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Abstract

We introduce a new framework for unsupervised

learning of representations based on a novel hi-

erarchical decomposition of information. Intu-

itively, data is passed through a series of pro-

gressively fine-grained sieves. Each layer of the

sieve recovers a single latent factor that is maxi-

mally informative about multivariate dependence

in the data. The data is transformed after each

pass so that the remaining unexplained informa-

tion trickles down to the next layer. Ultimately,

we are left with a set of latent factors explain-

ing all the dependence in the original data and

remainder information consisting of independent

noise. We present a practical implementation of

this framework for discrete variables and apply it

to a variety of fundamental tasks in unsupervised

learning including independent component anal-

ysis, lossy and lossless compression, and predict-

ing missing values in data.

The hope of finding a succinct principle that elucidates the

brain’s information processing abilities has often kindled

interest in information-theoretic ideas (Barlow, 1989; Si-

moncelli & Olshausen, 2001). In machine learning, on

the other hand, the past decade has witnessed a shift in

focus toward expressive, hierarchical models, with suc-

cesses driven by increasingly effective ways to leverage la-

beled data to learn rich models (Schmidhuber, 2015; Ben-

gio et al., 2013). Information-theoretic ideas like the vener-

able InfoMax principle (Linsker, 1988; Bell & Sejnowski,

1995) can be and are applied in both contexts with empiri-

cal success but they do not allow us to quantify the informa-

tion value of adding depth to our representations. We intro-

duce a novel incremental and hierarchical decomposition of

information and show that it defines a framework for unsu-
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pervised learning of deep representations in which the in-

formation contribution of each layer can be precisely quan-

tified. Moreover, this scheme automatically determines the

structure and depth among hidden units in the representa-

tion based only on local learning rules.

The shift in perspective that enables our information de-

composition is to focus on how well the learned repre-

sentation explains multivariate mutual information in the

data (a measure originally introduced as “total correla-

tion” (Watanabe, 1960)). Intuitively, our approach con-

structs a hierarchical representation of data by passing it

through a sequence of progressively fine-grained sieves. At

the first layer of the sieve we learn a factor that explains as

much of the dependence in the data as possible. The data is

then transformed into the “remainder information”, which

has this dependence extracted. The next layer of the sieve

looks for the largest source of dependence in the remainder

information, and the cycle repeats. At each step, we obtain

a successively tighter upper and lower bound on the multi-

variate information in the data, with convergence between

the bounds obtained when the remaining information con-

sists of nothing but independent factors. Because we end up

with independent factors, one can also view this decompo-

sition as a new way to do independent component analysis

(ICA) (Comon, 1994; Hyvärinen & Oja, 2000). Unlike tra-

ditional methods, we do not assume a specific generative

model of the data (i.e., that it consists of a linear trans-

formation of independent sources) and we extract indepen-

dent factors incrementally rather than all at once. The im-

plementation we develop here uses only discrete variables

and is therefore most relevant for the challenging problem

of ICA with discrete variables, which has applications to

compression (Painsky et al., 2014).

After providing some background in Sec. 1, we introduce

a new way to iteratively decompose the information in data

in Sec. 2, and show how to use these decompositions to

define a practical and incremental framework for unsuper-

vised representation learning in Sec. 3. We demonstrate the

versatility of this framework by applying it first to indepen-

dent component analysis (Sec. 4). Next, we use the sieve
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as a lossy compression to perform tasks typically relegated

to generative models including in-painting and generating

new samples (Sec. 5). Finally, we cast the sieve as a loss-

less compression and show that it beats standard compres-

sion schemes on a benchmark task (Sec. 6).

1 Information-theoretic learning

background

Using standard notation (Cover & Thomas, 2006), capital

Xi denotes a random variable taking values in some do-

main and whose instances are denoted in lowercase, xi. In

this paper, the domain of all variables are considered to be

discrete and finite. We abbreviate multivariate random vari-

ables, X ≡ X1:n ≡ X1, . . . , Xn, with an associated prob-

ability distribution, pX(X1 = x1, . . . , Xn = xn), which

is typically abbreviated to p(x). We will index different

groups of multivariate random variables with superscripts,

Xk, as defined in Fig. 1. We let X0 denote the original ob-

served variables and we often omit the superscript in this

case for readability.

