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Abstract

Random Boolean Networks (RBNs) are discrete dynamical
systems which have been used to model Gene Regulatory
Networks. We investigate the well-known phase transition
between ordered and chaotic behavior in RBNs from the per-
spective of the distributed computation conducted by their
nodes. We use a recently published framework to character-
ize the distributed computation in terms of its underlying in-
formation dynamics: information storage, information trans-
fer and information modification. We find maximizations in
information storage and coherent information transfer on ei-
ther side of the critical point, allowing us to explain the phase
transition in RBNs in terms of the intrinsic distributed com-
putations they are undertaking.

Introduction

The information dynamics of distributed computation has

recently emerged as an important tool for studying com-

plex systems, e.g. information transfer in cellular automata

(Lizier et al., 2008b, 2007). We believe that information dy-

namics are particularly relevant to networked systems: while

network’s structure has attracted much attention (Aldana,

2003), their time-series dynamics are “much less well under-

stood” (Mitchell, 2006). Although the time-series dynamics

of state-space trajectories and damage spreading are estab-

lished, Mitchell (2006) suggests that “the main challenge is

understanding the dynamics of the propagation of informa-

tion ... in networks, and how these networks process such

information.”

Several studies have investigated the propagation and the

processing of information in networks, in particular report-

ing phase transitions of these properties between ordered

and chaotic regimes. Solé and Valverde (2001) investigated

the effect of varying the message generation rate in a model

of computer networks, finding phase transitions maximiz-

ing the number of packets actually delivered and the mu-

tual information in the status of random node pairs. They

infer that information transfer is maximized at the critical

state. Kinouchi and Copelli (2006) investigated varying the

“branching ratio” (effectively an activity level) in a network

of excitable elements, finding phase transitions maximizing

the dynamic range of the element’s output, and inferring a

maximization of information processing at criticality.

We are particularly interested in investigating the infor-

mation dynamics of Random Boolean Networks (RBNs)

(Kauffman, 1993), in part because of the power in their gen-

erality as discrete dynamical network models with a large

sample space available. Also, they have a well-known phase

transition from ordered to chaotic dynamics, in terms of

length of transients in phase space with respect to average

connectivity or activity level. We are also motivated by their

popularity as models of Gene Regulatory Networks (GRNs).

Perhaps most importantly, there have been several recent at-

tempts to study the computational properties of RBNs (in

particular information transfer). Here, Ribeiro et al. (2008)

measure mutual information in the states of random node

pairs as a function of connectivity in the network, and Rämö

et al. (2007) measure the uncertainty (entropy) in the size of

perturbation avalanches as a function of an order parameter.

Both find maximization near the critical point, claiming that

their results imply maximization of information propagation

in this regime.

While these results are interesting, they do not directly

measure the information dynamics claimed, e.g. none of

the purported measures of information transfer properly

measure directed, dynamic flows of information. Mea-

sures of model or task specific properties (by Solé and

Valverde (2001), Kinouchi and Copelli (2006) and Rämö

et al. (2007)) are qualitatively appealing but give no insights

into the underlying quantitative nature of the information

dynamics, while mutual information between random pairs

of nodes (by Ribeiro et al. (2008) and Solé and Valverde

(2001)) measures dynamic correlation across the collective

which may result from an information transfer but is not a

measure of it. (A more generic measure of “information

transfer” in networks is presented in (Solé and Valverde,

2004), however it is a static measure of structure rather than

a directed, dynamic flow of information.)

In this paper, we examine the information dynamics of

RBNs from the perspective of the distributed computation

undertaken by the nodes of the network in computing their



attractor. We apply a recently published framework to char-

acterize the information dynamics of the distributed com-

putation in terms of the elements of Turing universal com-

putation: information storage, information transfer and in-

formation modification (Lizier et al., 2007). Our perspec-

tive of computation in RBNs is an important one, underlined

by the comments of Mitchell (2006) on information dynam-

ics in networks, and by the general importance attributed to

information processing in biological systems (Polani et al.,

2007; Gershenson, 2004a). Importantly, the perspective of

distributed computation is unique in quantitatively aligning

with our understanding of information storage, transfer and

modification (Lizier et al., 2007).

