Vaupel et al., 1981) and Dendroctonus micans
(Grégoire, 1988) and the stem borer Dioryctria sylvestrella
(Jactel et al., 1996a; b) are attracted by resin odours released
from injured stems after pruning or thinning, and then go on
to attack living trees in the vicinity.

When thinning improves individual tree vigour it can re-
duce tree susceptibility to a number of secondary pests in-
cluding bark beetles. Scolytids that attack healthy trees are
often killed by drowning or immobilization in resin ex-
uded from entry holes; the so-called “constitutive resistance”
(Lieutier, 2005). Recently Fettig et al. (2007) thoroughly re-
viewed the relevance of thinning to prevent and control bark
beetle infestations in coniferous forests of North America.
By contrast, primary pests which prefer vigorous trees may
be favoured by thinning operations as observed with many
defoliators (Sierpinski, 1972), the pine processionary moth,
T. pityocampa (Speight and Wainhouse), 1989, the pine tip
moth Rhyacionia frustrana (Berisford, 1988 in Wainhouse,
2005) and the spruce budworm, Choristoneura pinus (Kouki
et al., 1997). Repeated thinning operations in coppice stands
(Stanosz and Patton, 1987; Stiell and Berry, 1986) or severe
pruning (Hood et al., 2002) resulted in lower individual tree
vigour and increased root rot damage.

Thinning also modifies the structure of forest stands.
Canopy opening causes the greatest increase in risk of wind
damage to forest stands (Quine et al., 1995; Schreiner et al.,
1996). This is because a thinned stand, at least for the first
3–5 y after thinning, has increased canopy roughness (Dhôte,
2005; Schutz et al., 2006), which allows the wind to pene-
trate the canopy, and less wind energy is dissipated by the me-
chanical contact between crowns (Milne, 1991). In addition,
trees that have grown in dense stands are poorly adapted to
wind movement and therefore have poor anchorage strength
until they can respond to the increased loading by strength-
ening their stems and root systems (Nicoll and Ray, 1996;
Schütz et al., 2006; Stokes et al., 1997). One of the principles
of forest fuel reduction treatments is to decrease crown den-
sity to reduce crown fire potential. As forest thinning achieves
this, it can successfully decrease the potential for fire transmis-
sion between adjacent tree crowns (Agee and Skinner, 2005),
reducing the probability of tree mortality (González et al.,
2007b; Kalabokidis and Omi, 1998; Pollet and Omi, 2002).
Shaded fuelbreaks (spatial buffers) which are thinned to re-
duce crown fuels and treated to reduce surface fuels are com-

mon tools to reduce fire risk at a landscape level. A variable-
density thinning combined with both a thinning from below
and patch thinning, creates heterogeneity of the canopy that
results in a decreased risk of a crown fire spreading (Peterson
et al., 2005).

Slash produced by thinning or pruning operations offers a
breeding substrate for small bark beetle species such as Ips
pini (Gara et al., 1999; Six et al., 2002), Hylastes angustatus or
Pityogenes chalcographus (Grodzki, 1997) which can build up
their population on woody debris and then attack living trees.
Similarly, thinning and pruning may produce an increase of
dead surface fuels (slash) that enhance the risk of forest fires
(Carey and Shumann, 2003) and decrease the moisture con-
tent through increased light and surface wind speed, affecting
surface fire behaviour (Fernandes and Rigolot, 2007; Pollet
and Omi, 2002). For this reason, management operations that
reduce the amount of thinning residues are recommended to
make thinning more effective in reducing fire risk (Peterson
et al., 2005; Pollet and Omi, 2002).

8. HARVESTING

The development of forests managed with the objective
of wood production is terminated by harvesting operations,
which from a technical point of view, are a sequence of cutting,
processing and transport of timber. However logging should
also be seen as a silvicultural operation that intervenes in the
forest ecosystem and abruptly changes its ecological charac-
teristics. The scale of this impact relates to the applied method
of harvesting (clearcut, selective cutting, shelterwood, etc.), its
intensity (volume of logged trees), the type of machinery used,
the rotation length and yield age, and the time of logging in the
season.