Entropy is defined in the usual way as H(X) ≡
EX [log 1/p(x)]. We use base two logarithms so that the

unit of information is bits. Higher-order entropies can be

constructed in various ways from this standard definition.

For instance, the mutual information between two groups

of random variables, X and Y can be written as the reduc-

tion of uncertainty in one variable, given information about

the other, I(X;Y ) = H(X)−H(X|Y ).

The “InfoMax” principle (Linsker, 1988; Bell & Se-

jnowski, 1995) suggests that for unsupervised learning we

should construct Y ’s to maximize their mutual information

with X , the data. Despite its intuitive appeal, this approach

has several potential problems (see (Ver Steeg et al., 2014)

for one example). Here we focus on the fact that the Info-

Max principle is not very useful for characterizing “deep

representations”, even though it is often invoked in this

context (Vincent et al., 2008). This follows directly from

the data processing inequality (a similar argument appears

in (Tishby & Zaslavsky, 2015)). Namely, if we start with

X , construct a layer of hidden units Y 1 that are a function

of X , and continue adding layers to a stacked representa-

tion so that X → Y 1 → Y 2 . . . Y k, then the information

that the Y ’s have about X cannot increase after the first

layer, I(X;Y 1:k) = I(X;Y 1). From the point of view of

mutual information, Y 1 is a copy and Y 2 is just a copy of

a copy. While a coarse-grained copy might be useful, the

InfoMax principle does not quantify how or why.

Instead of looking for a Y that memorizes the data, we shift

our perspective to searching for a Y so that the Xi’s are as

independent as possible conditioned on this Y . Essentially,

we are trying to reconstruct the latent factors that are the

cause of the dependence in Xi. To formalize this, we in-

troduce the multivariate mutual information which was first

introduced as “total correlation” (Watanabe, 1960).

TC(X) ≡ DKL

(

p(x)||

n
∏

i=1

p(xi)

)

=

n
∑

i=1

H(Xi)−H(X)

(1)

This quantity reflects the dependence in X and is zero if

and only if the Xi’s are independent. Just as mutual infor-

mation is the reduction of entropy in X after conditioning

on Y , we can define the reduction in multivariate informa-

tion in X after conditioning on Y .

TC(X;Y ) ≡ TC(X)− TC(X|Y )

=
n
∑

i=1

I(Xi;Y )− I(X;Y ).
(2)

That TC(X) can be hierarchically decomposed in terms

of short and long range dependencies was already appreci-

ated by Watanabe (Watanabe, 1960) and has been used in

applications such as hierarchical clustering (Kraskov et al.,

2005). This provides a hint about how higher levels of hier-

archical representations can be useful: more abstract repre-

sentations should reflect longer range dependencies in the

data. Our contribution below is to demonstrate a tractable

approach for learning a hierarchy of latent factors, Y , that

exactly capture the multivariate information in X .

2 Incremental information decomposition

We consider any set of probabilistic functions of some in-

put variables, X , to be a “representation” of X . Looking at

Fig. 1(a), we consider a representation with a single learned

latent factor, Y . Then, we try to save the information in X
that is not captured by Y into the “remainder information”,

X̄ . The final result is encapsulated in Cor. 2.4 which says

that we can repeat this procedure iteratively (as in Fig. 1(b))

and TC(X) decomposes into a sum of non-negative con-

tributions from each Yk. Note that X(k) includes Yk, so

that Y ’s at subsequent layers can depend on latent factors

learned at earlier layers.

Theorem 2.1. Incremental Decomposition of Infor-

mation Let Y be some (deterministic) function of

X1, . . . , Xn and let X̄i be a probabilistic function of Xi, Y ,

for each i = 1, . . . , n. Then the following upper and lower

bounds on TC(X) hold:

A ≤ TC(X)−
(

TC(X̄) + TC(X;Y )
)

≤ B

A = −

n
∑

i=1

I(X̄i;Y ), B =

n
∑

i=1

H(Xi|X̄i, Y )
(3)
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(a)
X̄1 X̄2 X̄i X̄n

XnXiX1 X2
Input 

variables

Remainder 

information YX̄:

(b)

X0 : X1 . . . Xn

X1 : X1
1 . . . X1

n Y1

X2 : X2
1 . . . X2

n Y 2
1 Y2

· · ·

Xk : Xk
1 . . . Xk

n Y k
1 Y k

2 Yk

Figure 1. (a) This diagram describes one layer of the information

sieve. In this graphical model, the variables in the top layer (Xi’s)

represent (observed) input variables. Y is some function of all the

Xi’s that is optimized to be maximally informative about multi-

variate dependence in X . The remainder information, X̄i depends

on Xi and Y and is set to contain information in Xi that is not

captured by Y . (b) Summary of variable naming scheme for mul-

tiple layers of the sieve. The input variables are in bold and the

learned latent factors are in red.