We begin with overviews of RBNs and our framework for

the information dynamics of distributed computation, and

subsequently discuss how the framework will be applied

to RBNs. We then present the results of this application,

demonstrating that information storage and transfer are both

maximized in the vicinity of the phase transition between

ordered and chaotic dynamics. Importantly, we demonstrate

a shift from the dynamics being dominated by information

storage in the ordered regime, to a balance of information

storage and transfer around the critical point, and a further

shift to the dominance of information transfer (in particular

higher order interactions) in the chaotic regime. Near the

critical point we observe maximum capability for coherent

computation, with relatively few but high-impact non-trivial

information modification events. It is likely that these in-

sights on the nature of computation in the vicinity of order-

chaos phase transitions will be applicable to other complex

systems.

Random Boolean Networks

Random Boolean Networks are a class of generic discrete

dynamical network models. They are particularly important

in artificial life, since they were proposed as models of gene

regulatory networks by Kauffman (1993). See also Gershen-

son (2004a) for another thorough introduction to RBNs.

An RBN consists of N nodes in a directed network struc-

ture. The nodes take boolean state values, and update their

state values in time as a function of the state values of the

nodes from which it has incoming links. The network topol-

ogy (i.e. the adjacency matrix) is determined at random,

subject to whether the in-degree for each node is constant

or stochastically determined given an average in-degree K
(giving a Poissonian distribution). It is also possible to bias

the network structure, e.g. toward scale-free degree distri-

bution (Aldana, 2003). Given the topology, the determin-

istic boolean function or lookup table by which each node

computes its next state from its neighbors is also decided at

random for each node, subject to a probability p of produc-

ing “1” outputs (p close to 1 or 0 gives low activity, close to

0.5 gives high activity). The nodes here are heterogeneous

agents: there is no spatial pattern to the network structure

(indeed there is no inherent concept of locality), nor do the

nodes have the same update functions. (Though, of course

either of these can arise at random). Importantly, the net-

work structure and update functions for each node are held

static in time (“quenched”). In classical RBNs (CRBNs), the

nodes all update their states synchronously.1

The synchronous nature of CRBNs, their boolean states

and deterministic update functions give rise to a global state

space for the network as a whole with deterministic transient

trajectories ultimately leading to either fixed or periodic at-

tractors in finite-sized networks (Wuensche, 1997). Effec-

tively, the transient is the period in which the network is

computing its steady state attractor.

RBNs are known to exhibit three distinct phases of dy-

namics, depending on their parameters: ordered, chaotic and

critical. At relatively low connectivity (i.e. low degree K) or

activity (i.e. p close to 0 or 1), the network is in an ordered

phase, characterized by high stability of states and strong

convergence of similar macro states in state space. Alter-

natively, at relatively high connectivity and activity, the net-

work is in a chaotic phase, characterized by low stability of

states and divergence of similar macro states. In the criti-

cal phase (the edge of chaos (Langton, 1990)), there is per-

colation in nodes remaining static or updating their values,

and uncertainty in the convergence or divergence of similar

macro states. This phase transition is typically quantified

using a measure of sensitivity to initial conditions, or dam-

age spreading. Following Gershenson (2004c), we take a

random initial state A of the network, invert the value of a

single node to produce state B, then run both A and B for

many time steps (enough to reach an attractor is most appro-

priate). We then use the Hamming distance:

D(A,B) =
1

N

N
∑

i=1

|ai − bi|, (1)

between A and B at their initial and final states to obtain a

convergence/divergence parameter δ:

δ = D(A,B)t→∞ − D(A,B)t=0. (2)

(Note D(A,B)t=0 = 1/N ). Finding δ < 0, implies the con-

vergence of similar initial states, while δ > 0 implies their

divergence. For fixed p, the critical value of K between the

ordered and chaotic phases is (Derrida and Pomeau, 1986):

Kc =
1

2p(1 − p)
. (3)

1There has been some debate about the best updating scheme
to model GRNs (Darabos et al., 2007), and variations on the syn-
chronous CRBN model are known to produce different behaviors.
However, the relevant phase transitions are known to exist in all up-
dating schemes, and their properties depend more on the network
size than on the updating scheme (Gershenson, 2004b). As such,
the use of CRBNs is justified for ensemble studies such as ours
(Gershenson, 2004c).



