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We define the relevant information in a signal x ∈ X as being the in-

formation that this signal provides about another signal y ∈ Y . Examples

include the information that face images provide about the names of the peo-

ple portrayed, or the information that speech sounds provide about the words

spoken. Understanding the signal x requires more than just predicting y, it

also requires specifying which features of X play a role in the prediction. We

formalize this problem as that of finding a short code for X that preserves the

maximum information about Y . That is, we squeeze the information that X

provides about Y through a ‘bottleneck’ formed by a limited set of codewords

X̃. This constrained optimization problem can be seen as a generalization of

rate distortion theory in which the distortion measure d(x, x̃) emerges from

the joint statistics of X and Y . This approach yields an exact set of self

consistent equations for the coding rules X → X̃ and X̃ → Y . Solutions

to these equations can be found by a convergent re–estimation method that

generalizes the Blahut–Arimoto algorithm. Our variational principle pro-

vides a surprisingly rich framework for discussing a variety of problems in

signal processing and learning, as will be described in detail elsewhere.
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1 Introduction

A fundamental problem in formalizing our intuitive ideas about information

is to provide a quantitative notion of “meaningful” or “relevant” information.

These issues were intentionally left out of information theory in its original

formulation by Shannon, who focused attention on the problem of transmit-

ting information rather than judging its value to the recipient. Correspond-

ingly, information theory has often been viewed as being strictly a theory

of communication, and this view has become so accepted that many people

consider statistical and information theoretic principles as almost irrelevant

for the question of meaning. In contrast, we argue here that information the-

ory, in particular lossy source compression, provides a natural quantitative

approach to the question of “relevant information.” Specifically, we formu-

late a variational principle for the extraction or efficient representation of

relevant information. In related work [1] we argue that this single informa-

tion theoretic principle contains as special cases a wide variety of problems,

including prediction, filtering, and learning in its various forms.

The problem of extracting a relevant summary of data, a compressed

description that captures only the relevant or meaningful information, is not

well posed without a suitable definition of relevance. A typical example is

that of speech compression. One can consider lossless compression, but in

any compression beyond the entropy of speech some components of the signal

cannot be reconstructed. On the other hand, a transcript of the spoken words

has much lower entropy (by orders of magnitude) than the acoustic waveform,

which means that it is possible to compress (much) further without losing

any information about the words and their meaning.

The standard analysis of lossy source compression is “rate distortion the-

ory,” which characterizes the tradeoff between the rate, or signal represen-

tation size, and the average distortion of the reconstructed signal. Rate

distortion theory determines the level of inevitable expected distortion, D,

given the desired information rate, R, in terms of the rate distortion function

R(D). The main problem with rate distortion theory is in the need to specify

the distortion function first, which in turn determines the relevant features

of the signal. Those features, however, are often not explicitly known and
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an arbitrary choice of the distortion function is in fact an arbitrary feature

selection.

In the speech example, we have at best very partial knowledge of what

precise components of the signal are perceived by our (neural) speech recog-

nition system. Those relevant components depend not only on the complex

structure of the auditory nervous system, but also on the sounds and utter-

ances to which we are exposed during our early life. It therefore is virtually

impossible to come up with the “correct” distortion function for acoustic

signals. The same type of difficulty exists in many similar problems, such

as natural language processing, bioinformatics (for example, what features of

protein sequences determine their structure) or neural coding (what informa-

tion is encoded by spike trains and how). This is the fundamental problem

of feature selection in pattern recognition. Rate distortion theory does not

provide a full answer to this problem since the choice of the distortion func-

tion, which determines the relevant features, is not part of the theory. It is,

however, a step in the right direction.

A possible solution comes from the fact that in many interesting cases we

have access to an additional variable that determines what is relevant. In the

speech case it might be the transcription of the signal, if we are interested

in the speech recognition problem, or it might be the speaker’s identity if

speaker identification is our goal. For natural language processing, it might

be the part of speech labels for words in grammar checking, but the dictionary

senses of ambiguous words in information retrieval. Similarly, for the protein

folding problem we have a joint database of sequences and three dimensional

structures, and for neural coding a simultaneous recording of sensory stimuli

and neural responses defines implicitly the relevant variables in each domain.