A proof is provided in App. B. Note that the remainder

information, X̄ ≡ X̄1, . . . , X̄n, Y , includes Y . Bounds

on TC(X) also provide bounds on H(X) by using Eq. 1.

Next, we point out that the remainder information, X̄ , can

be chosen to make these bounds tight.

Lemma 2.2. Construction of perfect remainder in-

formation For discrete, finite random variables Xi, Y
drawn from some distribution, p(Xi, Y ), it is possible to

define another random variable X̄i ∼ p(X̄i|Xi, Y ) that

satisfies the following two properties:

(i) I(X̄i;Y ) = 0 Remainder contains no Y info

(ii) H(Xi|X̄i, Y ) = 0 Original is perfectly recoverable

We give a concrete construction in App. C. We would like

to point out one caveat here. The cardinality of X̄i may

have to be large to satisfy these equalities. For a fixed num-

ber of samples, this may cause difficulties with estimation,

as discussed in Sec. 3. With perfect remainder information

in hand, our decomposition becomes exact.

Corollary 2.3. Exact decomposition For Y a function

of X and perfect remainder information, X̄i, i = 1, . . . , n,

as defined in Lemma 2.2, the following decomposition

holds:

TC(X) = TC(X̄) + TC(X;Y ) (4)

The above corollary follows directly from Eq. 3 and the

definition of perfect remainder information. Intuitively, it

states that the dependence in X can be decomposed into a

piece that is explained by Y , TC(X;Y ), and the remaining

dependence in X̄ . This decomposition can then be iterated

to extract more and more information from the data.

Corollary 2.4. Iterative decomposition Using the vari-

able naming scheme in Fig. 1(b), we construct a hierarchi-

cal representation where each Yk is a function of Xk−1

and Xk includes the (perfect) remainder information from

Xk−1 according to Lemma 2.2.

TC(X) = TC(Xr) +
r
∑

k=1

TC(Xk−1;Yk) (5)

It is easy to check that Eq. 5 results from repeated applica-

tion of Cor. 2.3. We show in the next section that the quan-

tities of the form TC(Xk−1;Yk) can be estimated and opti-

mized over efficiently, despite involving high-dimensional

variables. As we add the (non-negative) contributions from

optimizing TC(Xk−1;Yk), the remaining dependence in

the remainder information, TC(Xk), must decrease be-

cause TC(X) is some data-dependent constant. Decom-

posing data into independent factors is exactly the goal of

ICA, and the connections are discussed in Sec. 4.

3 Implementing the sieve

Because this learning framework contains many unfamiliar

concepts, we consider a detailed analysis of a toy problem

in Fig. 2 while addressing concrete issues in implementing

the information sieve.

Y1 = arg max
Y=f(X)

TC(X;Y )

X1
1 = X1 + Y1 mod 2

X1
2 = X2 + Y1 mod 2

X1
3 = X3

Data Remainder

X1 X2 X3 Y1 X
1
1 X1

2 X1
3

0 0 1 0 0 0 1
0 0 0 0 0 0 0
1 1 0 1 0 0 0
1 1 1 1 0 0 1

Figure 2. A simple example for which we imagine we have sam-

ples of X drawn from some distribution.

Step 1: Optimizing TC(Xk−1;Yk) First, we construct

a variable, Yk, that is some arbitrary function of Xk−1 and

that explains as much of the dependence in the data is pos-

sible. Note that we have to pick the cardinality of Yk and

we will always use binary variables. Dropping the layer

indices, k, the optimization can be written as follows.

max
p(y|x)

∑

i

I(Xi;Y )− I(X;Y ) (6)

Here, we have relaxed the optimization to allow for prob-

abilistic functions of X . If we take the derivative of this

expression (along with the constraint that p(y|x) should be

normalized) and set it equal to zero, the following simple
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fixed point equation emerges.

p(y|x) =
p(y)

Z(x)

n
∏

i=1

p(xi|y)

p(xi)

The state space of X is exponentially large in n, the num-

ber of variables. Fortunately, this fixed point equation tells

us that we can write the solution in terms of a linear num-

ber of terms which are just marginal likelihood ratios. De-

tails of this optimization are discussed in Sec. A. Note that

the optimization provides a probabilistic function which

we round to a deterministic function by taking the most

likely value of Y for each X . In the example in Fig. 2,

TC(X;Y1) = 1 bit, which can be verified from Eq. 2.