For p = 0.5, we have Kc = 2.0. The standard deviation of δ
peaks slightly inside the chaotic regime for finite-sized net-

works, indicating the widest diversity of networks for those

parameters (Gershenson, 2004b).

Much has been speculated on the possibility that gene reg-

ulatory and other biological networks function in (or evolve

to) the critical regime (see Gershenson (2004a)). It has been

suggested that computation occurs more naturally with the

balance of order and chaos there (Langton, 1990), possibly

with information storage, propagation and processing capa-

bilities maximized (Kauffman, 1993). Here we seek to im-

prove on previous attempts to measure these computational

properties, with a thorough quantitative study of the infor-

mation dynamics in RBNs.

Information dynamics

Information theory (MacKay, 2003) is the natural domain to

look for a framework to describe the information dynamics

in complex systems, and indeed information theory is prov-

ing to be a useful framework for the analysis and design of

complex systems, e.g. (Klyubin et al., 2004). The funda-

mental quantity is the (Shannon) entropy, which represents

the uncertainty in a sample x of a random variable X: HX =
−

∑

x p(x) log2 p(x) (all with units in bits). The joint en-

tropy of two random variables X and Y is a generalization to

quantify the uncertainty of their joint distribution: HX,Y =
−

∑

x,y p(x, y) log2 p(x, y). The conditional entropy of X

given Y is the average uncertainty that remains about x when

y is known: HX|Y = −
∑

x,y p(x, y) log2 p(x|y). The

mutual information between X and Y measures the aver-

age reduction in uncertainty about x that results from learn-

ing the value of y, or vice versa: IX;Y = HX − HX|Y .

The conditional mutual information between X and Y given

Z is the mutual information between X and Y when Z is

known: IX;Y |Z = HX|Z − HX|Y,Z . Finally, the entropy

rate is the limiting value of the entropy of the next state x
of X conditioned on the previous k − 1 states x(k−1) of X:

HµX = limk→∞ H
[

x|x(k−1)
]

= limk→∞ HµX(k).
We have previously proposed a framework for the local

information dynamics of distributed computation in (Lizier

et al., 2007). The framework describes computation in terms

of information storage, transfer and modification at each

spatiotemporal point in a complex system.

The information storage of an agent in the system is the

amount of information in its past that is relevant to predict-

ing its future. The excess entropy is the total information

stored by the agent (Feldman and Crutchfield, 2003), while

the active information storage is the stored information that

is currently in use in computing the next state of the agent

(Lizier et al., 2007). We focus on the active information

since it yields an immediate contrast in the relative contribu-

tions of storage and transfer to each computation. As shown

in Fig. 1, the local active information storage for agent X
is defined as the local (or unaveraged) mutual information

Figure 1: Information dynamics in a distributed network.

For node X , this figure displays the local active information

aX(n + 1, k) and the local transfer entropies tY1→X(n +
1) and tY2→X(n + 1) from each of the causal information

sources VX ∈ {Y1, Y2} at time n + 1.

between its semi-infinite past x
(k)
n (as k → ∞) and its next

state xn+1 at time step n + 1:

aX(n + 1) = lim
k→∞

log2

p(x
(k)
n , xn+1)

p(x
(k)
n )p(xn+1)