All of these problems have the same formal underlying structure: extract the

information from one variable that is relevant for the prediction of another

one. The choice of additional variable determines the relevant components

or features of the signal in each case.

In this short paper we formalize this intuitive idea using an informa-

tion theoretic approach which extends elements of rate distortion theory.

We derive self consistent equations and an iterative algorithm for finding

representations of the signal that capture its relevant structure, and prove
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convergence of this algorithm.

2 Relevant quantization

Let X denote the signal (message) space with a fixed probability measure

p(x), and let X̃ denote its quantized codebook or compressed representation.

For ease of exposition we assume here that both of these sets are finite, that

is, a continuous space should first be quantized.

For each value x ∈ X we seek a possibly stochastic mapping to a repre-

sentative, or codeword in a codebook, x̃ ∈ X̃, characterized by a conditional

p.d.f. p(x̃|x). The mapping p(x̃|x) induces a soft partitioning of X in which

each block is associated with one of the codebook elements x̃ ∈ X̃, with

probability given by

p(x̃) =
∑

x

p(x)p(x̃|x) . (1)

The average volume of the elements of X that are mapped to the same

codeword is 2H(X |X̃), where

H(X|X̃) = −
∑

x∈X

p(x)
∑

x̃∈X̃

p(x̃|x) log p(x̃|x) (2)

is the conditional entropy of X given X̃.

What determines the quality of a quantization? The first factor is of

course the rate, or the average number of bits per message needed to specify

an element in the codebook without confusion. This number per element of

X is bounded from below by the mutual information

I(X; X̃) =
∑

x∈X

∑

x̃∈X̃

p(x, x̃) log

[

p(x̃|x)

p(x̃)

]

, (3)

since the average cardinality of the partitioning of X is given by the ratio of

the volume of X to that of the mean partition, 2H(X)/2H(X |X̃) = 2I(X ;X̃), via

the standard asymptotic arguments. Notice that this quantity is different

from the entropy of the codebook, H(X̃), and this entropy normally is not

what we want to minimize.
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However, information rate alone is not enough to characterize good quan-

tization since the rate can always be reduced by throwing away details of the

original signal x. We need therefore some additional constraints.

2.1 Relevance through distortion:

Rate distortion theory

In rate distortion theory such a constraint is provided through a distortion

function, d : X× X̃ → R+, which is presumed to be small for good represen-

tations. Thus the distortion function specifies implicitly what are the most

relevant aspects of values in X.

The partitioning of X induced by the mapping p(x̃|x) has an expected

distortion

〈d(x, x̃)〉p(x,x̃) =
∑

x∈X

∑

x̃∈X̃

p(x, x̃)d(x, x̃) . (4)

There is a monotonic tradeoff between the rate of the quantization and the

expected distortion: the larger the rate, the smaller is the achievable distor-

tion.

The celebrated rate distortion theorem of Shannon and Kolmogorov (see,

for example Ref. [2]) characterizes this tradeoff through the rate distortion

function, R(D), defined as the minimal achievable rate under a given con-

straint on the expected distortion:

R(D) ≡ min
{p(x̃|x):〈d(x,x̃)〉≤D}

I(X; X̃) . (5)

Finding the rate distortion function is a variational problem that can be

solved by introducing a Lagrange multiplier, β, for the constrained expected

distortion. One then needs to minimize the functional

F [p(x̃|x)] = I(X; X̃) + β〈d(x, x̃)〉p(x,x̃) (6)

over all normalized distributions p(x̃|x). This variational formulation has the

following well known consequences:

5



Theorem 1 The solution of the variational problem,

δF

δp(x̃|x)
= 0, (7)

for normalized distributions p(x̃|x), is given by the exponential form

p(x̃|x) =
p(x̃)

Z(x, β)
exp [−βd(x, x̃)] , (8)

where Z(x, β) is a normalization (partition) function. Moreover, the La-

grange multiplier β, determined by the value of the expected distortion, D, is

positive and satisfies

δR

δD
= −β . (9)

