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In recent years, Susskind, Thorlacius and Uglum have proposed a model for strings near 
a black hole horizon in order to represent the quantum mechanical entropy of the black hole 
and to resolve the information loss problem. However, this model is insufficient because 
they did not consider the metric modification due to massive strings and did not explain 
how to carry information from inside of the horizon to the outside world. In this paper, we 

present a possible, intuitive model for the time development of a black hole in order to solve 
the information loss problem. In this model, we assume that a first order phase transition 

occurs near the Hagedorn temperature and the string gas changes to hypothetical matter 
with vanishing entropy and energy which we call 'the Planck solid'. We also study the 
background geometry of black holes in this picture and find out that there is no singularity 

within the model. 

§1. Introduction 

427 

Imagine that we are observing the gravitational collapse of a star to a black hole 

from a distance. According to general relativity, the motion of the constituents of the 

star should look extremely slow because of time dilation in the strong gravitational 

field. When would the black hole be formed for us? According to Hawking's theorem, 

the black hole would radiate out like a black body with finite temperature. 1) What 

is the mechanism of the Hawking radiation? All the matter falls into the singularity, 

and nothing is known afterward. Then, where has the information gone? In this 

paper, we give one possible resolution to these naive questions. 

The information loss problem stated above is one of the most serious difficulties 

in present physics. 2) The essence of this problem is the fact that the quantum state 

of Hawking radiation does not depend on the initial state of the collapsing body. This 

is because the state of the radiation is determined only by the outside geometry of 

the black hole horizon. Let us suppose that the Hilbert space 'H is factorized into 

'Hin and 'Hout , which correspond to the inner and outer sides of the event horizon, 

respectively. Taking the states l'lfin (t)) E 'Hin and l'lfout (t)) E 'Hout , we can represent 

the state l'lf(t)) of the entire space as 

l'lf(t)) = l'lfin(t)) 01'lfout(t)) . (1·1) 

The information of the initial state of the collapsing body is included in l'lfin(t)), 
since l'lfout(t)), which consists of the Hawking radiation state, does not depend on 

the initial state. This implies that the information is lost forever, because no matter 

can escape from the black hole. In other words, since there is no correlation between 

.) E-mail: hotta@funpth.phys.scLosaka-u.ac.jp 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/9

9
/3

/4
2
7
/1

8
4
5
5
9
1
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



428 K. Hotta 

the initial state I'l/Jinitial) and the final state I'l/Jfinal) which appears when the Hawking 

radiation has finished, we cannot trace the time development of the quantum states 

of the black hole from the information of the collapsing body as long as we remain 

within the framework of the usual quantum theory and general relativity. This fact 

implies that the unitarity of quantum theory does not hold. 

A related question arises in quantum statistical mechanics. If the black hole 

has entropy, it must be able to be represented by counting the number of quantum 

states. 't Hooft has shown that if one introduces a spatial cutoff at about a Planck 

length separated from the event horizon, one can represent the Bekenstein-Hawking 

entropy by computing the entropy of scalar fields outside of the black hole. 3
) This 

implies that the information may be stored outside the horizon. 

In recent years, Susskind, Thorlacius and Uglum have constructed a model for 

strings near the black hole horizon in order to resolve the problem of information 

loss by representing the Bekenstein-Hawking entropy quantum mechanically. 5) -10) 

They proved that for an observer far from the black hole, strings near the event 

horizon are thermalized and stored between the event horizon and the stretched 

horizon, the latter of which is positioned a string-scale length away from the former. 

They also proved that, in particular when the black hole mass is infinite, we can 

represent the black hole entropy by counting the number of string states. These 

facts suggest that information regarding the matter falling into the black hole is 

stored in the long strings near the horizon. Let us call this model the 'stretched 

horizon model'. However, there are two problems in this model. We must consider 

the mechanism under which information is carried outside of the horizon and the 

metric modification by massive strings. We will see details of these problems in §2, 

together with a review of the stretched horizon model. 

We wish to reconstruct this model while keeping its advantages. In §3, we show 

that if we assume the existence of matter with vanishing entropy and energy, which 

we call 'the Planck solid', we can construct a scenario in which the information loss 

problem does not exist from the viewpoint of an outside observer. In this scenario, 

the information is excluded from the inside of the black hole due to the character 

of the Planck solid, and it is stored in the string gas near the horizon, as in the 

stretched horizon model. This string gas provides almost all the contribution to 

the mass energy of the black hole. Then, we propose a toy model, which is later 

referred to as the 'string bit model', that gives us an intuitive picture of the Planck 

solid in §4. It is concluded that as the temperature grows, the string gas in the 

weak coupling region changes to the Planck solid in the strong coupling region by a 

first order phase transition. A first order phase transition in string theory has been 

proposed by Sathiapalan, 17) Kogan, 18) Atick and Witten. 19) This is seen in §4. 

With regard to the problem of metric modification, we introduce a new metric 

to treat string condensation in a spherical shell region around the Planck horizon, . 

which is defined as the boundary of the Planck solid, in §5. 25) Because the solution 

has no singularity due to the vanishing energy of the Planck solid, we need not think 

that there exists a singularity in a black hole. In §6 we argue that our model does 

not contradict the Susskind-U glum calculation of the entropy. 9) Finally, a summary 

and discussion are presented in §7. 
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The Information Loss Problem of Black Hole 429 

§2. The stretched horizon model and its problems 

We first review the stretched horizon model. For simplicity, we use general 

relativity for the background metric and treat the energy momentum tensor of matter 

classically in the entire this paper. We adopt the natural units c = Ii = kB = 1, but 

use G for the gravitational coupling constant. 

Susskind and Thorlacius performed a gedanken experiment concerning observa

tion around the black hole based on an analogy between the Schwarzschild space-time 

and the Rindler space-time, and proposed the black hole complementarity princi

pIe. 7) They concluded that an observer at infinity would see high temperature phe

nomena near the event horizon. It is natural to think that a freely falling object 

is thermalized by the gravitational effect. Susskind has considered what would be 

observed at infinity when strings are falling into the black hole. 8) Let us assume that 

the background field is spherically symmetric, and take the Schwarzschild metric. Its 

line element is given by 

2 ( 2GM) 2 ( 2GM) -1 2 2 2 ds = 1 - -r- dt- 1 - -r- dr - r dfl2 , (2·1) 

where M is the black hole mass and 

dfl~ = d02 + sin2 0 d'{i. (2·2) 

