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Abstract

We describe the Information Manifold (IM), a system
for browsing and querying of multiple networked in-
formation sources. As a first contribution, the system
demonstrates the viability of knowledge representa-
tion technology for retrieval and organization of infor-
mation from disparate (structured and unstructured)
information sources. Such an organization allows the
user to pose high-level queries that use data from mul-
tiple information sources. As a second contribution,
we describe novel query processing algorithms used to
combine information from multiple sources. In partic-
ular, our algorithms are guaranteed to find exactly the
set of information sources relevant to a query, and to
completely exploit knowledge about local closed world
information (Etzioni et al. 1994).

Introduction
We are currently witnessing an explosion in the amount
of information that is available online. For exam-
ple, the rapid rise in popularity of the World Wide
Web (WWW) has increased the amount of informa-
tion available over the Internet. As another example,
large companies and institutions have a vast number
of internal databases, which they are making available
both internally and externally. Along with the rise in
the number of information sources, there is also a grow-
ing number of systems and protocols for providing user
friendly browsing of this information (e.g., Mosaic).
Although browsing is an important form of obtaining
information, it is limited, and often time-consuming.
Previous work on enabling location of information on
the WWW has focused primarily on building brokers
that provide keyword based index services. Support
for sophisticated querying and user-customized orga-
nization of information has been minimal.

This paper describes the Information Manifold
(IM), an implemented system for retrieval and orga-
nization of information from disparate (structured and
unstructured) information sources. IM clearly demon-
strates the viability of Knowledge Representation tech-
nology to enable access to online information. IM’s
architecture is based on a knowledge base containing

a rich domain model that enables describing proper-
ties of the information sources. In particular, IM’s
domain model includes the representation of topics of
information sources, as well as properties having to do
with the physical characteristics of the sources. The
user can interact with the system by browsing the in-
formation space (which includes both the knowledge
base and the external information sources). However,
the presence of descriptions of the information sources
also enables the user to pose high-level queries about
sources, a capability that distinguishes it from current
browsers.

When the external information sources are struc-
tured (e.g., databases, SGML documents), or can 
viewed as partially structured (e.g., FTP sites, bibli-
ography files), several interesting issues arise for effi-
cient query answering. IM’s representation language
enables describing the semantic content of structured
sources in a way that can be used to answer queries
that may involve accessing data in multiple sources.
The bulk of this paper describes the query processor
of IM, that answers user queries (posed in terms of
the domain model), using the information sources. In
particular, our techniques for answering queries make
two contributions over previous related work:

¯ The language for representing contents of informa-
tion sources is a combination of Horn rules and con-
cepts from the CLASSIC description logic (Brachman
el al. 1991). For this language we show it is possi-
ble to efficiently and completely determine which in-
formation sources (or portions thereof) are relevant
to a given query. In contrast, previous work (e.g.,
SIMS (Arens el al. 1994)) provided no guarantees
of minimality of the number of information sources
(or portions thereof) deemed relevant. Furthermore,
SIMS modeled information sources using only a de-
scription logic. The expressive power of Horn rules is
necessary in order to model information sources that
are relational databases. Furthermore, our tech-
niques for determining relevance are sufficiently gen-
eral, such that we can incorporate Horn rules with
more expressive description logics, consider queries
involving negation, and statements describing rela-
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tionships between the information sources.

¯ Local closed world information (LCW), introduced
in (Etzioni et al. 1994) enables us to express the fact
that an information source has complete knowledge
about some part of the domain. The query processor
can use this knowledge to prune access to redundant
information sources (i.e., sources that are relevant,
but whose content is contained in the union of some
other sources). First, we describe a richer language
for stating LCW statements than described in (Et-
zioni et al. 1994), in which constraint formulas are
used to describe more precisely the portion of the
domain for which a source has complete informa-
tion. Second, by using the close relationship between
the problem of reasoning with LCW statements and
the problem of determining independence of queries
from updates (Levy and Sagiv 1993b), we obtain 
general algorithm for inferring LCW of queries and
for pruning redundant information sources.