, (4)

with aX(n, k) representing an approximation with finite

history length k. The active information is the average

over time (or equivalently weighted by the distribution of

(x
(k)
n , xn+1)): AX(k) = 〈aX(n, k)〉. From our computa-

tional perspective, an agent can store information regardless

of whether it is causally connected with itself; i.e. for RBNs,

this means whether or not the node has a self-link. This

is because information storage can be facilitated in a dis-

tributed fashion via one’s neighbors, which amounts to the

use of stigmergy (e.g. see Klyubin et al. (2004)) to commu-

nicate with oneself (Lizier et al., 2008a). Finally, the local

entropy for any agent is the sum of the local active informa-

tion and the local entropy rate hµX(n, k) (for any k):

hX(n) = aX(n, k) + hµX(n, k), (5)

with their averages also related in this way. In a determin-

istic system, the entropy rate represents the joint contribu-

tion from the causal information sources to the destination

(Lizier et al., 2008a), though it does not specify the infor-

mation transfered from any particular one of those sources.

The information transfer between a source and a des-

tination agent is defined as the information provided by

the source about the destination’s next state that was not

contained in the past of the destination. The information

transfer is formulated in the transfer entropy, introduced by

Schreiber (2000) to address concerns that the mutual infor-

mation (as a de facto measure of information transfer) was



a symmetric measure of statically shared information. The

local transfer entropy (Lizier et al., 2008b) from a source

agent Y to a destination agent X is the local mutual infor-

mation between the previous state of the source2 yn and the

next state of the destination xn+1, conditioned on the semi-

infinite past of the destination x
(k)
n (as k → ∞):

tY →X(n + 1) = lim
k→∞

log2

p(xn+1|x
(k)
n , yn)

p(xn+1|x
(k)
n )

. (6)

Again, tY →X(n, k) represents finite-k approximation, and

the transfer entropy is the (time or distribution) average:

TY →X(k) = 〈tY →X(n, k)〉. The local transfer entropy is

shown in Fig. 1. The transfer entropy can also be formu-

lated to condition on the states vx,y,n of all causal informa-

tion contributors to the destination (the set VX ) except the

source Y , so as to completely account for the contribution

of Y . This formulation is known as the complete transfer

entropy (Lizier et al., 2008b), with average and local values

defined as:

T c
Y →X(n + 1) = 〈tcY →X(n + 1)〉 , (7)

tcY →X(n + 1) = lim
k→∞

log2

p(xn+1|x
(k)
n , yn, vx,y,n)

p(xn+1|x
(k)
n , vx,y,n)

, (8)

vx,y,n = {zn|∀Z ∈ V,Z 6= Y } . (9)

The formulation in Eq. (6) is then labeled the apparent trans-

fer entropy. Importantly, the transfer entropy properly mea-

sures a directed, dynamic flow of information, unlike mutual

information measures used by Ribeiro et al. (2008) and Solé

and Valverde (2001) which measure correlations only.

Information modification has been described as interac-

tions between transmitted and/or stored information which

result in a modification of one or the other (Langton, 1990).

In (Lizier et al., 2007), we observed that negative values

of aX(n) and tY →X(n) indicated misinformation or sur-

prise regarding a given local outcome. We hypothesized that

the sum of the local active information storage and appar-

ent transfer entropy from each causal information contrib-

utor would be negative in a local information modification

event, where no information source contained enough pre-

dictive power to overcome the misinformation generated by

the other sources in the information “collision”. This sum is

known as the local separable information:

sX(n) = aX(n) +
∑

Y ∈V,Y 6=X

tY →X(n). (10)

Again, sX(n, k) represents finite-k approximation, and the

separable information is the average SX(k) = 〈sX(n, k)〉.

2The transfer entropy can be formulated using the l previous
states of the source. However, where only the previous state is a
causal information contributor (as for RBNs), it is sensible to set
l = 1 to measure direct transfer only at step n.

In Fig. 1, we have sX(n, k) = aX(n, k) + tY1→X(n, k) +
tY2→X(n, k). Positive local values of sX(n, k) indicate triv-

ial information modification events, while negative local val-

ues of sX(n, k) indicate non-trivial information modifica-

tions events where the information sources interact in a non-

trivial manner.