Surprisingly, we did not need to restrict or parametrize the

set of possible functions; the simple form of the solution

was implied by the objective. Furthermore, we can also use

this function to find labels for previously unseen examples

or to calculate Y ’s for data with missing variables (details

in Sec. A). Not only that, but a byproduct of the procedure

is to give us a value for the objective TC(Xk−1;Yk), which

can be estimated even from a small number of samples.

Step 2: Remainder information Next, the goal is to

construct the remainder information, Xk
i , as a probabilistic

function of Xk−1
i , Yk, so that the following conditions are

satisfied: (i)I(Xk
i ;Y1) = 0 and (ii)H(Xk−1

i |Xk
i , Yk) =

0. This can be done exactly and we provide a simple al-

gorithm in Sec. C. Solutions for this example are given in

Fig. 2. Concretely, we estimate the marginals, p(xk−1
i , yk)

from data and then write down a conditional probability ta-

ble, p(xk
i |x

k−1
i , yk), satisfying the conditions. The exam-

ple in Fig. 2 was constructed so that the remainder informa-

tion had the same cardinality as the original variables. This

is not always possible. While we can always achieve per-

fect remainder information by letting the cardinality of the

remainder information grow, it might become difficult to

estimate marginals of the form p(Xk−1
i , Yk) at subsequent

layers of the sieve, as is required for the optimization in step

1. In results shown below we allow the cardinality of the

variables to increase by only one at each level to avoid state

space explosion, even if doing so causes I(Xk−1
i ;Yk) > 0.

We keep track of these penalty terms so that we can report

accurate lower bounds using Eq. 3.

Another issue to note is that in general there may not be

a unique choice for the remainder information. In the ex-

ample, I(X3;Y ) = 0 already so we choose X1
3 = X3,

but X1
3 = X3 + Y1 mod 2 would also have been a valid

choice. If the identity transformation, Xk
i = Xk−1

i satis-

fies the conditions, we will always choose it.

Step 3: Repeat until the end At this point we repeat the

procedure, putting the remainder information back into step

1 and searching for a new latent factor that explains any re-

maining dependency. In this case, we can see by inspection

that TC(X1) = 0 and, using Eq. 5, we have TC(X) =
TC(X1) + TC(X;Y1) = 1 bit. Generally, in high-

dimensional spaces it may be difficult to verify that the

remainder information is truly independent. When the re-

mainder information is independent, the result of attempt-

ing the optimization maxp(yk|xk−1) TC(Xk−1;Yk) = 0.

In practice, we stop our hierarchical procedure when the

optimization in step 1 stops producing positive results be-

cause it means our bounds are no longer tightening. Code

implementing this entire pipeline is available (Ver Steeg).

Prediction and compression Note that our condition for

the remainder information that H(Xk−1
i |Xk

i , Yk) = 0 im-

plies that we can perfectly reconstruct each variable Xk−1
i

from the remainder information at the next layer. There-

fore, we can in principle reconstruct the data from the rep-

resentation at the last layer of the sieve. In the example,

the remainder information requires two bits to encode each

variable separately, while the data requires three bits to en-

code each variable separately. The final representation has

exploited the redundancy between X1, X2 to create a more

succinct encoding. A use case for lossy compression is dis-

cussed in Sec. 5. Also note that at each layer some variables

are almost or completely explained (X1
1 , X

1
2 in the example

become constant). Subsequent layers can enjoy a compu-

tational speed-up by ignoring these variables that will no

longer contribute to the optimization.

