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REVIEW

The Influences of Promising Feedstock Variability on
Advanced Biofuel Production: A Review

Cherng-Yuan Lin*

Department of Marine Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan

Abstract

The contribution of biofuels is expected to continuously increase in the global fuel market, as they are environ-
mentally-friendly and provide renewable energy. Four generations of biofuels are categorized and are primarily based
on their feedstock sources and the production technologies that are used. The influence of promising feedstock types and
the availability on the production technologies and the fuel properties of advanced-generation biofuels are not sys-
tematically examined in the literature. Hence, this research extensively reviews the potential impact of feedstock sources
and their variability on the production and characteristics of biofuels. The approaches of theoretical analysis and
inference referred to relevant works in the literature were applied. The findings suggest that the potency of the
commercialized mass production of advanced-generation biofuels is facilitated by a much more flexible selection and the
sufficient availability of promising feedstocks. Lignocellulose biomass is recognized as the most significant feedstock
source for second-generation biofuels, while microalgae do the same for third-generation biofuels. Moreover, the
microalgae of some strains are able to produce the highest amount of bio-alcohol of all available feedstock sources. The
cell walls of lignocellulose biomass and microalgae mostly consist of lignin compounds and cellulose materials,
respectively. Biological pretreatment is considered to be the most promising process, prior to biofuel production. The
biofuel yields from lignocellulose biomass and microalgae, using biological pretreatments, could increase by 120% and
22—-159%, respectively, in comparison with those of any other pretreatment process. Moreover, more double bonds and
larger unsaturated fatty acids in raw lipids cause the inferior oxidative stability, but superior fluidity of biofuel. The
possible impact of Genetically-Modified Crops (GMC) on the eco-environment and human genes remains a serious
concern and requires further tracking and analysis. Genetically-modified technology is still immature to achieve the
expected characteristics of biofuels from those modified crops. The unceasing exploitation of promising biomass
feedstock sources is crucial for the rapid and steady development of advanced-generation biofuels.

Keywords: Lignocellulose material, Biofuel, Feedstock variability, Energy crop, Fuel characteristics

1. Introduction regarded as one of the most successful examples of
biofuel development [8—12]. The contribution of

ioenergy, which accounts for 10% of the global biofuels to the total global renewable energy is ex-
B renewable energy, has become one of the major pected to increase conti‘nuously [13—15], and thus,
options for the supply of energy [1—4]. The two most th.e dependence on foss.11 fuels as an energy source
distinguished bioenergy examples are biodiesel and will be reduce.d a§cord1ng1y. Th? USA has been a
bioethanol. In particular, bioethanol has been used ~ 8lobal leader in biofuel production and consump-
widely as an alternative fuel to petroleum-derived ~ tion, particularly bio-ethanol and biodiesel. The
gasoline for on-road vehicles and marine vessels ~amount of biodiesel production and consumption
[5—7]. It is primarily made from sugarcane, provides ~ Petween 2010 and 2017 [16] in the USA, is shown in

about half of the global bioethanol demand and is units of millions of gallons (Mil. Gal.) in Fig. 1. The
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biodiesel industry appears to have developed
vigorously in the USA and the rest of the world
since 2010.

Biofuel belongs to the group of carbon-negative
energy, which implies that the total quantity of CO,
captured and consumed is more than the CO,
emissions during the life-cycle of such bioenergy
[17—19]. Hence, bioenergy is regarded as an envi-
ronmentally-friendly energy resource. The global
CO; release can be reduced by replacing more fossil
fuels with bioenergy. In the European Union (EU),
20% of greenhouse gases (GHGs) are emitted from
the transportation sector [20—22]. The widespread
use of biofuels will thus help to diminish the threat
of the greenhouse gas effect and the extent of global
climate change.

The global production and usage of first-genera-
tion biofuels are steadily growing, with the devel-
opment of more mature production techniques
[23,24]. However, the feedstocks used for the first-
generation biofuels are mostly from agricultural
crops, which have been a major source of human
food for thousands of years. Crop prices have thus
soared with the global development of biofuels. In
addition, the eco-environment and habitats of the
original creatures have been destroyed by the un-
restricted expansion of arable land for the cultiva-
tion of crops for biofuels [25—27]. First-generation
biofuels are thus considered to be the biofuel option
that has the least effect on sustainable development
[28,29]. The shortcomings of first-generation bio-
fuels have actively facilitated the rapid development
of second- and third-generation biofuels, which are
also referred to as advanced-generation biofuels in
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SFE Supercritical fluid extraction