Let us consider, for example, a string falling freely straight into the black hole, 

leaving from a stationary observer. It seems for this observer that this string never 

falls beyond the event horizon, due to the slowing of time in the strong gravitational 

field. This situation is analogous to that of strings moving at near light velocity 

against a stationary observer in flat space. We take light-cone coordinates and 

define Xl-(a) as the string coordinates in the transverse direction at the world sheet 

time T = O. We can expand this as 

X ( ) - ret' " (0:1 ila al -ila) 
l- a - Xl- + V -2 ~ l e + 1 e , 

I 

(2·3) 

where Xl- is the center-of-mass coordinate of the string, and o:{, al are the operators 

of oscillating modes which obey the commutation relations 

[O:m,O:n] = [am' an] = m8m+n,o, 

[O:m, an] = o. 
(2·4) 

(2·5) 

Even if this string is in the ground state, its mean-square-Iength in the transverse 

direction diverges. This results from the infinitely high frequency oscillating modes 

as 
, 00 1 

2 2 0:" Rl- == (01 [Xl-(a) - Xl-] 10) = 2 ~ y' 
1=1 

(2·6) 

We must renormalize this expression since it diverges logarithmically. The Hamilto

nian is given by 

(2·7) 
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430 K. Hotta 

where P+, Pl.. and m are the longitudinal momentum, the transverse momentum 

and the mass of strings, respectively. When the resolution time of the stationary 

observer is E, a high energy cutoff E < l/E is introduced into the Hamiltonian. Since 

the contribution of oscillating modes is included in m, this cutoff corresponds to 

the high frequency cutoff of the string oscillations for 1 < P+/E, if we ignore Pl... 

Introducing this high frequency cutoff, Susskind has concluded that 

~ 

2 a f 
e 1 a f P+ 

R.l.. = - L- ~ -In-. 
2 I 1 2 E 

(2·8) 

A similar calculation can be performed for the mean-square-Iength in the longitudinal 

direction, and is given by 

(2·9) 

Thus, both quantities increase as P + grows. If we define the proper time of the 

stationary observer To and that of the string Ts , the longitudinal momentum P+ 

behaves as 

(2·10) 

The time Ts elapses very slowly because the string is moving at near the light velocity. 

Therefore, the string is oscillating very slowly, even if it has high frequency modes. 

This is the reason for the movement of the cutoff frequency. 

Let us now return to the freely falling string situation. Since P+ behaves as 

(2·11) 

near the horizon, the transverse size R.l.. increases as t 1
/

2
. In this case, the relation 

between the proper time of the freely falling string, T, and that of the observer at 

infinity, t, is approximated near the event horizon as 

dT (t) 
dt rv exp - 2G M . (2·12) 

The time corresponding to the string is frozen, as observed by the outside observer, 

since dT/dt decays exponentially with t. Because Eqs. (2·11) and (2·12) satisfy Eq. 

(2·10), the length of the string grows due to the slowing of their proper time. Let 

us call this phenomenon 'the thermalization effect'. If such a process is repeated 

many times, then large strings are stocked near the horizon. The surface where the 

stringy nature appears is the so-called stretched horizon. 5) We can see the high 

energy phenomena of strings in this region. 

At the next step, Susskind and Uglum computed the entropy of an infinite mass 

black hole using string theory provided that strings are in an equilibrium state around 

the event horizon. 9) The equilibrium state in the stationary curved background space 
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The Information Loss Problem of Black Hole 431 

implies that the temperature T measured by the stationary observer at each point 
satisfies 12) 

..;goo T = const, (2·13) 

where 900 is the time component of the metric tensor there. In our Schwarzschild 

black hole case, for 900 = 1 at infinity, the constant above is the temperature T 

at infinity. If we identify the temperature T as the Hawking temperature TBH 

= 1/8rrCM, then the temperature T is given by 

(2·14) 

This implies that the temperature is higher at points closer to the horizon. Hence 

we can observe the high temperature physics near the horizon. In the case of an 

infinite mass black hole, they concluded that the entropy a of the strings in a unit 

area on the horizon becomes 
1 

a = 4G' (2·15) 

which agrees with the Bekenstein-Hawking entropy SBH when it is multiplied by the 

area A of the event horizon; namely, 

A 
Aa = SBH == 4C· (2·16) 

This means that the strings near the horizon has all the degrees of freedom of the 

black hole, since the thermal entropy gives the maximal number of states of a system. 

Therefore, it is natural to conclude that all the information of the collapsing body 

existing before remains in the strings near the horizon. 

Unfortunately, although the stretched horizon model is very successful, there are 

two problems: 

1. The black hole is assumed to exist from the outset, and only strings falling into 

it after its formation are discussed in the model. However, if we wish to resolve 

the information loss problem, we must consider information corresponding to 

the matter which existed before its formation. 

2. There are extremely long strings near the event horizon as seen by the observer 

at infinity, but these have large mass coming from the oscillating mode energies 

and affect the gravitational field. Therefore, we must correct the metric at the 

interior of the black hole. 

The first problem above is related to the question of what we will see when a black 

hole is formed. In particular, we are interested in where the information concerning 

the collapsing matter has gone. Thus, we must study the time development of the 

black hole. We will mention a possible resolution in the next section. 

For the second problem above, if we assume, for simplicity, that the energy 

density of strings has an upper limit at the Planck energy density Pp which appears 

at the Planck temperature Tp , we can easily calculate the mass of the strings between 

the surface at T = Tp and the event horizon. From the above discussion, the radius 
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432 K. Botta 

Tp at the Planck temperature is obtained as 

1 

Tp = 87rCM (1 _ 2~f:If/2' 
(2·17) 

When the black hole mass M is sufficiently large, the radius Tp is nearly equal to the 

Schwarzschild radius Ts == 2CM, so that we can represent it as Tp = 2CM + 8 with 

an infinitesimal variable 8 (8 > 0). From the above equation and Tp = C- 1/ 2 , 8 is 

given by 
1 

8 ~ 327r2M' (2·18) 

In our spherically symmetric case, we can obtain the mass m from the simple formula 

m = J 47rr2 pdr, (2·19) 

where p is the energy density (note that this integration is not over the proper 

volume of the Schwarzschild metric 13»). The mass of the strings between the surface 

at T = Tp and the event horizon is given by 

1
2GMH 

m = 47rr2 ppdr ,....., M, 
2GM 

(2·20) 

where we have approximated this integration up to first order in 8 and have used Pp = 

C- 2 (the fact that the coordinate volume is proportional to M plays an important 

role). Because this is comparable to the black hole mass M, it is expected that 

there is little mass inside the black hole and the metric is very smooth, unlike the 

Schwarzschild metric. 