The impact of harvesting on the threat from game, insect
pests and fungal pathogens mainly results from the provision
of food resources or accessible breeding material. In the years
after clear-cutting, deer food such as the stems of shrubs, herbs
and grasses, increase in abundance and availability (Harlow
et al., 1997). Overstorey reduction results in increased; suc-
culent (shrub) browsing by moose (Monthey, 1984), win-
ter browsing (seedlings or saplings) by hare (Harlow et al.,
1997), and tree seeds and invertebrate prey for small mam-
mals (Fuller et al., 2004). Similarly Hylobius abietis popula-
tions are dependent on the abundance of fresh conifer stumps
(Långström and Day, 2002). Felled trees or logging residues
can serve as a breeding substrate for many bark beetles such
as Ips typographus, Pityogenes chalcographus (Eriksson et al.,
2006; Grodzki, 1997; Grodzki et al., 2006) and Ips sexdentatus
(Samalens et al., 2007) in conifer forests as well as for a num-
ber of scolytids in beech forests (Losekrug, 1988; Petercord,
2005). Likewise, stumps of trees infected by H. annosum
(Moykkynen and Mina, 2002) or Armillaria sp. (Legrand
et al., 2005), and left after final harvesting, represent important
infection sources in the following tree generation. By anal-
ogy, if no post-harvest fuel treatment (slash removal, bush con-
trol, prescribed burning) is undertaken, highly flammable fuel
combinations can persist for several years (Weatherspoon and
Skinner, 1995).
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The second mechanism that relates harvesting practices to
increased biotic risks originates in the mechanical injuries
caused by machinery during thinning and pruning operations
(see Sect. 7). As a result, harvesting operations can influ-
ence the risk to stands established on already harvested areas.
Mechanical injuries to roots in the upper soil layers during
harvesting and logging also stimulate the spread of Armil-
laria root disease, by the stimulation of the growth of cut rhi-
zomorphs (Zolciak and Sierota, 1997).

The third main mechanism contributing to the effects of har-
vesting on forest health relates to the alteration of stand en-
vironmental and physical conditions. In stands of deciduous
trees, especially those with thin bark such as beech, the effect
on tree physiology of suddenly opening stand edges may in-
crease their susceptibility to insect pests (Delb, 2004) and fun-
gal diseases (Klein, 1997). Additionally, the increase of solar
radiation and wind circulation at ground level may facilitate
the reduction of moisture in dead fuel and facilitate the ig-
nition and fast spread of forest fires (Rothermel and Philpot,
1973; 1983). Clearfelling of a stand will also suddenly ex-
pose the edges of nearby stands to the wind, and will there-
fore increase the wind speeds experienced by the trees, thus
increasing the risk of windthrow (Gardiner and Quine, 2000).
In partial harvesting, the susceptibility of the remaining trees
increases due to a loss of cohesion of the stand. The remaining
trees experience more wind, and at the same time they lack
mutual support. Rotation lengths influence windthrow risk in
two different ways. Firstly, the older the trees get, the taller
they become, and thus they will receive higher wind loading
and will have a longer “lever-arm” (Mosandl and Felbermeier,
1999; Zimmermann, 1985). Secondly, a longer rotation in-
creases the chance that a severe wind storm will occur dur-
ing the life of the crop (Quine et al., 1995; Schelhaas et al.,
2007). Logging operations with heavy machinery may also
result in soil compaction which can in turn trigger pathogen
infections. Seedlings of the American chestnut Castanea den-
tata are more susceptible to Phythophtora cinnamomi infec-
tions under conditions of higher soil compaction (Rhoades
et al. 2003). Soil compaction may also increase the risk of
wind damage through reduction of root anchorage (Andersen,
1954).

9. GENERAL CONCLUSIONS

What emerges from this collection of observations and ex-
planations is that forest management substantially affects both
the occurrence of many biotic and abiotic hazards and stand
susceptibility to these damaging agents that threaten the pro-
ductivity and the sustainability of forest ecosystems. However
the reader may get the impression that different silvicultural
operations, and even different options for each operation, will
have multiple yet contradictory effects on stand susceptibil-
ity to various hazard types. This feeling reflects the complex-
ity of managing forests, which are in fact structurally diverse
and perennial ecosystems with an almost infinite number of
species and site interactions. It is however unrealistic to search
for a single model of forest stand management that would re-

duce all of the risks of all types of damage, in a given situation.
But fortunately this would never in practice be required as for-
est managers do not have to deal with such a large diversity of
tree species, management options and hazard types. Foresters
most commonly have at their disposal a limited number of tree
species that will grow in local site conditions, and the regional
prevalence of hazards makes it possible to rate the main risks
of damage.

However, beyond this case-by-case and step-by-step ap-
proach, we believe that it is possible to draw some general
conclusions that hold across a wide range of forest conditions.
Going back to our explanations of the effects of silvicultural
operations and options on hazard occurrence and stand sus-
ceptibility, we can identify four main processes that drive these
causal relationships (Fig. 2).