SRC Short-rotation coppice

WRF White-rot fungi

this article. The major difference between first-
generation and advanced-generation biofuels lies in
their feedstock source [30—32]. In contrast to crop-
derived feedstock for the first generation biofuels,
non-foods, particularly lignocellulose-based mate-
rials, are generally used for the production of the
second-generation biofuels [33—35]. These raw
lignocellulose materials include agro-industrial
residue or architectural waste, such as wood chips,
grass, stalks or the boughs of plants, wheat straws,
rice husks, etc. [36,37]. Microbial organisms, such as
algae, cyanobacteria, and bacteria are recognized as
the major feedstock used for third-generation bio-
fuels [38,39]. Biohydrogen and bioelectricity, which
are produced from a photosynthetic mechanism, are
considered as fourth-generation biofuels; however,
this category has not yet been widely recognized.
The developing trends of the general feedstocks
used and the typical biofuel characteristics of the
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Fig. 1. Production and Consumption of biodiesel between 2010 and 2017 in the USA [16].
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Fig. 2. Feedstock resource and typical fuel characteristics of corresponding generation biofuels.

first-to the fourth-generation biofuels are illustrated
in Fig. 2. Non-edible feedstocks, including agro-
architectural waste and lignocellulose materials and
microbial organisms, are generally used to produce
advanced-generation biofuels. The biofuels of the
various generations and their corresponding feed-
stock sources, fuel characteristics and representative
types are shown in Table 1 [40—44]. The more
abundant feedstock resources, together with a va-
riety of advanced manufacturing technologies, have
facilitated the fast development of advanced-gen-
eration biofuels.

The chemical composition, fatty acid profile,
characteristics, and availability of the potential
feedstocks directly determine the fuel characteristics
and the development trends of specific biofuels.
However, the influence of promising feedstocks,
particularly lignocellulose materials, on biofuel
development has not been reviewed in the litera-
ture. The major works reviewed in the literature are
summarized in Table 2. Dulrue et al. [45] used four
evaluation criteria to compare various technologies
from cultivation to the oil-upgrading stage. Chen
et al. [46] reviewed the economic and technological
difficulties in the production of biodiesel from
microalgae. Lin and Lu [47] critically reviewed the
sustainability criteria, as well as the certification and
production technologies of biofuels. Tercero et al.
[48] conducted a technical evaluation of the bio-
diesel that was cultured from microalgae in a
closed-pond photobioreactor, while Li et al. [49]
reviewed various lipid extraction methods for bio-
fuel production. Lee et al. [50] reviewed the lipid

extraction technologies and cell lysis methods from
microalgae. Kumari and Singh [51] considered the
different pretreatment methods of lignocellulosic
waste, while Suparmaniam et al. [52] reviewed the
configuration and design of a modern photo-
bioreactor (PBR) for culturing microalgae. However,
the various promising feedstocks for the production
of various-generation biofuels have not been prop-
erly evaluated in the literature as yet. Hence, the
recent development of potential feedstock sources
and production technologies for advanced biofuels
are systematically reviewed in this study. Moreover,
the types, chemical profiles, and characteristics of
diverse lignocellulose and micro-organism feed-
stocks are examined. The potential impact of the
biomass feedstock variability on the fuel properties
of advanced biofuels are finally discussed and
reviewed in the manuscript.

2. Methodology used in this study

This review work used the approaches of theo-
retical analysis and the inference referred to previ-
ous relevant works published in the literature. The
research findings obtained in this study are then
summarized. The research experience and results
derived from the experiments carried out in the
laboratory of the author are also considered, while
preparing the manuscript. The primary aim of this
study is to construct a relationship between the
availability of various feedstock resources, their
production technologies, as well as the fuel charac-
teristics of advanced-generation biofuels.



Table 1. Category of biofuel generations and corresponding feedstock sources.

Biofuel generation
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Unstable and premature

Owning most developing Mostly determined by
characteristics

Most mature and compet-

Fuel characteristics

compounds of microbial

organisms

abundant

potential and
feedstock resources

itive alternative biofuel to

petro-derived fuel

Bioelectricity,
biohydrogen

[44]

Biogasoline, biohydrogen,

biomethane

[43]

Lignocellulose bioalcohol,
green diesel

[42]

Biodiesel, bioethanol, etc.

Typical biofuel

[40,41]

References

This study originates from the necessity to
develop renewable biofuels as an alternative for
petroleum-derived diesel or gasoline, to mitigate
for their greenhouse gas effects and enhance eco-
friendly environment protection, and to search for
promising feedstocks, which is considered to be
the most crucial step in the promotion of biofuel
growth. The literature regarding the available po-
tential feedstocks, including food-based lipids and
oils, lignocellulose-based materials, microbial or-
ganisms, etc. for biofuel production, are exten-
sively collected and evaluated. The fatty acid
profiles of biofuels made from various represen-
tative types of feedstock are carefully assessed, by
comparing different fatty acids compounds. After a
thorough review and evaluation of the promising
feedstocks for manufacturing advanced-generation
biofuels, this study ends by providing adequate
suggestions for promoting biofuel competition.