This framework was applied to cellular automata (CAs),

which are effectively an ordered lattice-style sub-class of

RBNs (Wuensche, 1997), in (Lizier et al., 2007). The frame-

work quantified blinkers and regular domains as the domi-

nant information storage elements, particles (gliders and do-

main walls) as the dominant information transfer agents, and

particle collisions as the dominant (non-trivial) information

modification events. These results align with existing con-

jecture on the nature of distributed computation in CAs, pro-

viding significant impetus for the use of this framework to

analyze computation in other complex systems.

Information dynamics of RBNs

In this study, we seek to measure the average informa-

tion dynamics of RBNs as a function of average in-degree

or connectivity K. For the RBNs simulated here, we use

N = 250, Poissonian distributed in-degree for each node

based on average in-degree K, p = 0.5 (no bias in rules),

and CRBNs with synchronous updating. Also, we do not

bias the network structure, allowing comparison with the

majority of existing RBN publications. The RBNs are mod-

eled using enhancements to Gershenson’s RBNLab software

(http://rbn.sourceforge.net).

We measure the average entropy, entropy rate, and active

information for each node in a given RBN (e.g. AX(k)),
then average these over each node in the RBN (to get e.g.

〈AX(k)〉), then average these network averages over many

networks generated for each K (at least 250) to determine

the average values as a function of K (denoting this, e.g.,

as AX(k,K)). Similarly, the average apparent and com-

plete transfer entropies are measured for (at least 50) sample

pairs of causally linked nodes (unlike the mutual informa-

tion measurements by Ribeiro et al. (2008) and Solé and

Valverde (2001) for random node pairs), averaged once to

obtain network averages, and again over many networks to

obtain averages as a function of K.

While the local information dynamics are known to pro-

vide significantly greater insights into the distributed com-

putation than their averaged counterparts (Lizier et al., 2007,

2008b), the averages will provide sufficient summaries re-

garding the ensemble properties with respect to K. A hybrid

approach is taken for the separable information; the average

S(k,K) is computed in a similar manner to the other met-

rics, however we also record the balance between its positive

and negative local values (trivial and non-trivial information

modifications respectively) S+
X(k,K) and S−

X(k,K) in con-

tributing to the average. For a given node, we have for ex-



ample S+
X(k) =

〈

s+
X(n, k)

〉

, where:

s+
X(n, k) =

{

sX(n, k) if sX(n, k) ≥ 0
0 if sX(n, k) < 0

. (11)

We seek to approximate an infinitely-sized network, and

so avoid running the RBN for too many time steps because

the computation is completed once the network reaches a

periodic or fixed attractor (inevitable for finite-sized RBNs).

For each simulation from an initial randomized state, we ig-

nore a short initial transient of 30 steps to allow the network

to settle into the main phase of the computation, then allow

evolution over 400 time steps. Importantly, since the nodes

in each RBN are heterogeneous agents, the probability dis-

tribution functions for each measure must be computed for

each node individually rather than combining observations

across all nodes (as could be done for the homogeneous

agents in CAs (Lizier et al., 2007)). In order to properly

sample the dynamics of each node in each RBN and gen-

erate enough data for the information theoretic calculations,

many repeat runs from random initial states are required for

each network (at least 4480 are used). For these calculations,

one should use as large a history length k as facilitated by the

number of observations (Lizier et al., 2008b); here we find

k ≈ 13 provides reasonable convergence for a reasonable

number of repeat runs.

It has been hypothesized that RBNs close to the critical

state possess a maximal information transfer capability (e.g.

(Rämö et al., 2007)), which is generalized in the “edge of

chaos” hypothesis (Langton, 1990): that systems exhibiting

critical dynamics in the vicinity of a phase transition max-

imize their computational properties (see Kauffman (1993)

regarding RBNs in particular). More specifically, Langton

(1990) suggests that an intermediate level of information

transfer and storage gives rise to complex computation in

critical dynamics, with too much of either decaying the com-

putational capability. This is at odds with suggestions of

the maximization of information transfer in this regime, e.g.