4 Discrete ICA

If X represents observed variables then the entropy, H(X),
can be interpreted as the average number of bits required

to encode a single observation of these variables. In prac-

tice, however, if X is high-dimensional then estimating

H(X) or constructing this code requires detailed knowl-

edge of p(x), which may require exponentially many sam-

ples in the number of variables. Going back at least to Bar-

low (Barlow, 1989), it was recognized that if X is trans-

formed into some other basis, Y , with the Y ’s independent

(TC(Y ) = 0), then the coding cost in this new basis is

H(Y ) =
∑

j H(Yj), i.e., it is the same as encoding each

variable separately. This is exactly the problem of indepen-

dent component analysis: transform the data into a basis

for which TC(Y ) = 0, or is minimized (Comon, 1994;

Hyvärinen & Oja, 2000).

While our method does not directly minimize the total cor-

relation of Y , Eq. 5 shows that, because TC(X) is a data-

dependent constant, every increase in the total correlation

explained by each latent factor directly implies a reduction

in the dependence of the resulting representation,

TC(Xr) = TC(X)−

r
∑

k=1

TC(Xk−1;Yk).

Since the terms in the sum are optimized (and always non-



The Information Sieve

True sources

(hidden) S

Observations

(~x = A~s) X

S1

S2

S3

X1 X1
1

X2
1

X3
1

X2 X1
2 X2

2

X3
2

X3

X4 X1
4 X2

4 X3
4

X1
3 X2

3

X3
3

Y1

Y 2
1

Y 3
1

Y2

Y 3
2

Y3

}

}No remaining
info in X’s

Y ’s recover
independent
sources, S

Intermediate representations
Layer 1, X1 Layer 2, X2 Layer 3, X3

Final result

Figure 3. On the far left, we consider three independent binary random variables, S1, S2, S3. The vertical position of each signal is

offset for visibility. From left to right: Independent source data is linearly mixed, ~x = A~s. This data, X , is fed into the information

sieve. After going through some intermediate representations, the final result is shown on the far right. Consult Fig. 1(b) for the variable

naming scheme. The final representation recovers the independent input sources.

negative), the dependence is decreased at each level. That

independence could be achieved as a byproduct of effi-

cient coding has been previously considered (Hochreiter

& Schmidhuber, 1999). An approach that leading to “less

dependent components” for continuous variables has also

been shown (Stögbauer et al., 2004).

For discrete variables, which are the focus of this paper,

performing ICA is a challenging and active area of re-

search. Recent state-of-the-art results lower the complexity

of this problem to only a single exponential in the number

of variables (Painsky et al., 2014). Our method represents

a major leap for this problem as it is only linear in the num-

ber of variables, however, we only guarantee extraction of

components that are more independent, while the approach

of Painsky et. al. guarantees a global optimum.

The most commonly studied scenario for ICA is to con-

sider a reconstruction problem where some (typically con-

tinuous) and independent source variables are linearly

mixed according to some unknown matrix (Comon, 1994;

Hyvärinen & Oja, 2000). The goal is to recover the ma-

trix and unmix the components (back into their independent

sources). Next we demonstrate our discrete independent

component recovery on an example reminiscent of tradi-

tional ICA examples.

An ICA example Fig. 3 shows an example of recovering

independent components from discrete random variables.

The sources, S, are hidden and the observations, X , are a

linearly mixture of these sources. The mixing matrix used

in this example is

A = ((1, 1, 1), (2, 0,−1), (1, 2, 0), (−1, 1, 0)).

The information sieve continues to add layers as long as

it increases the tightness of the information bounds. The

intermediate representations at each layers are also shown.

For instance, layer 1 extracts one independent component,

and then removes this component from the remainder infor-

mation. After three layers, the sieve stops because X3 con-

sists of independent variables and therefore the optimiza-

tion of maxTC(X3;Y4) = 0.

In this case, the procedure correctly stops after three la-

tent factors are discovered. Naively, three layers makes

this a “deep” representation. However, we can examine the

functional dependence of Y ’s and X’s by looking at the

strength of the mutual information, I(Yk;X
k−1
i ), as shown

in Fig. 4. This allows us to see that none of the learned

latent factors (Y ’s) depend on each other so the resulting

model is actually, in some sense, shallow. The example in

the next section, for contrast, has a deep structure where

Y ’s depend on latent factors from previous layers. Note

that the structure in Fig. 4 perfectly reflects the structure

of the mixing matrix (i.e., if we flipped the arrows and

changes the Y ’s to S’s, this would be an accurate repre-

sentation of the generative model we used).