3. Lignocellulose-based materials for the
production of advanced-generation biofuels

The major feedstocks used for manufacturing
first-generation bio-alcohol are sugar- or starch-
rich crops, such as sugarcane, beet, corn, wheat,
sorghum, etc. Bio-alcohol, particularly bioethanol
and biobutanol, can be directly produced through
processes of fermentation and distillation, followed
by water removal, for those feedstocks that are
sugar-rich [53—55]. Enzymatic saccharification is
carried out prior to fermentation for converting
starch into sugar, when starch-abundant feed-
stocks are used [56,57]. Much more abundant
feedstocks, rather than those that are crop-based,
can be used for bio-alcohol production, and these
include lignocelluloses, perennial plants, such as
miscanthus and switchgrass, wood chip, rice straw,
and bagasse [58—60]. These abundant feedstocks
can be used to produce second-generation bio-al-
cohols, as their growth does not compete with
fertile land, and they are not edible food sources.
In addition, feedstocks that contain rich carbohy-
drates can also be used to produce bio-alcohol,
with the help of adequate microorganisms, for
example, enzymes [61,62]. Various types of feed-
stock, from the conventional sugar- and starch-
based types to those that are cellulose-, lignin- and
microalgae-based, are all available for bio-alcohol
production. The production quantity of bio-alcohol
per growing area of microalgae could reach about
5000—15000 gallons/acre, which is 13 times greater
than that of switchgrass, 23 times greater than that
of sugarcane, and even 46 times greater than that
of sweet sorghum [63—65].
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Table 2. Previous review work of relevant studies.

References

Major review works

Delrue et al., 2012 [45]

Chen et al., 2017 [46]

Lin and Lu, 2021 [47]

Tercero et al., 2014 [48]

Li et al., 2019 [49]

Lee et al., 2021 [50]

Kumari and Singh, 2018 [51]

Suparmaniam et al., 2019 [52]

Four evaluation criteria, including greenhouse gases (GHG), the emission rate, the water foot-
print, and the Net Energy Ratio (NER) were used to compare various technologies for each stage
from cultivation to oil upgrading. It was concluded that low-carbon energy sources are necessary
for reducing GHG emissions.

An economic evaluation of and the technological difficulties in the production of biodiesel from
microalgae are reviewed. The production costs of microalgae biodiesel are mainly from micro-
algae cultivation, followed by the harvesting and lipid extraction. The industrialization of the
biodiesel production process from microalgae is also proposed.

The sustainability criteria, certification and production technologies for biofuel products are
critically reviewed. The perspectives and trends of advanced biofuels are evaluated for their
future development according to a policy and techno-economic analysis. This study suggests the
application of advanced purification and conversion processes to enhance the competitiveness of
advanced biofuels. The government policies for advocating biofuel development are discussed.
A production plant for biodiesel from microalgae that have been cultured in a closed pond
photobioreactor (PBR) is technically evaluated. Aspen Plus® was applied to simulate the whole
production process. Both the operating expenditure (OPEX) and capital expenditure (CAPEX)
were considered in order to carry out an economic analysis. The results showed that the current
technology for the manufacture of biodiesel from microalgae is not economically competitive
with that of petroleum-derived diesel.

The major extraction methods in biofuel production, including Conventional Solvent Extraction
(CSE), Supercritical Fluid Extraction (SFE), Physical-supported Solvent Extraction (PSSE), etc.,
are reviewed. Their extraction principles, limitations and application are also discussed in this
study.

The lipid extraction technologies and cell lysis methods for microalgae are reviewed. Deep
eutectic solvents, switchable solvents, ionic liquids, and organic solvents are considered for
extracting lipids from microalgae. Single-step processes, together with cell disruption, are found
to be more effective for lipid extraction.

Lignocellulosic waste is considered as a feedstock for biofuel production. A suitable pretreatment
process, such as physical, chemical, biological, as well as a combination of these, would be used
prior to primary production approach. The different pretreatment methods, biomass resources
and chemical compositions are compared and discussed.

Microalgae are cultured in a modern photobioreactor (PBR) system, from a tubular to a flat panel.
The PBR configuration and design improvement for the microalgae cultivation system are
reviewed in order to enhance the economic benefits during the cultivation and harvest processes.
This article also attempts to produce microalgae biofuel by using a more cost-effective and
sustainable approach.

