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1. INTRODUCTION

For the experiments in the newest fields of phys-
ics—quantum computing, quantum communication,
and quantum cryptography [1, 2]—the quantitative
analysis of the possibly available amount of the specif-
ically quantum 

 

coherent information

 

 [3, 4] is of sub-
stantial interest, since this parameter determines the
potential information content of the obtained data. We
have previously shown [5] how the general definition of
the coherent information can be applied to the analysis
of various physical models of quantum channels, which
in general may have qualitatively different structure of
the input and output state spaces.

In this work, we consider another important exam-
ple of a quantum channel: the 

 

Λ

 

-system [6] interacting
with a free-space photon field. Atomic 

 

Λ

 

-systems are
particularly interesting for experimental implementa-
tions of the quantum-computing operations since the
quantum information in this system can be stored in
radiatively stable two-level subsystems of separate
atoms and manipulated via radiatively excited states
with the help of laser radiation [7]. The specific feature
of the channel considered in this paper is the absence of
any information at the output in the absence of laser
excitation, which would otherwise act on the input
states and lead to the excitation of radiatively active
states. Thus, one can distinguish a special class of

 

active

 

 channels whose capacity is intrinsically deter-
mined by the external disturbance. The examples of
quantum channels considered in [5] include the follow-
ing channels belonging this class: (i) a channel between
an allowed transition and a forbidden transition of a
(hydrogen) atom that are coupled by an applied exter-
nal electric field and (ii) a channel between a pair of
two-level atoms (TLAs) in the presence of an external
excitation that entangles their states. The remaining
examples belong to the class of 

 

passive

 

 channels, in
which the information exchange takes place in the
absence of an external perturbation as well.

2. THE DEFINITION AND THE PHYSICAL 
MEANING OF COHERENT INFORMATION

Consider a quantum channel whose input state is
described by a density matrix  and that corresponds
to a superoperator transformation 

 

C

 

, which relates the
input and output density matrices,  = 

 

C

 

. In this
case, the coherent information is defined as

(1)

Here, 

 

S
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 is the so-called entropy
exchange with the reservoir responsible for the noise in
the channel. This definition is a direct generalization of
classical Shannon’s information measure [8] to the
channels whose both inputs and outputs are quantum.

In the case of the error-free transmission of all 

 

M

 

possible values of a quantity 

 

x

 

, the classical Shannon
information is given by 

 

I

 

 = . For this choice of
the logarithm base, a “bit” is conventionally introduced
as a unit of measure. If the transmitted values of 

 

x

 

 have
unequal probabilities described by the probability dis-
tribution 

 

P

 

(

 

x

 

), the above definition applies not directly
to 

 

x

 

, but rather to an ergodic sequence 

 

x

 

k

 

, 

 

k

 

 = 1, …, 

 

n

 

 of
statistically independent copies of the variable 

 

x

 

 with
the probability distribution 

 

P

 

(

 

x

 

1

 

) · … · 

 

P

 

(

 

x

 

n

 

). In this
case, as 

 

n

 

  

 

∞

 

, the set of sequences with asymptoti-
cally nonzero probabilities consists of 

 

M

 

n

 

 = 2

 

S

 

(

 

P

 

)

 

approximately equally probable members; the informa-
tion per letter is therefore ( )/

 

n

 

 = 

 

S

 

(

 

p

 

). This
result, which, in particular, plays a fundamental role in
statistical physics, makes it possible to ascribe the
amount of information 

 

I

 

 = 

 

S

 

(

 

P

 

) to the noiseless trans-
mission of all possible values of the variable 

 

x

 

 with the
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probability distribution 

 

P

 

(

 

x

 

). If errors may occur during
the transmission, the corresponding nontrivial informa-
tion-transmission channel is described by the condi-
tional probability distribution 

 

P

 

(

 

y

 

|

 

x

 

) of the output vari-
able 

 

y

 

 for a fixed input 

 

x

 