We begin by describing the representation language
used in IM, and how we describe properties of in-
formation sources. We then highlight the advantages
obtained by using KP~ technology in this application.
Next, we describe the query processor. Finally, we
briefly describe how a user interacts with the IM sys-
tem.

The Representation in IM

The knowledge base in IM is used for two purposes.
First, it provides a uniform conceptual model of the do-
main with which the user interacts and poses queries.
Second, it is used to represent properties of external
information sources, and in particular, their semantic
content.

Our domain consists of several rich hierarchical
structures. As examples, we have a rich topic hier-
archy for information sources, and the types of Inter-
net information sources (i.e., based on the protocols,
structure, etc.) form a natural hierarchy. Therefore, 
KL-ONE style description logic provides a natural way
of modeling our domain. However, in order to model
relational databases, and relations between different
databases we also need the representational power of
Horn rules. Hence, the representation language used
in IM is a combination of Horn rules and the CLASSIC
description logic. The IM knowledge base has several
components.

¯ A terminological component in the CLASSIC lan-
guage: the terminology contains unary relations
(called concepts) which represent classes of objects
in the domain and binary relations (called roles)
which describe relationships between objects. Con-
cepts and roles can be either primitive or complex.
Complex concepts and roles are defined via descrip-
tions built from the following set of constructors.

C I3 D (conjunction)

VR.C (universal quantification)
(> n/~) I (-< n R) (number of role fillers)
(fills n a) (filler of a role)
(oneOf R {al,...,an}) (role filler restrictions)

¯ A set of Horn rules: in addition to arbitrary n-ary
predicates, the antecedents of the rules can contain
unary literals of concepts defined in the terminolog-
ical component (but not binary roles), 1 and the in-
terpreted binary predicates (=, ¢, <, ~).

¯ A set of ground atomic facts for concept, role and
ordinary predicates.

¯ A set of integrity constraints of the form:

R(X) ~ C(X)

where C is a DNF formula involving concept pred-
icates and the interpreted binary predicates, and R
is an ordinary predicate.

Hereafter, a constraint formula is a formula with free
variables X1,..., Xn, containing conjunctions and dis-
junctions of atoms of the form C(o~) and o~10o~2, where
C is a concept in the terminology, o~1 and a2 are either
variables or constants, and 0 ~ {<, _<, #, =}.

Example 1: Suppose our system is providing access
to multiple information sources providing flight quote
information and telephone directories. In that case,
we can conceptualize the domain using the following
relations:

¯ quote(Ag, Al, Src, Dst, C, D), which denotes that a
travel agent Ag quotes a price of C to travel from
Src to Dst on airline Al on date D.

¯ dir(Cust, Ac, TelNo), which gives the directory list-
ing of customer Cust as area code Ac and phone
number TeINo.

The representation of the domain also has a rich hi-
erarchy of concepts describing various types of tele-
phone customers. The concept customer is a primi-
tive concept that includes all customers and specifically
the disjoint subconcepts business and residential.
Each instance of a business customer has a role
business_type, specifying the types of businesses it per-
forms. Given these primitive concepts, we can define
a concept traveIAgent by the description:

(business 13 (fills business_type "Travel"))

Integrity constraints are used to specify types of the
attributes of the domain relations. For example, the
attribute Cust of relation dir is constrained to be of
type customer, the attribute Ag of relation quote is
constrained to be of type traveIAgent and the at-
tribute C of quote is constrained to have non-negative
values. []

1See (Levy and Rousset 1995) for an extension that also
allows role predicates in the antecedents.
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The IM knowledge base contains ontologies for rep-
resenting various aspects of the domain. In partic-
ular, we represent physical properties of information
sources, such as their addresses (i.e., URLs), the proto-
cols used to access them (e.g., FTP, HTTP), and their
internal structure (e.g., hypertext, relational database,
knowledge base). The knowledge base also consists of 
rich topic hierarchy, ontologies for representing proper-
ties of people, organizations, geographic locations and
time.