Due to the limited available arable land for
growing food-based feedstocks, the quantity of first-
generation biofuels that are produced is by far not
enough to effectively replace fossil fuels [66]. In
addition, the production technology of first-gener-
ation biofuels must be improved, particularly from
the perspective of both the stability of its fuel
properties and its mass production rate [67—69].
Therefore, the development of competitive produc-
tion technology for advanced biofuels has been
regarded as a crucial trend for the growth of bio-
energy. The feedstocks of second-generation bio-
fuels are primarily provided by non-foods,
particularly lignocellulose-based raw materials and
Municipal Solid Waste (MSW) [70,71]. In addition,
advanced production technology of second- and
third-generation biofuels is generally not at a
mature stage, and thus their production costs and
selling prices are still significantly higher than those
of first-generation biofuels [72—74]. Hence, the
abundance of feedstock resources and the extent of

the maturity of the manufacturing technologies
show that there is an adverse trend in the sequential
generation of biofuels, and this is shown in Fig. 3.
This means that the feedstock resources of the first-
generation biofuels, which are produced by the
highest mature technology, are the most limited and
are primarily sourced from edible oils or animal
fats. In contrast, the manufacturing technologies of
advanced-generation biofuels are still developing.
However, the feedstock resources for producing
those biofuels are much more abundant than those
used for first-generation biofuels. This implies that
much more effort should be made to improve the
production processes and reduce the manufacturing
expenditure, particularly in the feedstock pretreat-
ment [75—77] of advanced-generation biofuels.
Adequate pretreatment is generally required in
the whole production process of advanced second-
or third-generation biofuels. For example, hydroly-
sis is a typical pretreatment method for cellulose
bio-alcohol production [78,79]. Either a physical
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Fig. 3. Developing trends of abundance of promising feedstocks and maturity of production technology for various generation biofuels.

method, using high-temperature steam, a chemical
method using acid or alkali hydrolysis catalyst
[80,81], or a cellulose digesting enzyme method
[82,83], may be adopted in the pretreatment process,
based on a comprehensive consideration of the
processing cost, the feedstock material used, and the
processing time required in the whole lignocellu-
lose-based bio-alcohol production process [84—86].

4. The biological pretreatment of
lignocellulose biomass and microalgae

The cell wall of lignocellulose biomass is generally
composed of 10—35% lignin, 30—50% cellulose and
25—30% hemicellulose. These three components are
jointly linked to form a complex structure, namely, a
lignocellulosic matrix [87,88]. In addition, micro-
algae might consist of 2—40% lipids, 4—57% carbo-
hydrates and 8-71% protein. The actual
composition of microalgae depends on the species
and the cultivation conditions [89]. Biological pre-
treatment is regarded as a promising approach for
pretreating lignocellulose biomass (LCB) prior to
the primary manufacturing process for advanced-
generation biofuels [90]. The pretreatment process is
a requisite for the biochemical conversion from
lignocellulose, microalgae and bacteria feedstock,
because of the rigid and complex matrix of those cell
walls. Many pretreatment approaches are available,
such as mechanical grinding, milling or chipping,
gamma or microwave irradiation, immersion in acid
or an alkali solution, or steam explosion, etc. [91].
Biological pretreatment has the dominant advantage
of using simple operating equipment, having low
energy consumption during processing, having safe

and green operating procedures, and having low
downstream operating costs [92]. Hence, biological
pretreatment is recommended for the production of
advanced-generation biofuels. The major difficulty
of breaking through the cell wall components of
lignocellulose biomass (LCB) lies in the cellulose
crystallinity, the accessible surface area and the fact
that it is mostly a lignin compound [93]. The cell
wall structure of microalgae is different from that of
lignocellulose biomass (LCB), due to the absence of
persistent lignin content. However, the cell wall
component of microalgae is composed of cellulose
and pectin, which provides a firm structure, so that
hydrolytic enzymes are inhibited from accessing the
micro-algal biomass.

The downstream biofuel yield of microalgae cells
after biological pretreatment is 22—159% higher than
those without prior biological pretreatment [94]. The
biofuelyield fromlignocellulose biomass (LCB) might

Table 3. Representative types of the feedstocks used for biofuel
production.

Type Feedstocks

I Vegetable oils such as cottonseed oil, rapeseed oil,
and corn oil, etc.

I Agro-industrial residues and architectural waste
including bagasse, spent mushroom substrates,
and wood chips, etc.

I Plants through genetic modification such as wil-
low, and eucalyptus, etc.

v Energy crops such as Amaranth, poplar, and
purple alfalfa.

v Organic waste like waste cooking oil, olive pulp,
and waste paper stock, etc.

VI Microalgae like cyanobacteria, red algae, etc.

VII Bacteria like Clostridium acetobutylicum, Caldi-

cellulosiruptor, etc.
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increase by 120%, while the delignification of LCB by
White-Rot Fungi (WRF) is increased between 3% and
72% [95]. The biological pretreatment approach has
been more widely applied to the pretreatment process
of biofuels made from LCB, rather than microalgae.
However, the application of the biological pretreat-
ment to microalgae biofuels seems much more
promising. This is primarily due to the fact that
microalgae are generally composed of lipids, proteins
and carbohydrates, which are without recalcitrant
lignin compounds [96]. The major purpose of the
biological pretreatment of biofuels made from
microalgae is to prevent cell-wall breakage and the
hydrolysis of the macromolecules [97]. In contrast,
lignin removal and the enhancement of the di-
gestibility of cellulose material are the primary ob-
jectives of biofuel production from LCB [98]. Biogas
production, using anaerobic digestion from micro-
algae, requires the pretreatment of the hydrolysis of
macromolecules, instead of the delignification effect
of LCB [99].