. In this case, for long ergodic
sequences, the accurately transmitted information per
letter is given by Shannon’s 

 

mutual information

 

(2)

Here, 

 

P

 

x

 

, 

 

P

 

y

 

, and 

 

P

 

xy

 

 denote respectively the probability
distributions for the input 

 

x

 

, the output 

 

y

 

, and the pair 

 

x

 

, 

 

y

 

.
The first equality in (2) demonstrates the symmetric
(mutual) nature of the Shannon information with
respect to the input and the output. The second equality
represents the information as the difference between
the entropy of the output variable 

 

y

 

 and the average
entropy of the variable 

 

y

 

 introduced by the channel dur-
ing the transmission of a given letter 

 

x

 

. The meaning of
the last equality is most evident for the channel, in
which the transmitted letters 

 

x

 

 are mapped to nonover-
lapping subsets 

 

M

 

x

 

 of the set of possible values of 

 

y

 

 

 

∈

 

, i.e., the distortions are reduced to the scatter of
the output variable y within the regions Mx. The trans-
mitted information is defined in this case as the differ-
ence between the full entropy of the variable y and the
average entropy of the subsets Mx.

The basic definition of the coherent information is
given by the relationship Ic = , where H is
the Hilbert space of the input quantum system all the
states of which are transmitted without errors. The only
name for the unit of quantum information is provided
by the term “qubit,” which is used in quantum comput-
ing theory and which corresponds to a two-level quan-
tum system with the dimensionality dimH = 2. The
essentially new element of this theory is the quantum
nature of the transmitted data, which can be found in
any coherent superposition of basis elements. Using the
same line of reasoning as in the previous paragraph,
one can show that, if the distribution of the input states
is described by the density matrix  and the channel
transmits quantum states ψ ∈  H noiselessly, a measure
of quantum information is provided by the von Neu-
mann entropy, i.e., the direct operator generalization of
the expression for the classical entropy. The simplest
channel realizing noiseless information transmission is,
for example, the dynamic quantum evolution of a
closed system between two time instants, t = 0 and
t ^ 0.

If the quantum channel is noisy, the output state is a
linear transform of the input state:  = C . The role
of the channel superoperator C is then analogous to that
of the aforementioned conditional probability distribu-
tion P(y |x) of a classical channel. The quantum gener-

I S Px( ) S Py( ) S Pxy( )–+=

=  S Py( ) S P y x( )[ ]P x( ).
x

∑–

Mx∪

dim H2log

ρ̂in

ρ̂out ρ̂in

alization of Shannon’s definition (2) is based on the
expression behind the second equality, the first term of
which—the quantum entropy of the output—has a
unique quantum generalization in the form of the von
Neumann entropy. The second term, which describes
the entropy introduced by the channel (the so-called
entropy exchange Se), should be zero for the error-free
transmission, i.e., for the identity superoperator C = I,
in the quantum case as well. On the other hand, if the
input state is pure (the analog of a determinate classical
state), this term must coincide with the output entropy,
which in this case is completely due to the channel.
These requirements can be satisfied if, instead of the
input quantum system, one considers its extension
H ⊗  H ', where the degrees of freedom of H ' do not
interact with those of the channel, and the state  of
the joint system is pure and such that its averaging pro-
duces the original state  [3]. This procedure of
replacing the initial quantum system is termed the puri-
fication of a mixed quantum state. The corresponding
transformation that the channel performs on the
extended quantum system is C ⊗  I, where I ensures that
the variables of the ancillary system remain unchanged.
The resulting entropy exchange then coincides with the
entropy of the transformed extended system. The
explicit form of the purified state in H ⊗  H (i.e., in the
case H ' = H) is implicitly contained in an expression
derived in [4], which yields

(3)

where pi , |i〉 , and 〈 j | are respectively the eigenvalues,
and the right and left eigenvectors of the density matrix

; |i*〉  and 〈 j* | stand for the complex-conjugate vec-
tors. The purified state is thus combined from the input
state and its “mirror reflection” [9]. The corresponding
entropy exchange is

(4)

where

(5)

In the general case, the channel transformation C can
describe the information transfer to an output system
with a nonidentical Hilbert space, Hout ≠ H.