X1X2X3

Y1

X4

Y2Y3

Figure 4. This visualizes the structure of the learned representa-

tion for the ICA example in Fig. 3. The thickness of links is pro-

portional to I(Yk;X
k−1

i ).

While the sieve is guaranteed to recover independent com-

ponents in some limit, there may be multiple ways to de-

compose the data into independent components. Because

our method does not start with the assumption of a linear

mixing of independent sources, even if such a decompo-

sition exists we might recover a different one. While the

example we showed happened to return the linear solution

that we used to generate the problem, there is no guarantee

to find a linear solution, even if one exists.
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5 Lossy compression on MNIST digits

The information sieve is not a generative probabilistic

model. We construct latent factors that are functions of the

data in a way that maximizes the (multivariate) information

that is preserved. Nevertheless, because of the way the re-

mainder information is constructed, we can run the sieve in

reverse and, if we throw away the remainder information

and keep only the Y ’s, we get a lossy compression. We can

use this lossy compression interpretation to perform tasks

that are usually achieved using generative models includ-

ing in-painting and generating new examples (the converse,

interpreting a generative model as lossy compression, has

also been considered (Hinton & Salakhutdinov, 2006)).

We illustrate the steps for lossy compression and in-

painting in Fig. 5. Imagine that we have already trained

a sieve model. For lossy compression, we first transform

some data using the sieve. The sieve is an invertible trans-

formation, so we can run it in reverse to exactly recover the

inputs. Instead we store only the labels, Y , throwing the

remainder information, Xk
1:n, away. When we invert the

sieve, what values should we input for Xk
1:n? During train-

ing, we estimate the most likely value to occur for each

variable, Xk
i . W.l.o.g., we relabel the symbols so that this

value is 0. Then, for lossy recovery, we run the sieve in re-

verse using the labels we stored, Y , and setting Xk
1:n = 0.

In-painting proceeds in essentially the same way. We take

advantage of the fact that we can transform data even in the

presence of missing values, as described in Sec. A. Then we

replace missing values in the remainder information with

0’s and invert the sieve normally.

Sieve

Transform Invert

X0

0 1 1 0

Xk Y k
kY k

1
. . .

0 0 2 0 1 1. . .

Sieve

X0

Xk Y k
kY k

1
. . .

. . .0 0 0 0 1 1

0 1 0 0

0 0 0 0

Sieve

X0

0 1 1 0

Xk Y k
kY k

1
. . .

0 0 2 0 1 1. . .

Sieve

X0

Xk Y k
kY k

1
. . .

. . .0 0 0 00 0 2 0 1 1

0 1 1 0- -

- -

(a)

(b)

Figure 5. (a) We use the sieve to transform data into some labels,

Y plus remainder information. For lossy recovery, we invert the

sieve using only the Y ’s, setting X’s to zero. (b) For in-painting,

we first transform data with missing values. Then we invert the

sieve, again using zeros for the missing remainder information.

For the following tasks, we consider 50k MNIST digits

(a)

0 > 0< 0

p(Xi = 1|Yk = 1)− p(Xi = 1|Yk = 0)

(b)

Y1

Y4

Y2

Y6 Y7

Y3Y5

Y10Y11

Y8Y9

Figure 6. (a) We visualize each of the learned components, ar-

ranged in reading order. (b) The structural relationships among

the latent factors is based on I(Yk;Y
k−1

j ). The size of a node

represents the magnitude of TC(Xk−1;Yk).

that were binarized at the normalized grayscale threshold of

0.5. We include no prior knowledge about spatial structure

or invariance under transformations through convolutional

structure or pooling, for instance. The 28×28 binarized

images are treated as binary vectors in a 784 dimensional

space. The digit labels are also not used in our analysis.

We trained the information sieve on this data, adding lay-

ers as long as the bounds were tightening. This led to a 12

layer representation and a lower bound on TC(X) of about

40 bits. It seems likely that more than 12 layers could be

effective but the growing size of the state space for the re-

mainder information increases the difficulty of estimation

with limited data. A visualization of the learned latent fac-

tors and the relationships among them appears in Fig. 6.

Unlike the ICA example, the latent factors here have ex-

hibit multi-layered relationships.