This may appear strange, because, to this time, the coordinates of the black 

hole have been taken as the Schwarzschild metric over the entire space, including 

the inside of the horizon. But, we are convinced of this for two reasons. First, 

based on the general principle of relativity, physical law must be the same whatever 

coordinates we use. If massive strings are detected by an observer at infinity, they 

must generate a gravitational interaction. Secondly, even if the metric of the inside 

of the black hole is the Schwarzschild metric, it is not observed by outside observers. 

Of course, this does not mean that background metric always becomes an observable 

one. As we will see, however, we can construct a metric which is always observable 

by outside observers. 

§3. The time development of the black hole 

Now, let us consider the time development of the black hole when we see it from 

outside. In general relativity, the surface of a collapsing body never disappears from 

our sight, because the proper time is elongated, and if it reaches the Schwarzschild 

radius, then the time is frozen forever against the outside observer. Thus, although 

radiation from it is extremely red-shifted, it can be observed eventually. Similarly, 

we can see all the matter of the collapsing body as well (of course, we cannot see 
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The Information Loss Problem of Black Hole 433 

the inside). w.e have not succeeded in formulating strings in curved space-time, 

including their quantum effect and the back reaction to the background metric. But, 

however complex the physical phenomena, the physical property of strings, which 

cutoff frequencies increase due to the dilation of the proper time, does not change. 

Thus, even if Eqs. (2·8) and (2·9) are not valid, string thermalization occurs in the 

strong gravitational field. When the factor dr / dt vanishes, strings are thermalized 

at any temperature in so far as no new physical phenomena occur. It is expected 

that we are able to see high temperature phenomena in the collapsing body. 

In order to connect this evolution of the black hole to its Hawking radiation, we 

assume that the matter of the collapsing body will finally reach a quasi-equilibrium 

state at the Hawking temperature. To satisfy this condition, the matter must be 

thermalized enough to support the gravitational force by its pressure, and the tem

perature of the inner matter must be larger than that of outer matter. This cor

responds to the argument of the notion of the thermal equilibrium in curved space 

discussed in the previous section. If we naively construct the scenario for black hole 

formation from the gravitational collapse, it is inferred as follows: 

1. When the gravitational collapse of a star begins, the energy density of matter 

becomes larger and its temperature rises. For an observer at infinity, the surface 

of the star exists outside the Schwarzschild radius, and the matter inside is 

observable. 

2. The proper time for the in-falling matter elapses more slowly, and the matter 

experiences a thermalization effect. Its energy density will be dominated by 

extremely long strings. These phenomena occur at the center of the star first 

and spread outward as time goes on. 

3. By this thermalization effect, the strings obtain a larger energy than in the case 

without this effect, and when the pressure of the strings becomes sufficiently 

large to balance the gravitational force of the matter, the strings stop falling. 

Then this star is in a quasi-equilibrium state at the Hawking temperature, and 

Hawking radiation begins from its surface. 

In process 2, the energy of the matter is dominated by that of a few very long 

strings, based on the thermodynamics of an ideal gas of strings. The nature of 

this system was investigated (for example, the papers 15) and references therein). 

With regard to process 3, note that the energy of the strings is pulled out from the 

vacuum by the thermalization effect. This system never reaches an equilibrium state 

because the black hole has negative specific heat. Hawking radiation is interpreted 

as radiation from high temperature strings. 

However, this scenario has two problems, as was pointed out by Susskind and 

Griffin. 10) First, if the matter is distributed in three dimensions, its mass energy is 

proportional to M 3 , because the Schwarzschild radius rs is proportional to M. This 

conflicts with the fact that the black hole has mass M and the Schwarzschild metric 

(2·1). Also, since the entropy is an ext.ensive variable, the entropy S of the matter is 

proportional to M 3 , which differs from the Bekenstein-Hawking entropy SBH ex M2. 

These facts show that the matter must not be distributed three dimensionally. More

over, Susskind and Uglum's entropy arguments cannot be applied to this scenario, 

because they compute the entropy of the strings spreading two dimensionally on the 
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434 K. Hotta 

horizon. 

It may appear that our approach fails to represent the black hole state. However, 

it is sufficient if there is a mechanism for the exclusion of the entropy and the energy 

from the inside of the black hole. We assume that at high temperature, the string gas 

will be transformed into matter with a vanishing entropy and energy by a first order 

phase transition. Let us call this matter 'the Planck solid'. Because this matter has 

no energy, it stays in the same state for all time. At the first 'sight, this assumption 

appears strange. But this is not totally unreasonable, as we shall see in the next 

section. Adopting this assumption, we can construct a new scenario as follows: 

1. When the gravitational collapse of a star begins, the energy density of the 

matter becomes larger, and its temperature rises. For an observer at infinity, 

the surface of the star exists outside the Schwarzschild radius, and the matter 

inside is observable. 

2. The proper time for the in-falling matter elapses more slowly, and the matter 

experiences a thermalization effect. Its energy density will be dominated by 

extremely long strings. These phenomena happen at the center of the star first, 

and then spread outwards as time goes on. 

3. If the energy density of the strings reach a value near the Planck energy density, 

the phase transition occurs and the Planck solid appears. This phenomenon 

also first happens in the center of the star, and the Planck solid region extends 

its size, while causing energy and entropy of the matter to move outwards. Let 

us call the surface of the Planck solid region 'the Planck horizon'. 

4. When the Planck horizon reaches outside of the Schwarz schild radius, the grav

itational collapse is over, and Hawking radiation begins. 

In Fig. 1, we represent the time development of the black hole in this scenario. 

According to this scenario, the information contained by the star is pushed out from 

the inside of the black hole by the Planck solid because it can possess no information, 

and it is stored in the strings outside of the black hole, as in the stretched horizon 

model! Hawking radiation is interpreted in this model as the radiation from the 

string gas which contains the information of the collapsing matter. In this process, 

the Planck solid changes to the string gas at its surface to supplement the lost string 

gas. If we factorize the Hilbert space into the inner and outer regions of the Planck 

horizon, then we can represent the total state I'lj!(t)) as 

(3·1) 

All the evolution occurs outside of the Planck horizon, since I'lj!in) does not depend 

on time and is fixed in only one state. Therefore, I'lj!out(t)) depends on the initial 

condition, and contains all the information. This means the state I'lj!(t)) is described 

by the time development from the initial state. The state I'lj!(t)) is not the thermal 

ensemble state, and we can deduce information from the difference between the actual 

radiation and a thermal radiation. Moreover, because there is no energy inside, it 

is expected that the background metric has no singularity. We discuss the Planck 

solid in the next section and the background metric in §5. 
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The Information Loss Problem of Black Hole 435 

Fig. 1. The time development of a black hole. 