In view of possible physical applications, we con-
sider it important to give an adequate physical interpre-
tation of the density matrix (5) introduced in [4], as
well as the density matrix of the purified state (3) intro-
duced here. Both of these definitions are based on the
aforementioned mathematical arguments. Expression
(3) describes the joint state of the input–mirror reflec-
tion system, which gives rise to the input–output quan-
tum-mechanical state after the transmission. In the
classical theory, the state (5) corresponds to the condi-
tional distribution P(y |x) of the output for a fixed input

ρ̂P

ρ̂in

ρ̂P pi p j i| 〉 j〈 |
ij

∑ i*| 〉 j*〈 |,⊗=

ρ̂in

Se S ρ̂α( ),=

ρ̂α C I⊗( )ρ̂P.=
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and, at the same time, to the averaging over the input
states in accordance with the distribution P(x). The con-
ditional distribution is represented by the superoperator
C, whereas the averaging over the input is represented

by the structure of the wave function ΨP = |i〉|i*〉
that corresponds to the purified state (3). This two-par-
ticle state is entangled, that is, it cannot be decomposed
as a statistical mixture of density matrices of the type
|ψi 〉|ϕ i 〉〈ϕ i |〈ψi |, which correspond to pure direct prod-
ucts |ψi 〉|ϕ i 〉  of one-particle states. Its purely quantum
fluctuations reproduce the mixed-nature fluctuations of
the density matrix , which is defined in the first of
the subspaces involved in the direct product H ⊗  H.
Thus, the density matrix (5) describes the state of the
input–output system where the input is replaced by its
mirror reflection [9]. It defines the entropy exchange of
the channel and, according to its physical meaning, is
qualitatively different from the usual one-instance den-
sity matrix since the corresponding nonzero entropy
appears as a result of the transformation of the input
state during its transmission in the channel. Unlike the
usual two-particle density matrix, this matrix always
corresponds to a pure state and zero entropy if the chan-
nel is noiseless.

3. THE MODEL OF THE CONSIDERED 
CHANNEL

The total dynamic system involved in the consid-
ered problem consists of a Λ-system, which, in turn, is
constituted by three levels |1〉 , |2〉 , and |3〉 , and the field
of free photons described by the Hilbert space HF. The
corresponding total Hilbert space has the form HΛ ⊗  HF,
where HΛ denotes the three-dimensional Hilbert space
of the Λ-system. For the purposes of the most reliable
storage and efficient manipulation of quantum informa-
tion, the most interesting systems are those where the
transitions |1〉   |3〉  and |2〉   |3〉  are allowed and
the transition |1〉   |2〉  is forbidden. The set of radia-
tively stable states |1〉  and |2〉  can then be viewed as a
ground two-level state (GTLS) of a Λ-system, which
constitutes a qubit of quantum information. To extract
this information in the form of photon field excitation,

two laser fields, ELcos(ωLt + ϕ1) and cos(  + ϕ2),

are used, with their optical frequencies ωL and  satis-
fying the Raman resonance condition δR ≈ 0 [6], where

(6)

is the Raman detuning. The amplitudes EL and , the
phases ϕ1, 2, and the relaxation parameters of the Λ-sys-
tem determine the response of the Λ-system and the
state of the photon field at any time instant t > 0.

The study of coherent information extracted in this
way simultaneously answers the fundamental question
of whether quantum information can be extracted using

pi∑

ρ̂in

          
     

EL' ωL' t

ωL'

δR ωL' ωL– ω12–=

EL'

 

a classical excitation, which, if weak, can only lead to
the quasi-classical excitation of the photon field to a
coherent state. As far as the TLA is concerned, this
question should generally be answered in the positive
way, as it follows, for example, from the results of [10].
This is due to the essentially quantum character of an
atom, which can be viewed as a converter of the classi-
cal laser field.