Proof. Taking the derivative w.r.t. p(x̃|x), for given x and x̃, one obtains

δF

δp(x̃|x)
= p(x)

[

log
p(x̃|x)

p(x̃)
+ 1

−
1

p(x̃)

∑

x′

p(x′)p(x̃|x′) + βd(x, x̃) +
λ(x)

p(x)

]

, (10)

since the marginal distribution satisfies p(x̃) =
∑

x′ p(x′)p(x̃|x′). λ(x) are

the normalization Lagrange multipliers for each x. Setting the derivatives to

zero and writing log Z(x, β) = λ(x)/p(x), we obtain Eq. (8). When varying

the normalized p(x̃|x), the variations δI(X; X̃) and δ〈d(x, x̃)〉p(x,x̃) are linked

through

δF = δI(X; X̃) + βδ〈d(x, x̃)〉p(x,x̃) = 0, (11)

from which Eq. (9) follows. The positivity of β is then a consequence of

the concavity of the rate distortion function (see, for example, Chapter 13 of

Ref. [2]).
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2.2 The Blahut–Arimoto algorithm

An important practical consequence of the above variational formulation is

that it provides a converging iterative algorithm for self consistent determi-

nation of the distributions p(x̃|x) and p(x̃).

Equations (8) and (1) must be satisfied simultaneously for consistent

probability assignment. A natural approach to solve these equations is to

alternately iterate between them until reaching convergence. The following

lemma, due to Csiszár and Tusnády [3], assures global convergence in this

case.

Lemma 2 Let p(x, y) = p(x)p(y|x) be a given joint distribution. Then the

distribution q(y) that minimizes the relative entropy or Kullback–Leibler di-

vergence, DKL[p(x, y)|p(x)q(y)], is the marginal distribution

p(y) =
∑

x

p(x)p(y|x).

Namely,

I(X; Y ) = DKL[p(x, y)|p(x)p(y)] = min
q(y)

DKL[p(x, y)|p(x)q(y)] .

Equivalently, the distribution q(y) which minimizes the expected relative en-

tropy,
∑

x

p(x)DKL[p(y|x)|q(y)],

is also the marginal distribution p(y) =
∑

x p(x)p(y|x).

The proof follows directly from the non–negativity of the relative entropy.

This lemma guarantees the marginal condition Eq. (1) through the same

variational principle that leads to Eq. (8):

Theorem 3 Equations (1) and (8) are satisfied simultaneously at the mini-

mum of the functional,

F = −〈log Z(x, β)〉p(x) = I(X; X̃) + β〈d(x, x̃)〉p(x,x̃) , (12)

where the minimization is done independently over the convex sets of the

normalized distributions, {p(x̃)} and {p(x̃|x)},

min
p(x̃)

min
p(x̃|x)

F [p(x̃); p(x̃|x)] .
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These independent conditions correspond precisely to alternating iterations

of Eq. (1) and Eq. (8). Denoting by t the iteration step,

{

pt+1(x̃) =
∑

x p(x)pt(x̃|x)

pt(x̃|x) = pt(x̃)
Zt(x,β)

exp(−βd(x, x̃))
(13)

where the normalization function Zt(x, β) is evaluated for every t in Eq.

(13). Furthermore, these iterations converge to a unique minimum of F in

the convex sets of the two distributions.

For the proof, see references [2, 4]. This alternating iteration is the well

known Blauht-Arimoto (BA) algorithm for calculation of the rate distortion

function.

It is important to notice that the BA algorithm deals only with the op-

timal partitioning of the set X given the set of representatives X̃, and not

with an optimal choice of the representation X̃. In practice, for finite data,

it is also important to find the optimal representatives which minimize the

expected distortion, given the partitioning. This joint optimization is similar

to the EM procedure in statistical estimation and does not in general have a

unique solution.