Representation of Information Sources
A key component of the knowledge base is the represen-
tation of the contents of external information sources.
Many sources have no internal structure and for them,
IM only represents their physical and ownership prop-
erties, and their topics. However, many sources do
have internal structure or can be viewed as having
some internal structure, and this can be exploited in
answering sophisticated queries. In order to do so, we
need a representation of the contents of the informa-
tion sources, and specifically a semantic mapping to
the relations in the knowledge base. In this section,
we describe how we represent such mappings in the
IM knowledge base.

An external information source is viewed as contain-
ing extensions of a collection of relations. These rela-
tions can be either explicitly stored in the source (e.g.,
a database source), or computed when queried (e.g., 
FTP directory can be viewed as a relation containing
the set of files in a directory, which can be retrieved by
an "is" command).

For reasons explained subsequently, we restrict the
form of the occurrences of relations corresponding to
an information source in the knowledge base. Specifi-
cally, except for completeness information (i.e., LCW
statements) described in detail later in the paper, these
relations can appear only in the antecedents of the
Horn rules or of the integrity constraints, i.e., they
cannot appear in the consequents of Horn rules.

Example 2: Consider the airline flight domain. Fly-
by-Night Airlines provides two external source rela-
tions: fbn_flights(Flt, Src, Dest), which denotes that
flight Fit of Fly-by-Night Airlines is from Src to Dest,
and fbn_quote(Ag, Flt, C, D), which denotes that a
designated travel agent Ag of Fly-by-Night Airlines
quotes a price of C to travel by flight Flt on date D.
The domain relation quote can be related to the con-
tents of the source relations fbn_flights and fbn_quote
using a Horn rule as follows:

fbn_flights( Flt, Src, Dest )A
fbn_quote( Ag, Flt, C, D)
quote( Ag, ’Fly-by-Night’, Src, Dest, C, D).

As an example of an integrity constraint involving an
external information source relation, the New Jersey
directory information source nj_dir(Cust, Ac, TelNo)
can have the following integrity constraint:

nj_dir( Cust, Ac, TelN o) ::~ ( = 908)V
(Ac = 609) V (Ac = 201).

[]

Utility of KR Technology

Current tools for retrieving information from the In-
ternet (e.g., browsers such as Mosaic, or index ser-
vices such as WAIS) provide very limited representa-
tion of the information sources. In particular, Mosaic
allows the caching of pointers to information sources
in a flat list, and WAIS provides a keyword based
lookup in a collection of documents. For unstructured
sources, using a knowledge representation system en-
ables more sophisticated representations of informa-
tion sources which in turn allow us to make inferences
resulting in the ability to answer more sophisticated
queries. For example, instead of simply storing point-
ers to FTP sites of colleagues in the Mosaic Hotlist,
we can represent properties of the colleague (e.g., their
areas of expertise, their institution). Then we can pose
sophisticated queries such as "Give me the FTP sites
of colleagues whose area of expertise is software agents
and who are university professors".

Inferences made by the system are also useful in the
process of populating the knowledge base. For exam-
ple, when finding a new information source and adding
its description to the knowledge base, the system can
automatically fill in some properties of the information
source. As an example, by specifying some topics as-
sociated with the information source, the system can
automatically place it in a hierarchy of topics repre-
sented in a domain model, which allows retrieval of
this information source for related queries.

Our hybrid representation language was chosen to be
as expressive as possible, yet guaranteeing that infer-
ences can be made efficiently (Levy and Rousset 1995).

Answering Queries Using Structured
Sources

One of the key advantages of having a declarative rep-
resentation of the contents of information sources is
the ability to answer queries that use facts stored in
a structured information source. In this section, we
discuss how the query processor of IM answers queries
using multiple structured sources.