§4. The string bit model and the first order phase transition 

In this section, we propose a toy model for strings in order to obtain an intuitive 

picture of the phase transition in a high temperature string system. To begin with, 

let us recall the high temperature ideal gas of strings, namely, the string thermody

namics in the weak coupling region. As stated in the previous section, the energy of 

strings near the Hagedorn temperature is dominated by the oscillating mode energy, 

i.e., the mass energy of a single string. This is because the number of oscillating 

modes increases exponentially with energy, and the probability of the energy dom

ination by a single long string is very high. This is the origin of the upper limit of 

the temperature, i.e., the Hagedorn temperature, in the ideal gas of strings. 14) The 

entropy S is expressed as a function of energy E as 15) 

(4·1) 

where {3H = 11TH is the inverse of the Hagedorn temperature. If the energy density 

increases up to the Planck energy density, however, the coupling of strings becomes 

too large to treat it by a perturbation method, and it seems that the smooth Riemann 
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surface of world sheet breaks down. 19) 

Unfortunately, we have not succeeded in 

analyzing such a high density system of 

strings yet. Thus, in order to obtain an 

intuitive picture of this system, let us 

consider the following toy model, which 

is motivated by the holographic princi
pIe. 11) 

We make three assumptions. First, 

we assume, following Klebanov and 

Susskind, 16) that strings consist of 

Fig. 2. The string bit model. 'string bits' of Planck length Ip and 

Planck energy cp. Similarly, we sup

pose that space is divided into cubes 

with Planck-size edges, calling each a 

'Planckian cell'. Lastly, we assume that we can put only one string bit in one 

Planckian cell; that is, to each Planckian cell, there are two possible states, that 

in which it is occupied by a string bit and that in which it is not. In Fig. 2, we 

represent the string bit model. Wavy lines designate the string bits and boxes the 

Planckian cells. 

Based on these assumptions, let us consider a finite space with m Planckian 

cells. We ignore the interactions among the string bits for the time being and treat 

them as an ideal gas. The total energy E of this string bit gas system is given by 

the product of the number of string bits n and the Planck energy cp. As there is a 

one to one correspondence between nand E, we treat the number of states W as a 

function of n instead of E. If the string bits are undistinguishable, the number of 

states W(n) of this system is given by 

m! 
W (n) = men = '( _ ) , n. m n. 

(4·2) 

This is the binomial distribution. From this we can see that, if m = n, namely, all 

the Planckian cells are filled with string bits and the energy density of the system 

is the Planck energy density, the number of states is W (m) = 1. Therefore, the 

entropy S (n) of this system is 

S(m) = logW(m) = 0, (4·3) 

that is, the entropy vanishes. Although a vanishing entropy is preferred as the Planck 

solid, there is a problem. As S increases in the small n region and vanishes at n = m, 

it must decrease in the large n region. For the total energy E = ncp, this means the 

temperature of this system becomes negative or even divergent, from the formula 

1 oS 
T oE· 

(4·4) 

Such a system must not exist, at least as an equilibrium state. But we can avoid this 

problem by taking into account the coupling of the string bits and a phase transition. 
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The Information Loss Problem of Black Hole 437 

Here, let us recall the ice-water phase transition. Since molecules of the water 

move more freely than those of the ice, the entropy of the water O"water per mole is 

very much larger than that of the ice O"ice. Thus, this is a first order phase transition 

with latent heat q per mole. We have 

(4·5) 

from the definition of the entropy. Hence, the water changes the ice by releasing 

latent heat. Returning to our string bit model, we can take the Planck solid as the 

ice and the string gas as the water. The string gas with large entropy transforms 

into the Planck solid with vanishing entropy. Note that the Planck solid is created 

from the string gas at high temperature (it is the inverse relation of the ice-water 

case with regard to temperature). From Eq. (4·1), the entropy O"string of this system 

per string bit is 

(4·6) 

Because the entropy of the Planck solid is zero, the latent heat per string bit released 

in this phase transition is 

(4·7) 

This means that all the energy of the string bit is released as latent heat, and hence 

the Planck solid has no energy. The reason for the vanishing energy of the Planck 

solid is understood easily by taking into account the interaction of the string bits. 

The binding energy of the string bits in the Planck solid is the Planck energy, and this 

energy cancels the mass energy of the string bits. When there are few string bits, they 

behave as a gas without interaction. But, as the number of the string bits grows, the 

coupling becomes strong, and this growth does not stop in the region m/2 :::; n < m, 

because it is energetically favorable to add more string bits, and eventually the 

Planck solid state comes into existence. To sum up, when the energy density of the 

string gas approaches the Planck energy density, the interactions change from a weak 

coupling to a strong coupling, and the first order phase transition occurs. Then the 

entire space is filled with the strings, and the Planck solid appears by releasing all 

the entropy and the energy. 

It was not our original idea that the first order phase transition in the string 

system occurs at high temperature. This was first discussed by Sathiapalan 17) and 

Kogan. 18) Then, Atick and Witten have proposed the following model based on the 

relation between string theory and large~N QeD. 19) They analyzed the effective 

action and the free energy of the finite temperature system of strings by the Mat

subara method. The infinity of the free energy above the Hagedorn temperature TH 

comes from the fact that a winding mode in the Euclidean time direction becomes 

tachyonic. 17), 18) This implies that the perturbative vacuum state is unstable, so 

that we must give this mode an expectation value and look for a stable solution. 

The continuous world sheet picture breaks down in this stable vacuum where the 

winding mode has its expectation value. Taking into account the contribution of 

the dilaton, they concluded that a first order phase transition occurs at the critical 

temperature slightly below TH with a large latent heat. We know nothing about this 
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438 K. Hotta 

new vacuum, but, if we persistently compute the free energy of strings above TH by 

a perturbative method, the entropy derived from it becomes smaller than that of 

the conventional relativistic field theory. This means that there is a lower density of 

gauge invariant degrees of freedom, which agrees with the idea that there are fewer 

degrees of freedom inside a distance of the string length scale .j(] in string theory 

than in usual field theory. It is expected that string theory is ultraviolet finite, and 

fewer degrees of freedom are permitted in higher order perturbation than in field 

theory. In this sense, it is not strange that the string system in the high temperature 

region has a very small entropy. 

Moreover, if we take the Planck solid as a tightly binded system of strings, they 

mutually restrict each other's freedom, like a solid. In other words, they determine 

states of the others perfectly by filling up the entire space, and the system is confined 

in this filled-up state. Then the phase transition is interpreted as a transition from 

the perturbative vacuum to a strong coupling vacuum. 