In its pure form, the problem of the 

 

Λ

 

-system–pho-
ton field channel can be considered only in the case of
its single utilization since a reset of the channel
involves the introduction of new quantum systems (res-
ervoirs), which bring in new quantum information.
A single extraction of quantum information is realized
by a pulsed laser excitation, which entangles the initial
state of the atom with the states of the photon field.
Apart from the obvious qualitative differences between
a 

 

Λ

 

-system and a TLA, this process is analogous to the
atom–field channel considered in [5]. Thus, the initial
analysis of this problem naturally leads us to the prob-
lem of the pulsed excitation that should be applied at
times shorter than the radiative lifetime to avoid decay-
induced distortions and thereby provide the maximum
flexibility of the control.

 

3.1. Calculation of the Coherent Information
in the Case of Pulsed Excitation

 

In the case of pulsed excitation, the information is
transferred from a specified initial state to a state of the
photon field created due to the action of exciting laser
pulses on the 

 

Λ

 

-system. The input of the channel is the
state at the time instant 

 

t

 

 = 0, specified by an arbitrary
2 

 

×

 

 2 density matrix of the form

, (7)

where the matrix 

 

ρ

 

kl

 

, 

 

k

 

, 

 

l

 

 = 1, 2 is positive-definite and
the trace is equal to unity, 

 

ρ

 

11

 

 + 

 

ρ

 

22

 

 = 1. The initial state
of the 

 
Λ

 
-system is then given by the same matrix (7)

viewed as a three-level system operator (for the consid-
ered class of initial states, we assume that the population
of the excited state 

 

|

 

3

 

〉

 

 is zero). In the rotating-wave
approximation, the Liouvillian 

 

L

 

 does not contain any
relaxation parameters if we restrict ourselves to laser pulses
with durations 

 

τ

 

p

 

 

 

!

 

 

 

γ

 

–1

 

, where 

 

γ

 

 is the rate of radiative
decay. Consequently, any pure initial state 

 

ψ

 

 = 

 

c

 

1

 

|

 

1

 

〉

 

 + 

 

c

 

2

 

|

 

2

 

〉

 

is transformed to a pure excited state of the form

(8)
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This state subsequently relaxes by emitting photons
and becomes a metastable state of the form  =

 

|

 

k

 

〉〈

 

l

 

|

 

. The latter state can also contain some
information about the initial state, making the channel

   another subject for consideration. How-
ever, the optimization of this channel over the exciting
field is trivial: the optimum corresponds to no excita-
tion. The nontrivial channel that is considered here
involves the transfer of information to the photon field.

Photons are emitted exclusively by the excited state

 

|

 

3

 

〉

 

. If the interaction Hamiltonian preserves the total
number of excitation quanta in the atom + field system,
the dynamics can be solved exactly: it is reduced to the
emission of a superposition of two photons correspond-
ing to the transitions 

 

|

 

3

 

〉

 

  

 

|

 

1

 

〉

 

 and 

 

|

 

3

 

〉

 

  

 

|

 

2

 

〉

 

. The
photons are described in the same fashion as in the case
of the TLA except for the fact that one has to take into
account the connection via the common excited level

 

|

 

3

 

〉

 

. In contrast to the TLA, the photon emitted by the

 

Λ

 

-system splits into a superposition of the two photons
that correspond to its two transitions and oscillate at the
respective frequencies 

 

ω

 

13

 

 and 

 

ω23.