3 Relevance through another variable:

The Information Bottleneck

Since the “right” distortion measure is rarely available, the problem of rel-

evant quantization has to be addressed directly, by preserving the relevant

information about another variable. The relevance variable, denoted here by

Y , must not be independent from the original signal X, namely they have

positive mutual information I(X; Y ). It is assumed here that we have access

to the joint distribution p(x, y), which is part of the setup of the problem,

similarly to p(x) in the rate distortion case.1

1The problem of actually obtaining a good enough sample of this distribution is an
interesting issue in learning theory, but is beyond the scope of this paper. For a start on
this problem see Ref. [1].
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3.1 A new variational principle

As before, we would like our relevant quantization X̃ to compress X as much

as possible. In contrast to the rate distortion problem, however, we now want

this quantization to capture as much of the information about Y as possible.

The amount of information about Y in X̃ is given by

I(X̃; Y ) =
∑

y

∑

x̃

p(y, x̃) log
p(y, x̃)

p(y)p(x̃)
≤ I(X; Y ). (14)

Obviously lossy compression cannot convey more information than the orig-

inal data. As with rate and distortion, there is a tradeoff between compress-

ing the representation and preserving meaningful information, and there is

no single right solution for the tradeoff. The assignment we are looking for is

the one that keeps a fixed amount of meaningful information about the rel-

evant signal Y while minimizing the number of bits from the original signal

X (maximizing the compression). 2 In effect we pass the information that X

provides about Y through a “bottleneck” formed by the compact summaries

in X̃.

We can find the optimal assignment by minimizing the functional

L[p(x̃|x)] = I(X̃; X) − βI(X̃; Y ), (15)

where β is the Lagrange multiplier attached to the constrained meaningful

information, while maintaining the normalization of the mapping p(x̃|x) for

every x. At β = 0 our quantization is the most sketchy possible—everything

is assigned to a single point—while as β →∞ we are pushed toward arbitrar-

ily detailed quantization. By varying the (only) parameter β one can explore

the tradeoff between the preserved meaningful information and compression

at various resolutions. As we show elsewhere [1, 5], for interesting special

cases (where there exist sufficient statistics) it is possible to preserve almost

all the meaningful information at finite β with a significant compression of

the original data.

2It is completely equivalent to maximize the meaningful information for a fixed com-
pression of the original variable.
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3.2 Self-consistent equations

Unlike the case of rate distortion theory, here the constraint on the meaning-

ful information is nonlinear in the desired mapping p(x̃|x) and this is a much

harder variational problem. Perhaps surprisingly, this general problem of

extracting the meaningful information—minimizing the functional L[p(x̃|x)]

in Eq. (15)—can be given an exact formal solution.

Theorem 4 The optimal assignment, that minimizes Eq. (15), satisfies the

equation

p(x̃|x) =
p(x̃)

Z(x, β)
exp

[

−β
∑

y

p(y|x) log
p(y|x)

p(y|x̃)

]

, (16)

where the distribution p(y|x̃) in the exponent is given via Bayes’ rule and the

Markov chain condition X̃ ← X ← Y , as,

p(y|x̃) =
1

p(x̃)

∑

x

p(y|x)p(x̃|x)p(x). (17)

This solution has a number of interesting features, but we must emphasize

that it is a formal solution since p(y|x̃) in the exponential is defined implicitly

in terms of the assignment mapping p(x̃|x). Just as before, the marginal

distribution p(x̃) must satisfy the marginal condition Eq. (1) for consistency.

Proof. First we note that the conditional distribution of y on x̃

p(y|x̃) =
∑

x∈X

p(y|x)p(x|x̃) , (18)

follows from the Markov chain condition Y ← X ← X̃.3 The only varia-

tional variables in this scheme are the conditional distributions, p(x̃|x), since

other unknown distributions are determined from it through Bayes’ rule and

consistency. Thus we have

p(x̃) =
∑

x

p(x̃|x)p(x) , (19)

3It is important to notice that this not a modeling assumption and the quantization X̃

is not used as a hidden variable in a model of the data. In the latter, the Markov condition
would have been different: Y ← X̃ ← X.
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and

p(x̃|y) =
∑

x

p(x̃|x)p(x|y) . (20)

The above equations imply the following derivatives w.r.t. p(x̃|x),

δp(x̃)

δp(x̃|x)
= p(x) (21)

and

δp(x̃|y)