In our discussion, we assume that a query is an atom
of the form R(X), where R is a relation in our domain
model. That is, the query asks for the tuples 5 that
are instances of ~" such that R(~) is entailed by the
knowledge base.

l~ecall that the knowledge base does not store all
the information about all the relations in its domain
model. Some of the relations are only conceptual, and
their extensions can be computed from external infor-
mation sources. Therefore, answering a query proceeds
as follows:
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¯ Determine which portions of the domain relations
are needed to answer the query. That is, for every
relation E in the domain model, we compute a con-
straint formula CE, such that the facts of E that
satisfy CE are needed to answer the query.

¯ Determine which portions of the information sources
are needed to compute the desired portions of the
domain relations. That is, for every domain model
relation E, we decide which portions of the external
sources are needed to compute the facts of E that
satisfy CE.

¯ Formulate subqueries to each of the relevant infor-
mation sources.

¯ Combine answers from the information sources to
compute the needed portions of the domain rela-
tions.

¯ Compute the answer to the query from the domain
relations.

There are two distinct kinds of derivations performed
in computing the answers to a query. The first kind
of derivation uses facts from the information sources
to derive facts for the domain relations that are not
stored in the KB. These derivations use the rules that
provide the semantic mapping between the information
sources and the domain model. The second kind of
derivation uses facts of the domain model relations to
derive additional facts for the domain model relations,
and in particular to compute answers to the query.

Since the cost of answering queries is dominated by
the cost of accessing external information sources, the
key to optimizing the evaluation of a query is to deter-
mine a minimal set of portions of information sources
that are relevant to answering the query. We formally
define relevance in stages as follows.

Recall that in Horn rule knowledge bases, a deriva-
tion can be viewed as a tree whose root is the goal
node corresponding to the query Q. A goal node G
is either the leaf of the tree (corresponding to a fact
explicitly stored in the KB) or has a child rule node 
whose children are themselves goal nodes G1,..., G,~
used to derive G using rule r. We say that a derivation
d uses a fact R(d) if R(~) is one of the goal nodes 
the tree.2

Definition 1: A fact E(5), where E is a relation 
the domain model, is relevant to a query Q(X) if there
is some extension of the domain model relations that
is consistent with the integrity constraints in the KB
such that E(~) is used in a derivation of some answer
to the query Q(b). [7

The above definition formalizes the notion of rele-
vance for the second kind of derivation performed in
the process of answering a query (i.e.,, using facts of
the domain model relations in order to compute the

2Note that a fact can have multiple derivation trees,
corresponding to different ways of deriving the fact.

answer to the query). In a similar fashion we can de-
fine relevance for the first kind of derivation. In doing
so, E in the above definition is a relation represent-
ing an external information source relation and Q is
the domain model relation, and we consider all possi-
ble extensions on the external sources that satisfy the
integrity constraints in the KB. For more details on
definitions of relevance, see (Levy and Sagiv 1993a).

Based on these definitions, we can define portions
of external information sources relevant to a query as
follows. A portion of an external information source
relation R is denoted by a pair (R, C), which repre-
sents the set of all facts of relation R that satisfy the
constraint formula C. As before, C is a DNF formula
involving concepts from the description logic and in-
terpreted binary predicates.

Definition 2: (Relevance): A portion (R, C) of 
external source relation R is relevant to a query Q(X)
if for every fact R(5), ~ satisfies C if and only if there
is some fact E(b) of a domain relation E such that
R(~) is relevant to E(b) and E(b) is relevant 
query Q(X). 

Note that the above definition of relevance depends
only on the descriptions of the information sources, i.e.,
on the rules and integrity constraints in the knowledge
base, and not on the actual contents of the informa-
tion sources. This definition is motivated by the need
to determine relevance without actually accessing the
external information sources, which would undermine
the optimization effort.

The query processor in IM uses the query-tree al-
gorithm presented in (Levy and Sagiv 1992) for de-
termining the relevant portions of external informa-
tion sources. Finding relevant portions of the external
source relations proceeds in two steps. The first step
determines which portions of the domain relations are
relevant to the query, and the second step determines
which portions of the source relations are relevant to
the portions of the domain relations deemed relevant
to the query.