Thus, at any time instant t ≥ γ–1, τp, the state of the
atom + field system is described by the wave function

(9)

Here, ω1, ω2, and ω3 are the eigenfrequencies of the
energy levels; Λ13 and Λ23 are the radiative frequency
shifts due to the transitions 1  3 and 2  3; γ13
and γ23 are the rates of the radiative decay from level 3
to levels 1 and 2, respectively; γ = γ13 + γ23 is the total
decay rate of the excited state 3; Λ = Λ13 + Λ23 is the
total frequency shift; α1 = γ13/γ and α2 = γ23/γ describe
the distribution the radiative decay over the two consid-
ered dipole transitions; |0〉 , |ψ13〉 , and |ψ23〉  are, respec-
tively, the vacuum state of the photon field and the
states with a single photon at the frequency ω13 and ω23.
The first three terms describe a superposition of the
atomic states in the absence of photons; the last term, a
superposition of two photon states that are entangled
with the corresponding levels 1 and 2 of the Λ-system.
We ignore the decoherence in this approach as the pho-
ton wave functions |ψ13〉  and |ψ23〉  are assumed to be
known exactly due to the fact that we impose no restric-
tions on the way the photon signal can be used [11]. As
opposed to the TLA–photon field channel, where the
relevant set of photon states constitutes a two-level sys-
tem, here it consists of three states, |0〉 , |ψ13〉 , and |ψ23〉 ,
which are viewed, similar to [5], as the basis states, in
terms of which the subsequent analysis of the channel

ρ̂ f

ρ fklk l, 1=
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ρ̂in ρ̂ f

Ψ t( ) ψ1 0( )e
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i ω3 Λ+( )t– γt /2–

3| 〉 0| 〉

+ ψ3 0( ) 1 e
γt–

– α1 1| 〉 ψ13| 〉 α2 2| 〉 ψ23| 〉+( ).

           

transformation is performed. It is easy to verify that the
partial density matrices of the atom and the field that
are associated to the wave function (9) correspond to
the description of the radiative decay in terms of the
relaxation dynamics of open systems. As for the fast-
oscillating exponents before the atomic wave functions

 

|

 

1, 2, 3

 

〉

 

, one can easily see that, being associated to
wave functions, they do not affect the information char-
acteristic and therefore can be neglected during their
calculation.

The function (9) describes the isometric transforma-
tion 

 

V

 

: atom  atom + field, i.e., the transformation
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) of the form 
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, where 

 

k

 

, 

 

l

 

 = 1, 2, 3 number the

atomic states, and 

 

α

 

 numbers the states of the photon
field. Expressing 

 

ψ

 

l

 

(0) through the initial state of the

 

Λ

 

-system before the application of the laser pulses, we
obtain an isometric mapping of the GTLS to a state of
the atom + field system described by the matrix 

 

W

 

k

 

α

 

, 

 

m

 

 =

 

U

 

lm

 

. The corresponding superoperator of the

GTLS–photon field channel has the form 

 

C

 

 =

 

〈

 

m

 

|

 

 

 

(

 

 

 

|

 

n

 

〉

 

 [5], where 

 

(

 

 is the substitution symbol
that should be replaced by the density matrix to be
transformed, , and  is the 2 

 

×

 

 2 matrix of the pho-
ton-field operators, which are represented by 3 

 

×

 

 3
matrices with the matrix elements

(10)

Here, the summation is performed over all three atomic
states, and the output indices number the photon states
0, 

 
ψ

 

13

 
, and 

 
ψ

 

23

 
.

If the 

 

Λ

 

-system is excited by two rectangular pulses
with a negligible detuning and a duration 

 

τ

 

p

 

, the matrix

 

U

 

 defining the initial atomic state depends on three

parameters: 

 

θ

 

 = 

 

τ

 

p

 

 is the total action angle of

the two pulses; 

 

χ

 

 = /

 

Ω

 

2

 

) is the angle describ-
ing the distribution of the field intensity over the pulses;

 

ϕ

 

 is the relative phase of the pulses. By varying these
parameters we can optimize the amount of information
that is transferred from the initial state to the states of
the photon field. In the case of the maximum-entropy

initial state  = /2, which provides the maximum
amount of information for a certain choice of the laser
parameters (one can show this using the symmetry
arguments), the coherent information does not depend
on the parameters 

 

χ

 

, 

 

ϕ

 

, which can therefore be
neglected. The corresponding set of operators  has
the form

Vkα l,kα l∑

Vkα l,l∑
ŝmn∑

ρ̂in ŝmn
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(11)

After defining the operators , which determine
the superoperator C of the considered channel, we carry
out the rest of the calculation using the general formu-
las given in [5].