The properties of the Planck solid are satisfied by topological field theories. 20) 

These theories are expected to describe the unbroken phase of general covariance, 

,which corresponds to the confinement phase in QeD. 21) - 23) These theories are 

characterized by the observables which depend only on the topological quantities 

and are independent of any metric. In this theory, the energy-momentum tensor 

operator is given by BRST commutator, 

(4·8) 

for some operator AJLv, where QB is the BRST operator. Since BRST exact operators 

vanish when inserted into a correlation function, the energy is zero. In addition, 

another essential property of topological field theories is the absence of dynamical 

excitation. In other words, there are no propagating degrees of freedom. Thus, 

matter which is described by the topological field theories has no energy and no 

entropy, as expected for the Planck solid. In other words, the Planck solid is the 

unbroken phase of string theory 23) or the 'confinement phase of strings'. 't HooR 

suggested that if we can treat the inside of a black hole by topological field theory, 

all physical degrees of freedom can be projected onto the horizon. 4) 

§5. The background metric of black hole for the observer at infinity 

As we have seen, the string gas exists between the stretched horizon and the 

Planck horizon and generates most of the mass-energy of a black hole. To see this, 

let us make a rough estimation. Suppose that the energy density of the string gas 

is characterized by the string mass scale, Ps rv 0:',-2, and that the proper distance 

between the two horizons is characterized by the fundamental string length Is rv 0:',1/2. 

If we represent the radial coordinate r as r = 2G M + 15 with the infinitesimal variable 

15 (15 > 0), as in §2, the difference in 15 between the two horizons is given by 

(5·1) 
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The Information Loss Problem of Black Hole 439 

where we have used the formula of the proper distance from the Schwarz schild radius, 

1= V8GM(r - 2GM). (5·2) 

From this, the coordinate volume of the string gas region is approximated by 

(5·3) 

and we can obtain the mass of the string gas system by multiplying the volume Vs 
by the energy density Ps: 

(5·4) 

In particular, when the string scale is almost the same as the Planck scale, m is 

comparable to the black hole mass. Since the proper distance between these two 

horizons is about the fundamental string length Is, we can ignore this in comparison 

with the size of the black hole. Thus, we assume that the thickness of this string gas 

region is zero and impose the spherically symmetric condition on the black hole. The 

background metric of this spherical thin shell was first discussed by Israel many years 

ago. 24) But this work was based on very complicated Gauss-Codazzi formalism. 

Here, we refer to the work of Khorrami and Mansouri,25) which is based on an easier 

distribution method, and discuss the metric of black hole for the observer at infinity. 

In particular, we compute the background metric when the shell is in a stationary 

state. This is because, for the large mass black hole, the energy of the Hawking 

radiation per unit time is extremely small compared to the mass energy of the black 

hole, and we can ignore the time variation of the metric. 

We can apply the Birkhoff theorem to our spherically symmetric case, 26) because 

the spaces of the interior and exterior of the shell are in 'vacuums'. Since there is an 

object with mass M inside, the line element of the exterior space is given by that of 

the Schwarzschild coordinate, 

ds~ = ev(r)dt2 - e-v(r)dr2 - r2dn~, (5·5) 

where 

ev(r) = 1 _ 2GM , 
r 

dn~ = dfP + sin2 Odr.p2. 

For the interior, the line element is given by the flat one, 

ds~ = d(2 - df2 - f2dn~, 

(5·6) 

(5·7) 

(5·8) 

because there is no mass energy inside the shell. In Eq. (5·8), we have used the 

connectivity condition with regard to the angle variables; namely, we take the same 

variables 0 and r.p as in (5·5). In so far as we are interested in a stationary background, 

we assume that the radius R of the shell is constant all time. In order to connect 

these metrics on the shell, let us represent inner coordinates f and f as the function 

of outer ones rand t, 

f = a(r, t), 

f = b(r, t). 

(5·9) 

(5·10) 
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440 K. Hotta 

Substituting these into Eq. (5·8), we obtain 

(5·11) 

The connectivity conditions are obtained by identifying the metrics in the line ele

ments (5·5) and (5·11) at r = R, 

f3
2 - a 2 - ev(R) 
t t - , 

f3tf3r - atar = 0, 

a 2 _ (32 = e-v(R) 
r r , 

a(R, t) = R, 

where 

and the solutions of these equations are given 

a
r 

= e-v (R)/2, 

f3t = ev(R)/2, 

at = f3r = O. 

(5·12) 

(5·13) 

(5·14) 

(5·15) 

(5·16) 

(5·17) 

(5·18) 

(5·19) 

Since the relations (5·17) '" (5·19) are the only connectivity conditions at r = R, 

there are arbitrary choices of the function a(r, t) and b(r, t) in entire region of rand 

t. This corresponds to the freedom of the general coordinate transformations. For 

convenience, we take a as a function of only rand b of only t. Then, these functions 

must satisfy 

aa.../- 0 
ar r , 

ab 
at 1= 0, 

(5·20) 

(5·21) 

for the finiteness of the inverse metric tensor. For the condition a(O) = 0 and 

a(R) = R, a(r) must be a monotonically increasing function of r. For example, we 

can choose it as a cubic function of r as 

where a is a constant and satisfies 

e-v (R)/2 - 2 

a> R2 (5·23) 
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The Information Loss Problem of Black Hole 441 

On the other hand, from Eqs. (5·18) and (5·19), b(r, t) is linear in tat r = R; namely, 

b(R, t) = ev (R)/2t . (5·24) 

For example, we can choose i as 

(5·25) 

that is, time passes in the same way at every point in the interior for the outside 

observer. Because the string shell is near the Schwarz schild radius rs (R > rs), the 

coefficient ev(R)/2 in Eq. (5·25) is extremely small. This means that the proper 

time in the Planck solid region passes much more slowly than that at infinity, and 

high temperature phenomena are seen in the black hole. In (5·8) let us use the time 

variable t defined in (5·25) instead of f. Then we get the line element 

(5·26) 

This implies a fiat space, but the time passes extremely slowly. Therefore, in order 

to take this line element self-consistently, it is sufficient for us to prove the existence 

of the matter with vanishing energy in the high temperature region only in the fiat 

space. 

If we assume that the Planck solid is described by topological field theories as 

mentioned in the previous section, the observables are independent of the choice 

of the metric. However, we must perform the gauge fixing to the metric inside to 

compute the topological quantities. The above connectivity conditions correspond 

to one of the reasonable gauge fixing conditions which connect the metric inside and 

outside. 