The following theorem shows that it is possible to
precisely determine the portions of the source relations
that are relevant to a given query.3

Theorem 1: Let Q(f() be a query. For each external
information source relation Ri, the query processor of
IM determines precisely the constraint Ci such that
(Ri, Ci) is the portion of Ri that is relevant to Q(2).

Furthermore, assuming bounded arity of predicates
in the knowledge base, relevant portions of source rela-
tions are determined in time polynomial in the size of
the knowledge base. []

The proof of the first part of the theorem follows
from the observation that the constraints in our rep-

3 Clearly, for some source relations the relevant portion
can be empty, indicating that the source relation does not
contain any relevant information.
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resentation language satisfy the abstract properties re-
quired by the query-tree algorithm in order to guar-
antee completeness. The proof of the second part of
the theorem uses the result that, for the constraints in
our representation language, determining whether one
conjunctive formula subsumes another conjunctive for-
mula is in polynomial time.

Example 3: Consider a query that asks for infor-
mation about travel agents in Miami, FL (area code
305) who sell tickets from Newark to Santiago for un-
der $1000. The query can be formulated as a Horn rule
defining the relation Q, as follows:

quote(Ag, Al, ’Newark, NJ’, ’Santiago, Chile’, C, D)
Adir(Ag, Ac, TelNo) A Ac 305
AC < 1000 ::~ Q(Ag, TelNo, C).

None of the directory information sources that pro-
vide phone numbers for area codes other than 305
would be considered relevant. For example, no portion
of the Manhattan, NY directory information source
which provides telephone numbers in the 212 area code
would be relevant since the conjunction of the con-
straints Ac -- 212 (from the description of the Man-
hattan source) and Ac = 305 (from the query) is un-
satisfiable. []

Extensions

Often there are many useful relationships between
the information sources, e.g., containment and dis-
jointness, that can help reduce the set of information
sources that need to be accessed in order to answer
a query. The results of (Levy and Sagiv 1995) can
be used to compute the minimal set of sources when
such relationships are described in the knowledge base.
Further, the results of (Levy et al. 1993) can be used
to determine relevant portions of external source re-
lations if queries were extended to include negation.
Finally, the results of (Levy et al. 1995) can be used
to compute the set of relevant sources in cases where
the relations representing the information sources ap-
pear in the consequents of the rules.

Completeness and Redundant Sources

In practice, information may reside redundantly in
many information sources. Accessing all the informa-
tion sources that are relevant to a query could thus
involve retrieving information redundantly. Using the
descriptions of information sources discussed in the
previous section, there was no way to infer that subse-
quent queries to other information sources would be
redundant. Etzioni et al. (Etzioni el al. 1994) de-
scribe a method for specifying that a source has lo-
cally complete knowledge about some aspect of the
domain. Such knowledge can be used to exclude re-
dundant information sources. For example, if an infor-
mation source provides all the telephone numbers of
the 212 area code, and a certain 212 number was not

found there, then there is no need to query any other
information source that may have 212 numbers.

To express information of this form, we allow local
closed world (LCW) statements of the following form
in the IM knowledge base:

E(X) A C(X) ~ R~(2~) A... A n,,(2,,)

where E is a domain model relation, C(X) is a con-
straint formula and the Ri’s are information source re-
lations. This statement expresses the fact that the con-
junction of the Ri’s gives complete information about
the facts of E that satisfy C. In particular, if n = 1,
then the source relation R1 alone contains the complete
information.

These statements are used by the query processor
to prune information sources as follows. Recall that
the first step in answering the query is to determine,
for each domain model relation, which portion of it is
relevant (Definition 1). Suppose we have determined
that, for the relation El, the relevant facts are those
that satisfy the constraint formula Ci. The next step
is to find a set of information sources that can provide
these facts. We first consider the LCW statements to
find the maximal subset C~ of Ci that can be obtained
completely. Then we find a minimal set of sources that
provides the tuples satisfying C~. We then use the
query-tree to find sources that provide tuples satisfying
Ci - C~, as described in the previous section.