(Rämö et al., 2007; Solé and Valverde, 2001).

Our experiments aim to provide insight here. It is sim-

ple to foresee the average active information and apparent

transfer entropy being zero in the extreme ordered regime

(with fast freezing at point attractors) and in the extreme

chaotic regime (where the high level of interactions over-

whelm information storage and obscure the apparent contri-

bution of each information source). It seems reasonable that

both would be maximized, on average, in the interim near

the critical region, where the dynamics support long corre-

lations across space and time. On the other hand, we pre-

dict that the complete transfer entropy (which has been sug-

gested to reveal higher information contributions as the level

of interactions increases (Lizier et al., 2008a)) will continue

to increase with the connectivity into the chaotic regime. In-

deed, we observed that relatively high values of the appar-

ent transfer entropy indicated the capacity for coherent local

information transfer structures (i.e. gliders in CAs). We hy-

pothesized there that an increasing of the complete transfer

entropy in the chaotic regime indicated a higher level of in-

teractions in conjunction with the loss of this coherence.

Important caveats are provided by criticisms of the edge

of chaos hypothesis, e.g. see Mitchell et al. (1993). In ex-

amining average computational properties as a function of

RBN parameters, we emphasize that there is in general a

very large range of network realizations and consequently

of behaviors possible for each parameter set. The local in-

formation dynamics of computation will provide much more

detailed insights for a given RBN (as for CAs in (Lizier

et al., 2008b)) than averages over nodes, networks and net-

work sets discussed here. That being said, these averages

can provide important insights into the computational prop-

erties as a function of RBN parameters, so long as we re-

member that the average results are akin to likelihoods rather

than certainties, albeit likelihoods that are much stronger in

the limit of infinite system size.

Results and discussion

Fig. 2 shows that the the average single node entropy

HX(K) simply increases as a function of K, as expected

since the level of activity in the network is increasing with

this parameter. More importantly, Fig. 2 also plots the av-

erage active information AX(k = 14,K) and entropy rate

HµX(k = 14,K), showing that the active information rises

then reaches a maximum near to the critical phase (K = 2)

before falling away, while the entropy rate only begins to rise

near the critical phase then continues to rise and approach

the entropy in the chaotic phase. Since the entropy is the

sum of the active information and entropy rate (Eq. (5)), we

can now begin to describe the phase transition in terms of

computation: the ordered phase is dominated by informa-

tion storage (information contained in the past of the node

about its next state), the chaotic phase is dominated by in-

formation transfer (information from incoming links about

the next state which was not contained in the node’s past),

while there appears to be something of a balance between

the two near the critical phase.

We then examine the constituency of the information con-

tributed from incoming links, the total of which is the en-

tropy rate. Fig. 2 also plots the average apparent transfer

entropy TY →X(k = 14,K) for each link, demonstrating

that this quantity too rises to a maximum value close to the

critical phase, then falls away. In contrast, Fig. 2 addition-

ally plots the average complete transfer entropy T c
Y →X(k =

13,K) for each link, which also begins to rise close to

the critical phase but continues to increase into the chaotic

phase. We see therefore that in the first stage of the shift

toward the dominance of information transfer, the sources

can be observed to have a significant influence on the des-

tination (in the context of the destination’s history) with-

out considering the effect of the other causal sources (i.e.



Figure 2: Average information dynamics versus average

connectivity K for networks of size N = 250. Plotted here

are the average entropy HX(K), entropy rate HµX(k =
14,K), active information AX(k = 14,K), apparent trans-

fer entropy TY →X(k = 14,K) and complete transfer en-

tropy T c
Y →X(k = 13,K). The information required to pre-

dict the next state of each node is dominated by information

storage at low K and by information transfer at higher K
(first by coherent then interaction effects). Error bars (omit-

ted) are on the scale of the data points for all plots.