δp(x̃|x)
= p(x|y) . (22)

Introducing Lagrange multipliers, β for the information constraint and λ(x)

for the normalization of the conditional distributions p(x̃|x) at each x, the

Lagrangian, Eq. (15), becomes

L = I(X, X̃) − βI(X̃, Y )−
∑

x,x̃

λ(x)p(x̃|x) (23)

=
∑

x,x̃

p(x̃|x)p(x) log

[

p(x̃|x)

p(x̃)

]

− β
∑

x̃,y

p(x̃, y) log

[

p(x̃|y)

p(x̃)

]

−
∑

x,x̃

λ(x)p(x̃|x) . (24)

Taking derivatives with respect to p(x̃|x) for given x and x̃, one obtains

δL

δp(x̃|x)
= p(x) [1 + log p(x̃|x)]−

δp(x̃)

δp(x̃|x)
[1 + log p(x̃)]

−β
∑

y

δp(x̃|y)

δp(x̃|x)
p(y) [1 + log p(x̃|y)]

−β
δp(x̃)

δp(x̃|x)
[1 + log p(x̃)]− λ(x) . (25)

Substituting the derivatives from Eq’s. (21) and (22) and rearranging,

δL

δp(x̃|x)
= p(x)

{

log

[

p(x̃|x)

p(x̃)

]

− β
∑

y

p(y|x) log

[

p(y|x̃)

p(y)

]

−
λ(x)

p(x)

}

.(26)
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Notice that
∑

y p(y|x) log p(y|x)
p(y)

= I(x, Y ) is a function of x only (independent

of x̃) and thus can be absorbed into the multiplier λ(x). Introducing

λ̃(x) =
λ(x)

p(x)
− β

∑

y

p(y|x) log

[

p(y|x)

p(y)

]

,

we finally obtain the variational condition:

δL

δp(x̃|x)
= p(x)

[

log
p(x̃|x)

p(x̃)
+ β

∑

y

p(y|x) log
p(y|x)

p(y|x̃)
− λ̃(x)

]

= 0 , (27)

which is equivalent to equation (16) for p(x̃|x),

p(x̃|x) =
p(x̃)

Z(x, β)
exp (−βDKL [p(y|x)|p(y|x̃)]) , (28)

with

Z(x, β) = exp[βλ̃(x)] =
∑

x̃

p(x̃) exp (−βDKL [p(y|x)|p(y|x̃)]) ,

the normalization (partition) function.

Comments:

1. The Kullback–Leibler divergence, DKL[p(y|x)|p(y|x̃)], emerged as the

relevant “effective distortion measure” from our variational principle

but is not assumed otherwise anywhere! It is therefore natural to con-

sider it as the “correct” distortion d(x, x̃) = DKL[p(y|x)|p(y|x̃)] for

quantization in the information bottleneck setting.

2. Equation (28), together with equations (18) and (19), determine self

consistently the desired conditional distributions p(x̃|x) and p(x̃). The

crucial quantization is here performed through the conditional distri-

butions p(y|x̃), and the self consistent equations include also the opti-

mization over the representatives, in contrast to rate distortion theory,

where the selection of representatives is a separate problem.
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3.3 The information bottleneck iterative algorithm

As for the BA algorithm, the self consistent equations (16) and (17) suggest

a natural method for finding the unknown distributions, at every value of β.

Indeed, these equations can be turned into converging, alternating iterations

among the three convex distribution sets, {p(x̃|x)}, {p(x̃)}, and {p(y|x̃)}, as

stated in the following theorem.

Theorem 5 The self consistent equations (18), (19), and (28), are satisfied

simultaneously at the minima of the functional,

F [p(x̃|x); p(x̃); p(y|x̃)] = −〈log Z(x, β)〉p(x) (29)

= I(X; X̃) + β〈DKL[p(y|x)|p(y|x̃)]〉p(x,x̃) ,(30)

where the minimization is done independently over the convex sets of the

normalized distributions, {p(x̃)} and {p(x̃|x)} and {p(y|x̃)}. Namely,

min
p(y|x̃)

min
p(x̃)

min
p(x̃|x)

F [p(x̃|x); p(x̃); p(y|x̃)] .