Example 4: Suppose our query involves phone num-
bers from the NYC area (i.e., area codes 718 and 212).
We have four information sources available: S1, which
provides all the numbers in the 718 area code, $2,
which provides all the residential numbers in the 718
area code, $3, which provides all the business numbers
in the 718 area code, and $4, which provides numbers
in the 212 and 718 area codes (but does not have com-
plete information).

Our query processor will first derive that it has
sources to compute all the 718 area code, and will de-
termine that S1,$2 and $3 are sufficient (and there-
fore $4 is redundant). It then determines that {S1}
alone provides all the numbers in the 718 area code
(and therefore $2 and $3 are redundant). Finally, 
will try to find sources that have numbers in the 212
area code, and find $4. When it queries $4, it will ask
only for 212 numbers, because the 718 numbers that
$4 has are redundant with respect to S1. []

A natural question that arises in the presence of
completeness (or LCW) statements (considered in (Et-
zioni et al. 1994)) is whether the answer to the query
represents complete knowledge about the world, i.e.,
whether we can infer, from the completeness of the in-
formation sources, completeness of the query. For in-
stance, in our example, we do not have complete infor-
mation about numbers in the NYC area, even though
we have complete information about the 718 area code.
Levy (Levy 1994) shows that the problem of inferring
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completeness for queries is closely related to the prob-
lem of determining independence of queries from up-
dates (Levy and Sagiv 1993b). One consequence of this
close connection is the following:

Theorem 2: Suppose that for any rule in the knowl-
edge base, the antecedent contains at most one occur-
rence of every domain relation. Then, the answer to a
query is complete if and only if we have complete in-
formation about every portion Ci of a domain relation
Ei that was deemed relevant. []

In contrast, (Etzioni et al. 1994) showed that the
if direction holds in general, without the restriction
on the number of predicate occurrences. An impor-
tant corollary of the above theorem is that, under the
conditions of the theorem, the query processor of IM
finds the minimal number of source relations needed
to answer the query. This means that, although other
source relations may be relevant, there is no subset
of the chosen source relations that would produce the
same answer to the query (i.e., every proper subset
may result in missing some answers). In (Levy 1994), 
sound and complete inference procedure for determin-
ing completeness of queries is described for the general
case.

It should be emphasized that our treatment of local
closed world information generalizes that of (Etzioni
et al. 1994) by considering the semantics of expres-
sive constraint formulas in the rules and completeness
statements. In contrast, (Etzioni et al. 1994) reasons
with conjunctions of constraints of the form X = c,
where X is a variable and c is a constant. Finally, the
close connection with the problem of independence of
queries from updates sheds light on the complexity of
the problem of inferring completeness (see (Levy 1994)
for details).

Interacting with IM

The IM system implements a WWW client with a mul-
timedia hypertext interface (similar to Mosaic) coupled
with a knowledge base for organizing and querying In-
ternet information sources. In a typical IM session,
the user interacts with IM via three window panes:
a hypertext browser, a knowledge base browser, and a
command/query interaction pane. The bulk of this pa-
per dealt with queries in IM. We now briefly describe
the user interactions with the hypertext and knowl-
edge base browsers in IM. A close coupling between
the knowledge base and the hypertext browser per-
mits users to move seamlessly between hypertext nav-
igation, structured browsing of the information space
and organization of new information sources. Specif-
ically, the coupling enables the user to easily transfer
information from the browser to the knowledge base,
and allows information on the Internet to be used to
answer queries posed to the knowledge base.

The IM interface supports refinement and extension
of the knowledge base as users discover new informa-

tion and their view of the information space evolves.
Information sources are added to the knowledge base
by simply picking them up from the hypertext browser
and throwing them into the knowledge base browser
at an appropriate place in the topic hierarchy. At
this point, the IM system fills in most of the "sur-
face" characteristics of the information source auto-
matically (e.g., physical characteristics such as modi-
fication time, type, etc). For more complex character-
istics, a representation language allows one to express
more sophisticated relationships, as described previ-
ously. A given IM knowledge base therefore represents
a unique view of the information space, tailored to the
interests of an individual or group. The knowledge
base is persistent across IM sessions.