In order to maintain a stationary shell, there must be a force which supports it 

against its gravitational potential. As we saw above, we can choose the line element 

of the Planck solid region as (5·8), and the metric is i-independent. The Planck solid 

changes size only as a result of the phase transition on its surface, just like a solid. In 

other words, the Planck horizon has a very high pressure, the degeneracy pressure of 

the Planck solid, since there exists only one quantum state which has been already 

dominated. If we drop the matter to the black hole in order to squeeze the Planck 

horizon against its high pressure, it changes into Planck matter, only to extend the 

Planck solid region. As a result, the Schwarzschild radius and the mass of the black 

hole increase. This pressure can be taken as a negative tension or a positive pressure 

in the shell. In our stationary case, the surface tension ~ is evaluated by Khorrami 

and Mansouri 25) as 

G{lR 

~ = - 4(2 - G{!R)' 
(5·27) 

where {! is the surface energy density. Because the shell exists near the Schwarzschild 

radius R ~ rs and the surface energy density is given by 

M 1 

{! ~ 41l'(2GM)2 = 161l'G2M' 
(5·28) 
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442 K. Hotta 

the surface tension takes the very small negative value 

(5·29) 

Thus, the shell behaves as if it has this small negative tension. 

Although to this point we have discussed from the viewpoint of the observer 

at infinity, it seems that no observer sees a singularity according to the general 

covariance. But this is in conflict with the principle of black hole complementarity, 

which was proposed by Susskind, Thorlacius and Uglum. 5) -7) This complementarity 

principle is summarized in Ref. 6) as follows: 

1. To a freely falling observer, matter falling toward a black hole encounters noth

ing out of the ordinary upon crossing the horizon. All quantum information 

contained in the initial matter passes freely to the interior of the black hole. 

2. To an observer outside the black hole, matter, upon reaching the "stretched 

horizon" , is disrupted and emitted as thermalized radiation before crossing the 

horizon. All quantum information contained in the initial matter is found in 

the emitted radiation. 

This seems somewhat strange at the following point. For example, let us consider 

a rocket freely falling toward the black hole and two observers. One is the observer 

at infinity and the other is the observer in the rocket. If the freely falling observer 

has a thermometer, he sees it does not detect the increase in temperature since 

he receives no Hawking particles based on the above complementarity principle. 

On the other hand, the observer at infinity sees that the thermometer indicates an 

increase in temperature due to the thermalization effect. If the observer in the rocket 

starts the engine before it reaches the horizon and returns back to infinity, the two 

observers find a discrepancy in their observational results. These facts clearly violate 

causality (of course the observer in the rocket receives thermal radiation when the 

engine starts, but this fact has nothing to do with above arguments). In order to 

preserve causality, at least at the classical level, all the observers must see the same 

phenomena for the same event at the same point, even if their physical interpretations 

are different. 

We do not know the complete answer, but it seems that the following argument 

is more reasonable. Susskind, Thorlacius and Uglum deduced this complementarity 

principle from the relation between the Hawking effect in an infinite mass black hole 

and the Unruh effect in the Rindler coordinates. 27) The Unruh effect is that by which 

a constantly accelerating observer receives thermal radiation. In this case, the energy 

of the thermal particles are supplied by the external accelerating force. 28) In other 

words, the thermal particles are created by this accelerating force. At first sight, it 

seems that the Hawking radiation of the infinite mass black hole corresponds to this 

Unruh radiation. However, the infinite mass black hole has no Hawking radiation, 

since it has zero temperature. In this case, an observer fixed at any given point sees 

the radiation made by the force to maintain their position against the gravitational 

force from the black hole, as in the Unruh effect. But, this radiation is not that 

from the black hole and does not contain information about the black hole. In the 

finite mass black hole case, observers at infinity need not keep their position against 
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The Information Loss Problem of Black Hole 443 

the gravitational force, but see the Hawking radiation. Thus, the Hawking radiation 

is not radiation caused by the external accelerating force. We cannot explain the 

Hawking effect only by the motion of observers. 

Let us return to the first of Hawking's arguments for Hawking radiation 1) 

(see also Ref. 28)). If we consider the time development of the Schwarz schild black 

hole, the space-time can be treated asymptotically as a Minkowski space-time in the 

remote past, which we refer to as the 'in region', and Schwarz schild space-time in the 

remote future, which we refer to as the 'out region'. In the in region, we can choose 

the 'natural' Minkowskian vacuum. We can also choose the 'natural' Minkowskian 

vacuum in the asymptotic region r ---- 00 in the out region, since the Schwarzschild 

metric is asymptotically the Minkowski metric. If we compute the wave function us

ing the Schrodinger equation in curved space-time, we can define the vacuum states 

in the two regions. The vacuum state in the in region is different from that in the 

out region, but they are related by the Bogoliubov transformation. Thus, even if 

we choose the vacuum state in the in region as an initial state, we obtain as the 

final state a thermal state which is calculated from the Bogoliubov coefficient of this 

transformation. From this, we can conclude the creation of Hawking particles. On 

the other hand, there is no Hawking radiation if the metric has no time dependence, 

since the vacuum state does not change, and no excitation of particles occurs. If 

we take causality into consideration, these facts imply that the Hawking particles 

have been 'created' by the time-dependent gravitational field and have already been 

produced when the metric becomes the Schwarz schild one. 

From this viewpoint one may say that the Hawking radiation is real radiation 

from the black hole, and all the observers see it independent of their states of motion, 

instead of the complementarity principle. Thus, a freely falling observer receives 

intensive Hawking radiation as he approaches the Schwarz schild radius, and sees the 

Planck solid as real matter. We can therefore say that all the observers find out 

about the creation of the Planck solid and that no one sees singularities, including 

naked ones, as long as causality at the dassicallevel is maintained. In §3, we assumed 

that the string thermalization is caused by the increase of the cutoff frequencies for 

the observer at infinity. But rather, in order to preserve causality at the classical 

level, we must confirm that the strings are excited by the time variation of the 

metric, taking into consideration the quantum effect of strings in curved space-time. 

In particular, the strings should be thermalized sufficiently for the phase transition 

before the event horizon appears. It is suggestive that, in Hawking's arguments, the 

Hawking particles are highly excited at the outside of the event horizon. In any case, 

we assume that strings are excited and become the Planck solid before the factor 

dT / dt vanishes, as in the argument of ultraviolet cutoff. 

§6. The entropy of the black hole with the Planck solid 

In the stretched horizon model, the black hole entropy is computed by counting 

the states of the strings near the event horizon with the weak coupling assumption. 9) 

But, in our model, we introduce the Planck solid which is expected to appear in the 

strong coupling region. The question now arises. Does our model contradict their 
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444 K. Hotta 

entropy argument? The answer is 'no', as we see below. 