Fungi are frequently used to carry out biological
pretreatment for the removal of lignin content and to
break down the lignocellulosic matrix for LCB, while
the hydrolysis of macromolecules and the destruction
of the cell walls of microalgae are performed by hy-
drolytic or enzymatic bacterial pretreatments [100].
The time required for biological pretreatment by
bacteria, enzymes and consortia is usually much less
than that required by fungi and ensiling [101]. The
actual time spent on pretreatment is determined by
the biomass type, its composition and its chemical
structure. However, much more time is used for the
pretreatment process of LCB, especially at its
delignification stage [102].

5. Exploiting diverse feedstock sources for
advanced biofuels

5.1. Categorizing potential feedstock types

The continuous exploitation of promising and
cost-effective feedstock sources is crucial for the
steady development of advanced second- and third-
generation biofuels. There are a few, but inconsis-
tent, ways of categorizing feedstock types [103,104].
The promising feedstocks for the production of
biofuels of various generations can be conveniently
categorized into seven types, based on their sources:
(I) vegetable oils, such as palm kernel oil, soybean
oil, corn oil, castor oil, canola oil, cotton-seed oil,
rice bran oil, rapeseed oil, and so on; (II) agro-in-
dustrial residues and agricultural waste, including
spent mushroom substrates, hay, waste trees, stalks,
bagasse, corn waste, straw, wood dust, chips, and so

on [105]; (III) plants, such as pasture, reed, willow,
eucalyptus, etc. through genetic modification [106];
(IV) energy crops, such as Amaranth, poplar, Bras-
sica campestris, sorghum, beetroot, corns, reed, and
purple alfalfa [107]; (V) organic waste, such as waste
animal fat, pulp, waste paper stock, waste cooking
oil, olive pulp, etc. [108]; (VI) microalgae, such as
cyanobacteria (blue-green algae), green algae, red
algae, etc. [109]; and (VII) bacteria, such as Clos-
tridium acetobutylicum, Caldicellulosiruptor, Pyrococcus,
Thermococcus, etc. [110].

As mentioned above, Type I feedstocks are the
major source of first-generation biofuels. The Types
I to V feedstocks are primarily used to produce
second-generation biofuels. The Type VI and VII
feedstocks are classified as those used for the pro-
duction of third-generation biofuels. Table 3 shows
the seven feedstock types that are used for pro-
ducing biofuels of the various generations.

5.2. Fatty acid profiles of biodiesel from various
feedstocks

The chemical properties and fuel characteristics of
biofuels were determined by the fatty acid compo-
sition of the feedstocks used for production [111].
Animal fats are generally composed of a larger
weight fraction of saturated fatty acid, which would
cause inferior fluidity properties, especially in cold
regions or frigid climate, with a superior oxidative
or thermal stability [112]. In addition, more double
bonds in the chemical structure of fatty acids of
biofuels frequently result in an intense reaction of
the biofuel with the surrounding oxygen, which
causes structural breakage and the deterioration of
fuel properties [113]. Sardine oil-biodiesel, which
contains more double bonds and much less satu-
rated fatty acids, were found to have a higher iodine
value and a lower kinematic viscosity, in compari-
son with those of biodiesel, which are made from
animal fats, such as chicken fat and pork lard [114].

The Type I, V and VI feedstock types in Table 3
have been extensively used to manufacture bio-
diesel. The fatty acid profiles of biodiesel produced
from the representative feedstocks of Types I, V and
VI are compared and revealed in Table 4. The
microalgae Chaetoceros muelleri, which is a Type VI
feedstock, is cultured in deep-sea water and the
extracted lipid is used to make biodiesel. The waste
cooking oil belonging to Type V feedstocks in Table
3 has been widely used to produce biodiesel. The
other biodiesel that is shown in Table 4 [115—129]
was made from Type I feedstocks in Table 3. The
feedstocks, other than Types I, V and VI in Table 3,
are more apt to produce other biofuels, such as bio-



Table 4. Comparison of the fatty acid profiles of biodiesels from various feedstocks (wt. %).