4. RESULTS OF CALCULATION

Figures 1 and 2a show the dependence of the coher-
ent information in a symmetric Λ-system (γ13 = γ23) on
the relevant parameters of the considered channel. The
total action integral θ = Ωτp is one of such parameters.
In the case of a symmetric system and the initial state

 = /2, the coherent information does not depend on
the distribution of the driving intensity over the two
laser fields. Input density matrices of the general form
do not provide the maximum amount of information;
moreover, in this case, the coherent information
depends on the intensity distribution of the exciting
pulses, i.e., the parameter χ. Figure 1a shows the coher-

ent information at t  ∞ as a function of the angle χ
in the case of the diagonal input density matrix  =

. Figure 1b shows the coherent information

as a function of the dimensionless time γt in the case of

the maximum-entropy input density matrix  = /2.
Figure 2 shows the coherent information of the sym-
metric system at t  ∞ as a function of the input den-
sity matrix .

It follows from these results that, in the case of a
symmetric Λ-system, the maximum of the coherent
information is achieved with the following parameters:

The first condition ensures that the amount of quantum
information at the input is maximum; the second, that it
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Fig. 1.

 

 Coherent information in a symmetric 

 

Λ

 

-system (a) as a function of the total action integral 

 

θ

 

 = 

 

Ωτ

 

p

 

 and the angle 

 

χ

 

 describing
the distribution of the driving field amplitudes over the levels 1 and 2 with 

 

t

 

  

 

∞

 

 (the input density matrix is diagonal with the
matrix element 

 

ρ11 = 1/4) and (b) as a function of the total action integral θ = Ωτp and the dimensionless time γt (the input density

matrix is the maximum-entropy state /2).Î

(a) (b)
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is maximally transferred to the photon field; and the
third, that the population from the ground state is max-
imally transferred to the excited one. The correspond-
ing maximum amount of quantum information, i.e., the
potentially attainable information capacity of the chan-
nel, is Ic = 0.6887.

Figure 2b shows the dependence of Ic on the asym-
metry degree γ23/γ13 and the driving-intensity distribu-
tion angle χ in the case of a fully emitted photon, i.e.,

γt  ∞, the optimal value of θ = π, and  = /2. The
maximum, Ic = 1 qubit, is reached at χ = π/2 and
γ23/γ13 = 0, which corresponds to the reduction of the
Λ-system to a two-level system. The optimization over
the relative phase of the pulses φ is redundant for any
values of the other parameters since this corresponds to
a variation in the coding method but not the amount of
information.

5. CONCLUSIONS

Thus, the utilization of a symmetric Λ-system for
the transfer of information to the photon field some-
what reduces the information capacity of the channel
with respect to the emission of a two-level system. This
deficiency in the information capacity can be viewed as
the commission for the radiative stability of the stored
qubit and the advantages in the radiative manipulation
of its states. Therefore, the photon field cannot, even in
principle, be used for quantum computation as an
equivalent of the information qubit stored in the ground
state of the Λ-system. Nevertheless, as far as multiqubit
operations are concerned, the information loss amounts
to only 31%, which demonstrates the possibilities for a
fairly efficient utilization of the photon field for the
physical conversion of coherent quantum information.
The performed analysis also provides a general idea
about the information losses intrinsically related to the

ρ̂in Î

extraction of the information about the ground state of
the Λ-system by the methods of laser spectroscopy.
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