First, we shortly review the Susskind-Uglum computation of the black hole en

tropy. If we adopt the Matsubara method and compute the entropy of the equilibrium 

system of the strings around the event horizon in the Schwarzschild metric, it has 

an infra-red infinity. This is related to the fact that the temperature at infinity is 

not zero, but rather it is the Hawking temperature from the argument in §2. More

over, it is terribly complicated to compute the entropy in the Schwarzschild metric. 

However, if we consider an infinite mass black hole whose Hawking temperature is 

zero, this kind of divergence does not appear. For the purpose of analyzing an in

finite mass black hole, it is convenient to introduce the Rindler coordinates, which 

resemble the Kruskal-Szekeres coordinates. In this space, it is easier to compute the 

entropy than in Schwarz schild space. 

The line element of the Schwarzschild coordinates is given by (2·1). If we perform 

general coordinate transformations there, we obtain 

t 

T] = 4GM' 

p = J~8G-M-(r---2G-M-). 

Then the result is 

ds' = p2 (1+ 16~M2 r1 

d~2 - (1+ 16;:M2) dp2 

(6·1) 

(6·2) 

-4G
2
M2 (1+ 16;:M2)' da~, (6·3) 

where 

(6·4) 

Taking the infinite mass limit M ......... 00, we obtain the line element for the Rindler 

coordinates, 

(6·5) 

Here, we have replaced the angle variables () and r.p by the rectangular coordinate 

variables x2 and x3 with a proper rescaling. The variable p agrees with the proper 

length from the Schwarzschild radius rs , and p = 0 corresponds to the event horizon. 

Note that we are able to use this approximation not only for large values of M2, but 

also for small values of pj that is, near the event horizon for the finite mass. These 

coordinates are familiar for people in analysing constantly accelerated observers in 

flat space who experience the Unruh effect. 27) 

When we perform the Euclidean continuation with respect to the time variable T] 

in the Matsubara method on Rindler space, the coordinates T] and p are transformed 

into those of the cylindrical space, so that we must take the period of Euclidean 

time as 27l' in order to avoid a conical singularity. Thus, the temperature in Rindler 

space is given by TR = 1/27l', which is the so-called 'Rindler temperature'. From the 

argument regarding the notion of temperature in curved space, the temperature at 
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The Information Loss Problem of Black Hole 445 

each point in this space is given by t = 1/27rp. In the p --t 00 limit, it vanishes, as 

expected from the Hawking temperature of the infinite mass black hole. However, 

since the entropy S is derived from the free energy F({3) by the formula 

2 a 
S = f3 a{3F({3), (6·6) 

we must introduce the (3 dependence of the free energy and compute it on the conical 

singular background. 

Susskind and Uglum evaluated the entropy a of strings per unit area in the x 2
_ 

x3 plane on the Euclidean conical singular background using the canonical ensemble 

method. This area corresponds to the unit area on the event horizon. They concluded 

that it is 
1 

a= 4G' (6·7) 

so that the entropy allover the horizon corresponds to the Bekenstein-Hawking 

entropy. Because they computed a by the canonical ensemble method, it does not 

take into account the behavior of string gas near the Hagedorn temperature, which 

is derivable from the microcanonical ensemble method. 15) 

In our model, on the other hand, we introduce the Planck solid and take the 

entropy inside of the Planck horizon as zero. This introduces a cutoff at the Planck 

horizon in the entropy computation. Let us determine the position of the cutoff. For 

simplicity, we ignore the metric modification outside of the Planck horizon. If we 

take the temperature of the Planck solid as Tps , the Planck horizon exists at 

1 
P=Pph == -2 T. . 

7r ps 

Using the dimensionless variable a ps , we define Tps == a psG- 1
/

2
• Then 

G1/ 2 

Pph=--· 
27raps 

(6·8) 

(6·9) 

In the Susskind-Uglum argument, they did not consider the Hagedorn temperature. 

In this case, the Planck energy density appears at the Planck temperature. Therefore, 

we must take a ps to be of order 1. Then the cutoff exists at Pph '"" G1
/

2
, namely, the 

Planck length. 

The fundamental parameters in the string theory are the slope parameter a' 

and the expectation value of the dilaton (<p). The string coupling 9 is related to 

(<p) as 9 '"" e(r.p), and the gravitational coupling G is represented as G '"" g2. In the 

above entropy arguments, they used perturbation theory, which would describe the 

entropy in the case that the string coupling is small. Thus, let us consider the small 

(<p) limit with fixed a'. This corresponds to taking the small limit of G while fixing 

M in our case. Returning to Eq. (6·3), let us take the coupling G very small, while 

keeping G M large. The Planck horizon moves toward P = 0, and the computation 

of the black hole entropy in this limit agrees with that of Susskind-Uglum. Thus, 

their computation corresponds to that in a very idealized system in the weak coupling 

region, ignoring metric modification. Their argument does not contradict our model. 
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446 K. Hotta 

Before the Susskind-U glum computation, 't Hooft calculated the black hole en

tropy by state counting near the event horizon in a scalar field theory. This is the 

so-called 'brick wall model'. 3) This model gives an entropy proportional to the area 

of the event horizon when we introduce the ultra-violet cutoff at about one Planck 

length from the event horizon. The Planck horizon tells us why we need this cutoff. 

As an effective model for giving the black hole entropy, there exists the mem

brane model. 29) In this model, the membrane must lie at a distance from the event 

horizon to regularize the physical quantities. Our model gives the reason for this 

regularization. Namely, in the case that the stretched horizon and the Planck hori

zon sit close together and we can effectively treat stretched horizon as the membrane 

which is sitting at about the Planck length from the Schwarzschild radius. 

Recently, there has been remarkable progress made in understanding extremal 

and near extremal charged black holes by D-brane technology. 30) It was first shown 

by Strominger and Vafa that the entropy of a five-dimensional extremal black hole 

is exactly reproduced by the state counting of open strings on D-branes. 31) Then, 

many people confirmed the relation between extremal black holes and a certain 

configuration of D-branes and strings for quite a variety of black holes. 32) 

The argument of Strominger and Vafa is based on the supersymmetric non

renormalization theorem. As one increases the string coupling, the system of strings 

and D-branes in BPS states must become an extremal black hole. We can calculate 

the number of states of the strings on the D-branes at weak coupling and then ex

trapolate the result to the black hole in the strong coupling region, because of the 

nonrenormalization theorem. Using this method, we can reproduce the entropy of 

extremal black holes exactly by state counting of strings. However, since black holes 

are non-perturbative objects, we must understand non-perturbative strings and D

branes in order to discuss the transition from the system of strings and D-branes to 

the black hole. 33) Thus, this method does not give the picture of the strings and 

D-branes in the black hole case. In any case, if outside observers are able to obtain 

information concerning the black hole and there is no lost information, the informa

tion must exist outside of the Schwarzschild radius. In this sense, the Planck solid 

might be a candidate for the system of strings and D-branes in the non-perturbative 

region, since it gives a mechanism for the exclusion of the information from the inside 

of the black hole. 