The middle row of Fig. 7 shows results from the lossy com-

pression task. We use the sieve to transform the original

digits into 12 binary latent factors, Y , plus remainder in-

formation for each pixel, X12
1:784, and then we use the Y ’s

alone to reconstruct the image. In the third row, the Y ’s

are estimated using only pixels from the top half. Then we

reconstruct the pixels on the bottom half from these latent

factors. Similar results on test images are shown in Sec. D,

along with examples of “hallucinating” new digits.

6 Lossless compression

Given samples of X drawn from p(x), the best compres-

sion we can do in theory is to use an average of H(X) bits
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Figure 7. The top row are randomly selected MNIST digits. In the second row, we compress the digits into the 12 binary variables, Yk,

and then attempt to reconstruct the image. In the bottom row, we learn Y ’s using just the pixels in the top half and then recover the pixels

in the bottom half.

for our compressed representation (Shannon, 1948). How-

ever, in practice, if X is high-dimensional then we cannot

accurately estimate p(x) to achieve this level of compres-

sion. We consider alternate schemes and compare them to

the information sieve for a compression task.

Benchmark For a lossless compression benchmark, we

consider a set of 60k of binarized digits with 784 pixels,

where the order of the pixels has been randomly permuted

(the same unknown permutation is applied to each image).

Note that we have made this task artificially more diffi-

cult than the straightforward task of compressing digits be-

cause many compression schemes exploit spatial correla-

tions among neighboring pixels for efficiency. The infor-

mation sieve is unaffected by this permutation since it does

not make any assumptions about the structure of the input

space (e.g. the adjacency of pixels). We use 50k digits as

training for models, and report compression results on the

10k test digits.

Naively, these 28 by 28 binary pixels would require 784 bits

per digit to store. However, some pixels are almost always

zero. According to Shannon, we can compress pixel i us-

ing just H(Xi) bits on average (Shannon, 1948). Because

the state space of each individual bit is small, this bound

is actually achievable (using arithmetic coding (Cover &

Thomas, 2006), for example). Therefore, we should be

able to store the digits using
∑

i H(Xi) ≈ 297 bits/digit

on average.

We would like to make the data more compressible by first

transforming it. We consider a simplified version of the

sieve with just one layer. We let Y take m possible val-

ues and then optimize it according to our objective. For

the remainder information, we use the (invertible) function

x̄i = |xi−argmaxz p(Xi = z|Y = y)|. In other words, X̄
represents deviation from the most likely value of xi for a

given value of y. The cost of storing a digit in this new rep-

resentation will be log2 m +
∑784

i=1 H(X̄i), where log2 m
bits are used to store the value of Y .

For comparison, we consider an analogous benchmark in-

troduced in (Gregor & LeCun, 2011). For this benchmark,

we just choose m random digits as representatives (from

the training set). Then for each test digit, we store the iden-

tity of the closest representative (by Hamming distance),

along with the error which we will also call X̄i, so that we

can recover the original digit. Again, the number of bits per

digit will just by log2 m plus the cost of storing the errors

for each pixel according to Shannon.

Figure 8. This shows p(xi = 1|y = k) for k = 1, . . . , 20 for

each pixel, xi, in an image.

Consider the single layer sieve with Y = 1, . . . ,m and

m = 20. After optimizing, Fig. 8 visualizes the compo-

nents of Y . As an exercise in unsupervised clustering the

results are somewhat interesting; the sieve basically finds

clusters for each digit and for slanted versions of each digit.

In Fig. 9 we explicitly construct the remainder information

(bottom row), i.e. the deviation between the most likely

value of each pixel conditioned on Y (middle row) and the

original (top row).

Figure 9. The top row shows the original digit, the middle row

shows the most likely values of the pixels conditioned on the la-

bel, y = 1, . . . , 20, and the bottom row shows the remainder or

residual error, X̄ .

The results of our various compression benchmarks are

shown in Table 1. For comparison we also show results

from two standard compression schemes, gzip, based on

Lempel-Ziv coding (Ziv & Lempel, 1977), and Huffman

coding (Huffman et al., 1952). We take the better compres-

sion result from storing and compressing the 784 × 50000
data array in column-major or row-major order with these

(sequence-based) compression schemes. Note that the

sieve and random representative benchmark that we de-

scribed require a codebook of fixed size whose contribu-

tion is asymptotically negligible and is not included in the

results.
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Table 1. Summary of compression results. Results with a “*” are

reported based on empirical compression results rather than Shan-

non bounds.