This minimization is performed by the converging alternating iterations. De-

noting by t the iteration step,














pt(x̃|x) = pt(x̃)
Zt(x,β)

exp(−βd(x, x̃))

pt+1(x̃) =
∑

x p(x)pt(x̃|x)
pt+1(y|x̃) =

∑

y p(y|x)pt(x|x̃)

(31)

and the normalization (partition function) Zt(β, x̃) is evaluated for every t

in Eq. (31).

Proof. For lack of space we can only outline the proof. First we show that

the equations indeed are satisfied at the minima of the functional F (known

for physicists as the “free energy”). This follows from lemma (2) when applied

to I(X; X̃) with the convex sets of p(x̃) and p(x̃|x), as for the BA algorithm.

Then the second part of the lemma is applied to 〈DKL[p(y|x)|p(y|x̃)]〉p(x,x̃)

which is an expected relative entropy. Equation (28) minimizes the expected

relative entropy w.r.t. to variations in the convex set of the normalized
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{p(y|x̃)}. Denoting by d(x, x̃) = DKL[p(y|x)|p(y|x̃)] and by λ(x̃) the normal-

ization Lagrange multipliers, we obtain

δd(x, x̃) = δ

(

−
∑

y

p(y|x) log p(y|x̃) + λ(x̃)(
∑

y

p(y|x̃)− 1)

)

(32)

=
∑

y

(

−
p(y|x)

p(y|x̃)
+ λ(x̃)

)

δp(y|x̃) . (33)

The expected relative entropy becomes,

∑

x

∑

y

(

−
p(y|x)p(x|x̃)

p(y|x̃)
+ λ(x̃)

)

δp(y|x̃) = 0 , (34)

which gives Eq. (28), since δp(y|x̃) are independent for each x̃. Equation

(28) also have the interpretation of a weighted average of the data conditional

distributions that contribute to the representative x̃.

To prove the convergence of the iterations it is enough to verify that

each of the iteration steps minimizes the same functional, independently,

and that this functional is bounded from below as a sum of two non–negative

terms. The only point to notice is that when p(y|x̃) is fixed we are back to

the rate distortion case with fixed distortion matrix d(x, x̃). The argument

in [3] for the BA algorithm applies here as well. On the other hand we

have just shown that the third equation minimizes the expected relative

entropy without affecting the mutual information I(X; X̃). This proves the

convergence of the alternating iterations. However, the situation here is

similar to the EM algorithm and the functional F [p(x̃|x); p(x̃); p(y|x̃)] is

convex in each of the distribution independently but not in the product space

of these distributions. Thus our convergence proof does not imply uniqueness

of the solution.

3.4 The structure of the solutions

The formal solution of the self consistent equations, described above, still

requires a specification of the structure and cardinality of X̃ , as in rate

distortion theory. For every value of the Lagrange multiplier β there are

corresponding values of the mutual information IX ≡ I(X, X̃), and IY ≡
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I(X̃, Y ) for every choice of the cardinality of X̃. The variational principle

implies that

δI(X̃, Y )

δI(X, X̃)
= β−1 > 0 , (35)

which suggests a deterministic annealing approach. By increasing the value

of β one can move along convex curves in the “information plane” (IX , IY ).

These curves, analogous to the rate distortion curves, exists for every choice

of the cardinality of X̃. The solutions of the self consistent equations thus

correspond to a family of such annealing curves, all starting from the (trivial)

point (0, 0) in the information plane with infinite slope and parameterized by

β. Interestingly, every two curves in this family separate (bifurcate) at some

finite (critical) β through a second order phase transition. These transitions

form a hierarchy of relevant quantizations for different cardinalities of X̃ , as

described in [1, 5, 6].

Further work

The most fascinating aspect of the information bottleneck principle is that it

provides a unified framework for different information processing problems,

including prediction, filtering and learning [1]. There are already several

successful applications of this method to various “real” problems, such as

semantic clustering of English words [6], document classification [5], neural

coding, and spectral analysis.
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