On the other hand, we can obtain a more direct understanding of the five

dimensional extremal black hole in the work of Callan and Maldacena. 34
) Super

string theory is well defined on ten-dimensional space-time. In their argument, a five

dimensional space is compactified into a five-dimensional torus r 5
, and D5-branes 

wrap around this torus and Dl-branes wrap around one of the compact directions. 

D-branes exist at the origin of the noncompact four-dimensional space in this configu

ration. Performing the coordinate transformation, we can obtain the five-dimensional 

extremal charged black hole solution of the five-dimensional Einstein-plus-Maxwell 

equation: 

(6·10) 
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where 

(6·11) 

This extremal black hole has zero temperature but non-zero horizon area. In this 

coordinate transformation, the origin of the original coordinates is transformed to 

the surface at the Schwarzschild radius r = r e , namely, the event horizon in (6·10). 

The black hole entropy is reproduced by the state counting of the strings on the D

branes. Callan and Maldacena argued that strings falling into the black hole would 

actually appear as open strings whose ends move along the horizon to an outside 

observer, and this means that the horizon behaves as a D-brane. Since there is no 

'inside of the horizon' in the original coordinates of the D-brane configuration, open 

strings exist only outside of the horizon. 

In order to see the relation between the Callan-Maldacena model and the Planck 

solid model, let us consider the positions of the stretched horizon and the Planck 

horizon based on the argument of the temperature in curved space in §2. From Eq. 

(2·13), we can obtain 

(6·12) 

where T is the temperature at each point, and TBR is the Hawking temperature. 

Since TBR = 0, the radii of the stretched horizon and the Planck horizon become 

r = reo This means that the Planck horizon is coincident with the stretched horizon 

and exists exactly at the Schwarzschild radius. Thus, we can interpret open strings 

in the Callan-Maldacena model as open strings whose ends attach to the Planck 

horizon. Since the strings cannot enter the Planck solid region, strings only exist 

outside of the Planck horizon in the near extremal black hole case. This fact suggests 

that a D-brane as the condensed state of strings exists at the Planck horizon, and 

there is no Hawking radiation since this D-brane is in the ground state. It is expected 

that we can reproduce the entropy of this black hole by counting the number of the 

ground states which have the same charges. Therefore, the Planck solid model is not 

in conflict with the Callan-Maldacena model. 

§7. Summary and discussion 

In this paper, we have presented an intuitive scenario for the time evolution 

of the black hole as a possible solution for the information loss problem and the 

singularity problem, based on some assumptions. In this scenario, a Planck solid 

is created by a first order phase transition inside a star, and its information and 

energy are sent outside of its surface. Then, the star is supported by degeneracy 

pressure of the Planck solid, and the black hole radiation including the information 

is emitted from its surface. From the difference between this radiation and the 

thermal Hawking radiation, we can pick up information, and the information loss 

problem is resolved. Moreover, since the Planck solid has no energy, there is no 

singularity in the black hole. As time passes, the Planck solid region at the center 

of the black hole disappears, and the surrounding strings collapse to the thermal 

radiation. As long as we assume that causality is satisfied, no singularity appears at 
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any time, including a naked singularity, and the singularity problem does not exist. 

In addition to solving these two important problems, our model gives a physical 

explanation of the cutoff which is introduced in the brick wall or membrane model. 

In this scenario, we made four major assumptions. First, we introduced the 

Planck solid. We must study string theory at high density and the strong coupling 

region to investigate the validity of this assumption. However, it seems that the 

existence of the Planck solid is suggested by the fact that the important problems 

regarding black holes are resolved in our model. Moreover, as we can see from the 

above discussion about the cutoff, our Planck solid model proposes the existence of 

a phase transition from the states of strings to the Planck solid state which has no 

degrees of freedom, while other people introduce an artificial cutoff. It should be 

emphasized that in our model a physical entity, the Planck solid, has been introduced 

instead of the artificial cutoff. As we saw in §4, the properties of the Planck solid 

are satisfied by topological field theories. For the proof of the existence the Planck 

solid, it is sufficient to establish these theories as an unbroken phase in string theory. 

Next, we assumed that strings in the collapsing body are thermalized in response 

to the factor dT / dt. Because we still do not know precisely the behavior of quantum 

strings in curved space-time, we cannot tell for certain what happens exactly in this 

situation. But, the thermalization effect suggests the possibility that if we study the 

behavior of strings in curved space-time, we can formulate the Hawking-Unruh effect 

using local gravitational interactions of strings, instead of the computation using the 

time development of the background metric from the beginning. In any case, we 

must begin with the construction of a consistent theory for the thermalization of 

strings with this Hawking-Unruh effect. 

Then, we supposed that the black hole is in a quasi-equilibrium state at the 

Hawking temperature in thc last stage of gravitational collapse. Although we do not 

know the precise relation between our model and Hawking's computation of black 

hole radiation using quantum field theory in a curved background, this assumption is 

natural since we can reproduce the black hole entropy and its mass in this framework. 

In addition to the fact that string theory contains quantum gravity, Susskind pointed 

out that those strings experiencing thermalization effects interact with each other 

through gravitational scattering. 8) Therefore, we may think that our model shares 

the viewpoint of high energy gravitational scattering of many strings, rather than 

that of quantum theory in curved space-time. From our viewpoint, if interactions 

of strings in a curved background satisfy unitarity, the black hole must also satisfy 

unitarity. Then, we will be able to construct an S-matrix of black hole. Hence, the 

information loss problem would be resolved by determining the time development 

of a black hole by piling up the local interactions of strings including their back

reactions to the metric, instead of giving the global space-time structure from the 

beginning. 

Finally, we have treated the string system as classical matter and used general 

relativity. Probably, there are enough strings in this system to treat it as classical 

matter. In the low energy effective theory of the background field in string theory, 

massless modes are dilaton and antisymmetric tensor in addition to graviton, and 

the equations of motion become more complex than Einstein equation. But, in the 
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Planck solid region, these modes are not excited. In any case, the background field 

in this region would be decided only by boundary conditions, so that we can treat 

it easily. 

After all, we must construct the string theory in the high density, strong coupling 

region, and also construct quantum string theory in curved space-time in order to 

confirm whether or not the information loss problem and the singularity problem 

are resolved in our model. On the other hand, the black hole problems represent a 

viable context for studying these subjects. 
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