Firstly, local microclimate not only has influences on tree
physiology and resistance, but also has direct effects on the
prevalence of hazards. For example, high temperature and pro-
longed drought induce physiological stress in trees and at the
same time are favourable to the development of pest insects
and increase the frequency and severity of fires. Cool and
wet conditions are often beneficial to fungal pathogens and of
course more frequent strong winds increase the risk of dam-
age. The selection of the site is the prominent decision that
will determine in which climatic conditions trees and associ-
ated antagonistic species will develop. Other stand manage-
ment options can also modify forest microclimate, such as
the management of understorey cover, through cleaning and
regeneration practices, and the density of trees which results
from thinning and harvesting regimes.

The second main process which drives hazard occurrence
and stand susceptibility, and is affected by silviculture, is
the provision of fuel and resources to biotic and abiotic haz-
ards. Trees are not always suitable for herbivore pests and
pathogenic fungi due to seasonal and yearly variations in ac-
cessibility or palatability. Pest and pathogen species therefore
depend on alternative breeding substrates or complementary
food resources to survive, such as other canopy or under-
storey plant species, slash, brash or remaining stumps. More-
over woody debris or understorey vegetation can fuel forest
fires. Every silvicultural operation that can reduce such reser-
voirs of alternative food and supplementary fuel would then
decrease stand susceptibility to biotic and abiotic risks. For
example the availability of alternative host plants greatly de-
pends on site selection and preparation, stand composition, re-
generation and cleaning practices. The abundance of breed-
ing substrates, such as stumps and slash, are highly dependant
on the frequency and intensity of thinning, pruning and har-
vesting. The amount of fuel for forest fires mainly depends on
the effectiveness of residue removal through adapted decisions
about site preparation, cleaning, thinning, pruning and harvest-
ing options. Conversely, changing stand composition may rep-
resent an effective way of limiting the accessibility of food
resources to pests and pathogens, with non-host tree species
developing physical or chemical barriers.

The third main process only accounts for biotic hazards as it
deals with maintenance or enhancement of biological control
by the natural enemies. These biocontrol agents need shelter,
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Figure 2. Summary diagram of key relationships between silvicultural operations and processes driving biotic and abiotic hazards likelihood
and forest stand susceptibility that determine risk of damage.

complementary food resources or breeding substrates to per-
sist on site. As a consequence, natural enemies may be af-
fected by the same silvicultural operations as their host or prey.
Control is optimised when for a given silvicultural operation
the choice of an option results in a reduction in numbers of
a particular pest and an increase in its natural enemies. Asso-
ciations of certain tree species can reduce the accessibility of
herbivorous insects to their host trees, while providing com-
plementary habitats and resources for their predators. In con-
trast changing site preparation, cleaning, thinning, pruning or
harvesting practices with the aim of reducing the woody debris
that are used for shelter, or as a breeding substrate, by pests
and pathogens, can also reduce the abundance of microhabi-
tats for their natural enemies. Resolving such contradictions
will obviously require management compromises.

Lastly, individual tree physiology and development is the
main factor in resistance to a range of hazards. The palatability
of tree tissues, the amount of secondary metabolites, and the
phenology of growth, are main drivers of tree susceptibility to
mammal grazers, pest insects and pathogenic fungi. The size
and shape of trees, and their root development, are particularly
important in predicting resistance to strong winds. The wa-
ter and biochemical content of tree component parts also de-
termine tree inflammability. All of these individual attributes
depend on tree phenotype which depends on the interaction
between genotype and local environment. Site preparation,
stand composition, the type of regeneration, and the thinning
regime can all greatly influence individual tree growth and
metabolism, and thus modify their susceptibility to biotic and
abiotic hazards. It is important here to remember that optimiz-
ing tree growth will not necessarily improve tree resistance as

some primary pests and diseases may develop better on vig-
orous trees, and similarly, the most productive stands may be
more vulnerable to strong winds and fire hazards.

In conclusion, silvicultural operations have multiple, some-
times contradictory, effects on hazard likelihood and stand sus-
ceptibility to these damaging agents. Forest management is
therefore, above all, a question of compromises, where one has
to balance risks and benefits not only for every silvicultural op-
eration but also for their possible interactions or cascading ef-
fects. Given the limited set of options that are at managers’ dis-
posal, it may be almost impossible at the stand level to find the
correct balance. However, one way to circumvent these diffi-
culties, while keeping forest multifunctionality in perspective,
is to consider management at a larger scale, i.e. at the land-
scape level where it is possible to spread the risk by combin-
ing stands with different composition and management, such
as intensively managed stands interspersed with natural forest
remnants.
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