The knowledge base serves as both a repository for
descriptions of information sources, and as a medium
for browsing and querying them. Many retrieval op-
erations may be expressed by browsing the knowledge
base and using simple gestures on knowledge base ob-
jects to find information sources of interest (e.g. "find
documents with at least one topic under OODB"). 
result of this retrieval operation is that the system can
position the user on sites on the Internet relevant to
the query for subsequent browsing of unstructured in-
formation sources. For retrieval actions that cannot be
expressed as browsing operations, a query language al-
lows one to express more complex queries, as described
previously.

Related Work

The IM approach to retrieving and organizing infor-
mation from disparate sources is related to the ap-
proach taken by systems such as SIMS (Arens et al.
1994) and Carnot (Collet et al. 1991), to work done in
software agents (e.g., (Cohen et al. 1994)), as well 
to work done in multidatabase systems.

The work most closely related to ours is the
SIMS project for integrating multiple information
sources (Arens et al. 1994). The representation of
the domain in their system is based on the descrip-
tion logic system LOOM (MacGregor 1987). Answer-
ing a query in SIMS proceeds in two steps: finding the
relevant sources and accessing them. In SIMS, both
components of the problem are posed as search prob-
lems, whereas, in our approach, the query processor
tries to use the representations of the sources as much
as possible before accessing any external information
sources. Unlike the approach of SIMS, our algorithms
are guaranteed to give only relevant sources. Our do-
main representation language is more expressive than
that used in SIMS. For example, SIMS does not allow
arbitrary n-ary relations, and therefore, it has to map
each external relation to a concept in LOOM. This can
be done only when the relation has a primary key. Al-
though one can always conceptually add another such
attribute to a relation, modeling a relation in such a
way is unnatural. Furthermore, it limits the kinds of
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relationships that can be expressed between sites (in
particular, it is not possible to express the fact that
one relation is a join of two others).

Both multidatabase systems and our approach have
as their goal the ability to access multiple autonomous
databases through querying. However, there are many
differences between the multidatabase system architec-
ture and ours. The approach taken by multidatabase
systems is to make the multiple autonomous databases
usable without a conceptually unified domain model.
Their main reason for this approach is to preserve
source autonomy, while supporting global updates.
Our architecture only seeks to provide global query-
ing, and mandates that all updates be performed at
each source locally. Furthermore, it should be noted
that in our approach, the domain model is purely con-
ceptual and does not require each source to support
a global schema. In querying a multidatabase system,
the user has to be explicitly aware of the existence and
the contents of the conceptual schemas in each of the
autonomous databases. While the multidatabase ap-
proach to querying multiple source relations is feasible
when the number of source relations is small, it can be
quite cumbersome in the presence of a large number of
information sources.

Another project related to ours is the Carnot
project (Collet et al. 1991), which has similar objec-
tives to multidatabase systems in providing resource
integration, global querying and global updates. The
representation of the domain in their system is based
on the Cyc knowledge base, and articulation axioms es-
tablish equivalences between components of the source
schemas and components of the domain schema, to en-
able the task of schema integration. However, articu-
lation axioms do not allow for the specification of the
semantic contents of source relations, and hence there
is no notion of optimizing queries in Carnot.

Cohen et al. (Cohen et al. 1994) also use the lan-
guage of Horn rules to represent the relationships be-
tween the contents of external sources and the domain
model. However, they did not consider the issue of
query optimization.

Conclusion

The functionality of the current IM prototype is com-
plete enough to demonstrate the utility of using knowl-
edge representation to assist with location and organi-
zation of information distributed throughout the In-
ternet; we already have a useful tool. The second
main contribution of our work is a general treatment
of the issue of query optimization in distributed het-
erogeneous environments.
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