TY →X(k = 14,K) is relatively high). In this regime, there

is greater potential for coherent information transfer struc-

tures to propagate. However, as the activity level in the

RBNs continues to rise with the average connectivity K, the

apparent effect of each source is swamped by the activity of

the other causal sources, leading TY →X(k = 14,K) to fall

away. Considering also the increase in T c
Y →X(k = 13,K)

(which does account for the other sources), we see that the

level of interaction is increasing with the connectivity of the

network. In the chaotic regime, the influence of any one in-

formation source can only be properly identified by taking

all of the other sources into account also. These compli-

mentary measures of information transfer provide different

but useful insights, and give impetus to our hypothesis in

(Lizier et al., 2008a) regarding the relative values of the ap-

parent and complete components of information transfer in

order-chaos phase transitions.

Next, we compare these maximizations to the phase tran-

sition as measured using the standard deviation of the con-

vergence/divergence parameter δ (from Eq. (2)).3 In Fig. 3

3
δ was confirmed to change sign close to K = 2 here (as per

(Gershenson, 2004b)), with a subsequent slow increase after K =

2 (known to be a finite-N effect). The standard deviation of δ is
maximized during this increase in the chaotic regime (Gershenson,
2004b). Certain other measures suggested to indicate the critical
phase are known to be shifted into the chaotic regime for finite-
N , e.g. (Ribeiro et al., 2008). Given impetus as an indicator of
the critical phase by the related measure of Rämö et al. (2007), we

Figure 3: Maximizations in active information AX(k =
14,K) and apparent transfer entropy TY →X(k = 14,K)
as a function of average connectivity K for N = 250,

shown with respect to the standard deviation of the conver-

gence/divergence parameter δ. This indicates that informa-

tion storage peaks just on the ordered side of the phase tran-

sition, while (coherent) information transfer peaks just on

the chaotic side of the phase transition.

we see that the information storage peaks slightly within the

ordered phase from the critical region, while the informa-

tion transfer peaks slightly within the chaotic phase. Im-

portantly, it is the apparent transfer entropy that peaks here

(indicating the capability for coherent information transfer),

as distinct from the complete transfer entropy which contin-

ues to increase into the chaotic phase. As per footnote 3,

we expect the relative positions of these maximizations to

be maintained around the critical phase as N → ∞, with

both likely to become closer to the critical point in this limit

(as for the measure of correlation by Ribeiro et al. (2008)).

The relative positions of the maximizations are quite inter-

esting, because they align with existing conjecture on the

nature of computation around phase transitions which typi-

cally associates information storage with the ordered phase

and information transfer with the chaotic phase (e.g. (Lang-

ton, 1990)). Both the information storage and transfer ap-

pear to be driving the dynamics toward the critical phase,

but from different sides of the phase transition.

We can also add quantitative evidence to the conflicting

conjecture around whether information transfer is found at

an intermediate (Langton, 1990) or maximum level (Solé

and Valverde, 2001) at criticality. For RBNs, it is maxi-

mized close to criticality where one measures the apparent

influence of a source in isolation, but equally it is at an in-

termediate level where the measurement considers the other

use the standard deviation of δ as guide to the relative regions of
dynamics in finite-N networks.



causal information sources also. If these findings apply to

such phase transitions in general, then both sources of con-

jecture appear to be well-founded, being resolved in these

two different methods of measuring information transfer.

Indeed, we previously conjectured the capacity for the co-

herence of information transfer (provided by relatively large

apparent transfer entropy) to be an important feature of com-

plex dynamics in (Lizier et al., 2008a). Further insight into

the coherent nature of the computation in the RBN is pro-

vided by the separable information SX(k,K). Fig. 4 shows

that SX(k,K) is maximized for approximately the same

values of K as the apparent transfer entropy (though it is

slightly more spread out). This can be explained with refer-

ence to its positive and negative components, S+
X(k,K) and

S−
X(k,K). We see from Fig. 4 that the early rise in the sep-

arable information is driven by S+
X(k,K) (trivial informa-

tion modifications), with a peak occurring before S−
X(k,K)

(non-trivial information modification events) rises and con-

sequently reduce the total. As the connectivity K is further

increased, S+
X(k,K) begins to fall whereas S−

X(k,K) con-

tinues to rise. Near the critical phase, at the peak of the sep-

arable information, note that there is in fact a relatively low

incidence of non-trivial information modification events (i.e.