Types of fatty acids Chemical  Biodiesel from oils or fats

structure Camellia Waste Marine Salmon Chaetoceros Canola Palm Rapeseed Soybean Sunflower Tallow

oleifera Abel oil cooking oil fish oil  oil muelleri oil oil oil oil oil fat

Myristic acid C14:0 0.06 0.54 3.16 5.08 47.26 1.10 0.10 0.10 2.60
Myristoleic acid Cl4:1 0.02 - - - 1.16 - 0.30
Palmitic acid C16: 0 10.55 14.18 19.61 15.39 6.84 4.20 42.08 4.20 11.60 6.40 24.30
Palmitoleic acid Cl6:1 0.36 0.74 5.16 7.55 27.59 0.30 0.15 0.10 0.20 0.10 2.60
Heptadecanoic acid C17:0 - 0.17 1.82 0.46 - 0.20 3.87 0.10 0.10 0.20 2.00
Stearic acid C18:0 243 3.77 5.24 4.00 0.15 2.00 42.95 1.60 3.90 3.60 18.20
Oleic acid C18:1 69.07 4751 20.94 20.76 3.32 60.40 7.03 59.50 23.70 21.70 42.20
Linoleic acid C18:2 8.42 24.83 2.69 3.78 0.55 21.20 0.48 21.50 53.80 66.30 4.40
Linolenic acid C18:3 0.29 4.97 0.90 0.99 0.06 9.60 - 8.40 5.90 1.50 1.30
Arachidic acid C20:0 0.06 0.80 4.75 0.15 2.54 0.70 0.14 0.40 0.30 0.30 0.20
Gondoic acid C20:1 0.51 - - - 0.87 1.50 - 2.10 0.30 0.20 0.60
Eicosadienoic acid C20:2 0.12 0.17 0.81 0.30 0.62 0.10 - 0.10
Eicosatetraenoic acid C20:4 - 0.38 2.54 2.08 - -
Eicosapentaenoic acid C20:5 - 0.03 3.70 9.49 0.16 -
Behenic acid C22:0 - 0.10 1.55 0.09 5.80 0.30 - 0.30 0.30 0.60 0.10
Docosaenoic acid c22:1 7.97 0.18 0.98 - 0.98 0.50 - 0.50 0.10 0.10 0.10
Docostetraenoic acid C22:4 - 0.14 3.86 0.30 - -
Docospentaenoic acid C22:5 - 0.05 2.44 4.94 0.12 —
Docoshexaenoic acid C22:6 - 0.04 15.91 13.99 1.04 - -
Behenate C24:0 0.08 - - - - - 0.10 0.10 0.10 0.20 -
Nervonate C24:1 0.06 - - - - - - 0.10 0.30 - -
Saturated fatty acids - 13.18 19.77 37.06 25.70 62.59 7.40 48.45 6.60 16.40 11.40 47.80
Mono-unsaturated fatty acids — 78.00 48.37 26.35 33.35 33.92 62.50 43.10 62.30 24.70 22.10 46.50
Long carbon-chain fatty acid C20 — C22 8.66 1.89 37.30 39.52 13.10 3.10 0.14 3.60 1.40 1.40 1.00
References [115] [116,117] [118] [117] [129] [121,122] [119,120] [123] [124] [126,127] [125,128]
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alcohols, bio-gasoline, or bio-natural gas. The bio-
diesel produced from palm oil, as shown in Table 4,
has the largest saturated fatty acids and stearic acid
(C18:0) content, which amounts to 48.45 wt. % and
42.95 wt. %, respectively. The biofuels made from
animal fats, such as tallow fat and fish oil, like ma-
rine fish oil and salmon oil, appeared to have a
significantly larger content of saturated fatty acids
than those from vegetable oils, such as corn oil and
sunflower oil. The rapeseed oil biofuel was observed
to have the lowest saturated fatty acids and much
higher mono-unsaturated fatty acids, which reached
6.6 wt. % and 62.5 wt. %, respectively. Moreover, the
biodiesel from Camellia oleifera Abel oil consists
mostly of mono-unsaturated fatty acids (78 wt. %).
The oleic acid (C18:1) of the C. oleifera Abel oil-bio-
diesel even amounts to 69.07 wt. % [115]. This bio-
diesel is thus considered to have an inferior
oxidative stability, but superior low-temperature
fluidity, and it is adapted to usage conditions in cold
weather.

5.3. Selection of promising feedstocks for
competitive biofuel production

5.3.1. Potential resource of vegetable oils for biofuel
production

Vegetable oils are extracted from nuts, seeds, and
even the leaves of plants. In addition, oilseeds of
some bushes also provide a source of vegetable oils.
Nowadays, the seeds of Jatropha curas, Pogamia
Pinnata, Calophyllum inophyllum, and castor beans
have become common biofuel feedstocks. Some
species of wild bushes cannot absorb enough nu-
trients and water because they grow on unfertile
hillsides. Hence, such bush species generally
contain neither a high amount of seed oil nor do
they have a sufficient economic value [130]. There-
fore, in order to increase the quality and quantity of
oil sources for biofuel production, these oil crops are
required to be properly selected, cultivated, prolif-
erated, and even genetically modified.