Method Bits per digit

Naive 784
Huffman* (Huffman et al., 1952) 376
gzip* (Ziv & Lempel, 1977) 328
Bitwise 297
20 random representatives 293
50 random representatives 279
100 random representatives 267
20 sieve representatives 266
50 sieve representatives 252
100 sieve representatives 243

Discussion First of all, sequence-based compression

schemes have a serious disadvantage in this setup. Because

the pixels are scrambled, to take advantage of correlations

would require longer window sizes than is typical. The

random compression scheme does significantly better. De-

spite the scrambled pixels, at least it uses the fact that the

data consist of iid samples of length 784 pixels. However,

the sieve leads to much better compression; for instance,

20 sieve representatives are as good as 100 random ones.

The idea behind “factorial codes” (Barlow, 1989) is that

if we can transform our data so that the variables are inde-

pendent, and then (optimally) compress each variable sepa-

rately, we will achieve a globally optimal compression. The

compression results shown here are promising, but are not

state-of-the-art. The reason is that our discovery of discrete

independent components comes at a cost of increasing the

cardinality of variables at each layer of the sieve. To de-

fine a more practical compression scheme, we would have

to balance the trade-off between reducing dependence and

controlling the size of the state space. We leave this direc-

tion for future work.

7 Related work

The idea of decomposing multivariate information as an

underlying principle for unsupervised representation learn-

ing has been recently introduced (Ver Steeg & Gal-

styan, 2015; 2014) and used in several contexts (Pepke &

Ver Steeg, 2016; Madsen et al., 2016). While bounds on

TC(X) were previously given, here we provided an ex-

act decomposition. Our decomposition also introduces the

idea of remainder information. While previous work re-

quired fixing the depth and number of latent factors in the

representation, remainder information allows us to build

up the representation incrementally, learning the depth and

number of factors required as we go. Besides providing

a more flexible approach to representation and structure

learning, the invertibility of the information sieve makes

it more naturally suited to a wider variety of tasks includ-

ing lossy and lossless compression and prediction. Another

interesting related result showed that positivity of the quan-

tity TC(X;Y ) (the same quantity appearing in our bounds)

implies that the X’s share a common ancestor in any DAG

consistent with pX(x) (Steudel & Ay, 2015). A different

line of work about information decomposition focuses on

distinguishing synergy and redundancy (Williams & Beer,

2010), though these measures are typically impossible to

estimate for high-dimensional systems. Finally, a different

approach to information decomposition focuses on the ge-

ometry of the manifold of distributions defined by different

models (Amari, 2001).

Connections with ICA were discussed in Sec. 4 and the

relationship to InfoMax was discussed in Sec. 1. The in-

formation bottleneck (IB) (Tishby et al., 2000) is another

information-theoretic optimization for constructing repre-

sentations of data that has many mathematical similarities

to the objective in Eq. 6, with the main difference being

that IB focuses on supervised learning while ours is an un-

supervised approach. Recently, the IB principle was used

to investigate the value of depth in the context of supervised

learning (Tishby & Zaslavsky, 2015). The focus here, on

the other hand, is to find an information-theoretic principle

that justifies and motivates deep representations for unsu-

pervised learning.

8 Conclusion

We introduced the information sieve, which provides

a decomposition of multivariate information for high-

dimensional (discrete) data that is also computationally

feasible. The extension of the sieve to continuous vari-

ables is nontrivial but appears to result in algorithms that

are more robust and practical (Ver Steeg et al., 2016). We

established here a few of the immediate implications of the

sieve decomposition. First of all, we saw that a natural no-

tion of “remainder information” arises and that this allows

us to extract information in an incremental way. Several

distinct applications to fundamental problems in unsuper-

vised learning were demonstrated and appear promising for

in-depth exploration. The sieve provides an exponentially

faster method than the best known algorithm for discrete

ICA (though without guarantees of global optimality). We

also showed that the sieve defines both lossy and lossless

compression schemes. Finally, the information sieve sug-

gests a novel conceptual framework for understanding un-

supervised representation learning. Among the many de-

viations from standard representation learning a few prop-

erties stand out. Representations are learned incrementally

and the depth and structure emerge in a data-driven way.

Representations can be evaluated information-theoretically

and the decomposition allows us to separately characterize

the contribution of each hidden unit in the representation.
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