S−
X(k,K) is low). This is interesting because of the impor-

tance placed on these events in computation, e.g. they are

manifested as particle collisions in CAs. It appears that if

the amount of non-trivial information modification events or

information collisions is too large, the capacity of the sys-

tem for complex computation is reduced. It is likely that

this is due to a large amount of collisions eroding the coher-

ent nature of the information storage and transfer within the

system, disturbing the computation and reducing their own

impact. A maximization of separable information, should

perhaps be interpreted as maximizing the bandwidth for co-

herent information storage and modification, while allow-

ing a smaller number of high-impact non-trivial information

modification events in the coherent computation.

Finally, we note that all of the information dynamics de-

scribed here experience maximum standard deviation in the

vicinity of the critical region (not shown). This indicates

maximal diversity in the information dynamics throughout

the RBNs in this regime, as observed for other measures

(e.g. (Gershenson, 2004b)).

Conclusion

We have described results which quantify the fundamental

nature of computation around the critical phase in RBNs.

The dynamics of RBNs are dominated by information stor-

age in the ordered phase, with the level of information stor-

age increasing with connectivity in the network. The in-

creasing connectivity facilitates increasing activity, giving

rise to an increasing level of information transfered from

linked nodes. These two operations of universal computa-

tion appear to be in balance around the critical point. After

Figure 4: Separable information SX(k = 13,K) and its

positive and negative components, S+
X(k = 13,K) and

S−
X(k = 13,K) respectively, versus average connectivity

K for N = 250. Trivial information modification (high

S+
X(k)) dominates the dynamics at low K, while the amount

of non-trivial information modification rises with K.

this, information transfer continues to increase with connec-

tivity, reducing the capacity for information storage. Near

the critical point, there is a large amount of trivial informa-

tion modifications, providing the capability for coherent in-

formation transfer and storage to flourish and indeed max-

imize, and allowing the small number of non-trivial infor-

mation modifications to have a large impact on the coher-

ent computation. As connectivity continues to increase, the

information transferred from any single node observed in

isolation initially appears strong, peaking slightly into the

chaotic regime. With further increases however, the interac-

tion between the nodes begins to dominate and erodes the

capacity for coherent computation.

This new understanding of the information dynamics in

RBNs near the critical phase is important, because there is

evidence that the gene regulatory networks they model op-

erate in this critical regime (Rämö et al., 2006). The impli-

cation here is that GRNs have evolved to a form facilitat-

ing maximum coherent computational capability. Further-

more, this study of RBNs represents the first exploration of

an order-chaos phase transition using this framework for in-

formation dynamics: the results here are likely to be perti-

nent to order-chaos phase transitions in other systems.

We intend to continue our investigation of the informa-

tion dynamics in RBNs, e.g. the effect of varying network

size. Given the fundamental nature of the computational

properties here, we expect to be able to describe the manner

in which these information dynamics underpin other mea-

sures of the phase transition in RBNs, e.g. high interactivity

(measured by complete transfer entropy and negative com-

ponent of separable information) leads to large perturbation



avalanche sizes. We expect that the choice of RBN updat-

ing scheme will have little effect on the fundamentals of the

phase transitions reported here, though this should be inves-

tigated. Furthermore, we intend to explore the effect of dif-

ferent topologies, in particular scale-free topologies (since

most biological networks are scale-free with an exponent

putting them near the critical point (Aldana, 2003)). Finally,

we intend to investigate whether the information dynamics

here can be used to drive evolution or self-tuning adaptation

of RBNs to produce critical networks. Such an experiment

could provide evidence that an underlying capacity for com-

putation may have been a driver in GRN evolution.
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