The disadvantages of seed oil from Jatropha curas
and castor beans include the fact that its content is a
toxic substance, manual collection is required, and
the seed-oil is very expensive [131,132]. These dis-
advantages may be effectively resolved by the ge-
netic modification of the plants and the design of
automatic collection machinery for such plant seeds.
The Jatropha curas seed is considered to be a
significantly important raw material source for bio-
diesel production in South-east Asia and India [133],

because it is adaptable and can be grown in barren
areas, and its growth has almost no negative impact
on tropical rain forests [134]. A few international
petroleum companies have devoted many efforts
into investigating the biological characteristics of
Jatropha curas crops and the efficiency of their
conversion to biodiesel [135].

5.3.2. Lignocellulose materials for the production of
second-generation biofuels

In comparison with the feedstocks of advanced-
generation biofuels, the costs of vegetable oil feed-
stocks are generally higher [136]. The feedstock
costs include growing the nutrients, the breeding,
the manual collection of oilseeds, seed trans-
portation, oil extraction, the refining process, and
process management [137,138]. Although edible
plant oil crops present a high quality of oil and the
superior stability of the fuel properties, they are not
encouraged to be used as raw materials for
advanced-generation biofuels [139]. Instead, agri-
cultural and architectural biomass wastes and
lignocellulose materials are the primary feedstock
sources of second-generation biofuels. The cost of
these materials is relatively lower compared to the
plant oil sources described above. In addition, the
conversion of such waste into bioenergy complies
well with both environmental protection and the
development of a circular economy. Agricultural
waste, such as the stalks, stems, leaves, etc. of
barley, rice, wheat, maize, rye, and other grains, are
promising feedstocks for second-generation biofuel
production [140,141].

Ligneous plants often contain a higher calorific
value than herb plants. In particular, trees are much
more adaptable to growth on barren land, so as to
avoid competition with food crops grown in arable
lands. The lignocellulose materials of trees generally
have a higher bioenergy conversion efficiency than
herb plants, such as soybean, corn, sugar beet,
sugarcane, etc. [142,143]. Sawdust, wood chips, and
wood waste from the timber industry are also suit-
able feedstocks for the production of second-gen-
eration biofuels [144,145]. Moreover, the large-scale
proper planning of afforestation can provide an
important source of feedstock for biofuel produc-
tion. Afforestation has additional advantages,
including the absorption of carbon dioxide and
other greenhouse gases, water and soil conserva-
tion, the prevention of landslides in forest areas,
ecological protection, and the maintenance of a va-
riety of biological species [146,147].
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5.3.3. Feedstocks from genetically-modified crops
(GMCs) and energy crops for the production of
advanced-generation biofuels

Genetically Modified Crop (GMC) technology has
been widely applied for increasing crop yields,
improving specific crop characteristics, adapting to
harsh environments, such as barren or contami-
nated soil, decreasing pests and diseases, reducing
fertilizer and labor management, resisting climates
that are too hot or cold, etc. [148—151]. After being
carefully selected, some species of wild crops are
also able to be genetically modified for domestica-
tion, and they can be adjusted to become more
suitable feedstocks of biofuels. However, serious
doubt continues as to whether GMC technology will
destroy the eco-environmental and human gene
factors [152,153]. Moreover, GMC technology is still
not mature enough to meet all the targets of modi-
fying crop characteristics, as described above
[154,155].

Energy crops can be divided into two types of
herbal and Short-Rotation Coppice (SRC). Herbal
crops include grass, high famine grass, rye, and
other herbaceous species. SRC includes poplar,
eucalyptus, willow, bamboo, and other crops, which
can be used as paper, building materials, or biofuel
feedstock [156—158]. Boehmel et al. [159] found that
the highest energy conversion efficiency of energy
crops is willow in south-west Germany. Although
corn has a higher output energy, it also requires a
higher input energy for growing [160]. Miscanthus,
which is also an excellent energy crop species, has
the dominant advantage of having a high crop yield
and low input energy that is required for growth,
due to the large amount of fiber contained in its
stem structure [161—163]. Suitable herbaceous en-
ergy crops include Medicago sativa, alfalfa, Panicum
virgatum, reed canary grass, Miscanthus sinensis [164],
and so on. Compared to ligneous plants, herbaceous
energy crops have the dominant advantage of high
management flexibility and a short rotation, and
they can easily be changed for the type of crop
cultivated [165,166]. Energy crops do not compete
with human food and thus have become important
feedstock sources for advanced-generation biofuels
[167,168].

5.3.4. The most promising feedstocks from algae and
organic waste for the production of advanced-
generation biofuels

Used cooking oil and animal fat, Municipal Solid
Waste (MSW), and paper mill waste are categorized
as organic waste. The use of organic waste for bio-
fuel production not only reduces the waste quanti-
ties and removal costs, but it can also lessen their

impact on pollution in the environment [169—171].
Potato peels, which can be recycled to produce
bioethanol in the same potato chip factory, are also a
representative example of converting organic waste
into bioenergy [172].

Algae, including macro- and micro-algae, are the
feedstocks with the most potential for
manufacturing advanced-generation biofuels, due
to their dominant advantage of having a rich lipid
content, having a fast proliferation rate, their ability
to be cultivated on infertile land and their ability to
absorb carbon dioxide (CO,) for the photosynthesis
of plants [173]. Algae are regarded as the most
efficient organisms among all terrestrial plants for
converting CO; to form chlorophyll by means of a
photosynthetic reaction [174]. They contain various
quantities of triglycerides, lipids, protein and car-
bohydrates, and the production of diverse biofuels
depends on the exact strain of the algae [175]. The
five major microalgae groups are green algae,
brown algae, red algae, blue-green algae (also
termed as Cyanobacteria) and diatoms, which are
frequently used to produce advanced-generation
biofuels, particularly Cyanobacteria. Genetic engi-
neering technology has been widely used to modify
the chemical compounds and fuel properties of
algae and to meet the required characteristics of
feedstocks for advanced-generation biofuels [176].

The optimum fatty acid profiles, chemical
composition and cost-effectiveness of biofuels are
considered to be produced from the appropriate
mixing of various feedstocks fractions [173]. The cost
of biofuels is therefore competitive, due to an
adequate compromise between the selling price and
fuel properties on the global fuel market.

6. Conclusions

Diverse biomass materials, particularly lignocel-
lulose materials, are continuously being exploited
for the production of advanced biofuels with supe-
rior fuel characteristics. While other review studies
only focus on one or two issues of biofuel feed-
stocks, the potential impact of biomass feedstock
variability on the production technology and fuel
characteristics of advanced biofuels is systematically
reviewed in this article. The potential feedstock re-
sources that are used for the production of advanced
generation biofuels for the various fatty acids pro-
files of biofuels from different raw materials, and for
the promising pretreatment procedures of feed-
stocks, particularly the biological pretreatment
method, are also discussed and reviewed in depth in
this study. This article will provide helpful infor-
mation for researchers and industrial professionals
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in the relevant biofuel fields. The major conclusions
of this study are summarized below:

(1) Advanced biofuels have much less of a negative
impact on the ecological environment than fossil
fuels. The contribution from advanced-genera-
tion biofuels in the global renewable energy
market is expected to increase continuously.

(2) The discrimination of various generations of
biofuels is primarily based on the feedstock
types that are used for biofuel production. A
wider and more flexible selection, at much
greater quantities, of promising feedstocks could
facilitate the mass production and commerciali-
zation of advanced-generation biofuels.

(3) A wide variety of feedstocks is available for the
production of advanced-generation biofuels. The
potential feedstocks can be classified simply into
seven types, based on their sources. Among
these, lignocellulose biomass, such as agro-in-
dustrial residue and architectural waste, is the
most important type of feedstock for the pro-
duction of second-generation biofuels, while
microalgae and bacteria are used for third-gen-
eration biofuels.

(4) Bio-alcohol, ranging from conventional sugar-
and starch-based materials, to cellulose- and
lignin-based materials, to various strains of
microalgae, can be produced from biomass
feedstocks. Some species of microalgae are able
to produce bio-alcohol at about
5000—15000 gallons/acre, or 13—46 times that of
switchgrass or sweet sorghum.

(5) Vegetable oils that are acquired from seeds,
beans, nuts, the leaves of plants, and even the
oilseeds of some bushes, are the major raw
biomass materials, particularly for first-genera-
tion biofuels. Some indigenous oil crops of wild
bushes may need to be modified adequately, in
order to increase the amount and quality of their
seed oils for advanced biofuel production. En-
ergy crops have become a significant biomass
source for advanced-generation biofuels, pri-
marily due to the fact they do not compete with
human food, as well as their high management
flexibility, and their short rotation.

(6) The complex cell wall component of lignocellu-
lose biomass is composed mostly of lignin
compounds and is obviously different from the
cellulose and pectin walls of microalgae. Bio-
logical pretreatment is considered to be most
promising for advanced-generation biofuels,
due to its dominant advantage of being a green
procedure and having low downstream oper-
ating costs. The biofuel yield from microalgae

cells and lignocellulose biomass increased by
22—-159% and 120%, respectively, after biological
pretreatment, in comparison with those without
any pretreatment.

(7) The fatty acid profiles of feedstocks primarily
determine the fuel characteristics and chemical
composition of the biofuels produced. More
double bonds and higher unsaturated fatty acids
frequently cause property deterioration. The
biofuels produced from animal fats and fish oil
generally have a higher oxidative stability, but
they have inferior low-temperature fluidity.

(8) The wunceasing exploitation of promising
biomass feedstock sources is a crucial issue for
fast and steady development of advanced bio-
fuels. Genetically-modified technology is still
immature to achieve the expected characteristics
of biofuels from those modified crops. Further-
more, the possible impact of genetically-modi-
fied crops on the eco-environment and human
genes requires further evaluation and tracking.
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