

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.
0.5 Netherlands School of Economics ECONOMETRIC INSTITUTE

MAB gany

Report 6505
THE INFORMATION VAIUE OF DEMAND EQUATIONS AND PREDICTIONS
by H. Theil and Robert H. Mnookin
THE INFORMATION VALUE OF DEMAND EQUATIONS AND PREDICTIONS ${ }^{1}$
by H. Theil and Robert H . Minookin ${ }^{2}$
Contents
Page

1. Introduction and Summary 1
2. The Decomposition of Value Share Changes 2
3. The Demand Model 3
4. The Data 5
5. A Bit about Information Theory 6
6. Naive Models 7
7. The Demand Model Supplemented by Direct Income and Price Predictions 10
8. The Demand Model Supplemented by Autoregressive Income and Price Predictions 12
9. The Expected Information Inaccuracy Due to the Random Variability of Coefficients and Disturbances 15
References 20
Appendix 22

1. INTRODUCTION AND SUMMARY

The objective of classical demand theory is to describe, for some commodity $i, i=1, \ldots, n$, the auantity bought o_{i} as a function of income m and prices $p_{1}, \ldots . p_{n}$. Income m is identified with total expenditure $\Sigma p_{i} q_{i}$. If we succeed in performing this task, the value shares $w_{i}=p_{i} q_{i} / m$ are described as well-defined functions of m and the p's. Each of these shares should be nonnegetive; their sum should be 1.

We shall never succeed in performing this task completely, since there will be unexplained residuals in all demand equetions. An obvious question then is: If our success is not 100 per cent, how great is it? How great is the success if we compare it with neive methods, such as no-change extrapolation, which do not use any sophisticated demand theory at all? Also, it should be remembered that the usefulness of demand equations is frequently limited by imperfect forecasts of income and price changes. The only thing which classical demand theory

1 The authors are indebted to Mr. A.P. Barten for his comments on this paper and for his willingness to put his data at their disposal, and to Mr . J. Boas for the programming of the computations.
2 The article was written while R。H. Mnookin was a visitor at the Econometric Institute as a Fulbright grantee.
has to say about these variables is that it considers them to be exogenous. So there is the additional nuestion: what remains of the value of a demand ecuation when imperfect exogenous estimates are substituted?

The purpose of this article is to present a measure, bosed on information theory, to eveluate the merits of one demand eruation and of a system of such ecuetions. The order of discussion is as follows. We start in Section 2 with a decomposition of value share changes and consider the volume part of that decomposition in Section 3. This volume part is the dependent variable of the demand equation as specified in a recent publication of one of the authors [4], which was in turn largely based on [1]. The specification of Section 3 is in algebraic terms. We proceed numerically in Section 4 , which deals with the data and the coefricient values. The evaluation criterion used is the information inaccuracy, which is explained in Section 5 . The later sections deal with alternative prediction methods. Section 6 considers no-change extrapolations, section 7 presents forecasts based on the demand model and on perfect as well as imperfect income and price estimates. It turns out that, when all income and price changes are predicted perfectly, the demand model reduces the average information inaccuracy in the prewar and postwar period by about 50 per cent. The rest is to be ascribed to the disturbances of the demand equations. When the chance in real income is predicted perfectly but those in relative prices are predicted to vanish, the success is obviously less but still of some importence. However, when the income and price predictions are b-sed on simple autoregression schemes, the results are scarcely better then those of naive no-change extrapolations. This is shown in section 8 。

The last section deals with the expected value of the information inaccuracy due to the random variability of the coefficient estimates and the disturbances of the demand equetions. For this purpose the inaccuracy is approximated by a quadratic expression, so that variances and covariances can be used. It appears that the variances of the disturbances of the demand equations account for about 80-90 per cent of the expected information inaccuracy, and the sampling variances and covariances of the coefficients of these equations for only 10-20 per cent. Among the latter veriances those of the income coefficients are more important than those of the price coefficients,

2. THE DECOMPOSITION OF VAIUE SHARE CHANGES

Our approach is mainly in terms of value shares, $w_{i}=p_{i} q_{i} / m$, where p_{i} is the price and q_{i} the ouantity bought of the $i{ }_{i}$ commodity and m income or totel expenditure. In particular, it is in terms of changes in value shares in view of the demand eruations that will be
discussed in Section 3. An infinitesimal change dw $_{i}$ can be decomposed as follows:
(2.1)

$$
d w_{i}=w_{i} d\left(\log q_{i}\right)+w_{i} d\left(\log p_{i}\right)-w_{i} d(\log m)
$$

where log stands for natural logrithm. For finite changes we apply the following approximation:

$$
\begin{align*}
w_{i}-\left(w_{i}\right)_{-1} & \approx \frac{w_{i}+\left(w_{i}\right)_{-1}}{2}\left[\log o_{i}-\log \left(q_{i}\right)_{-1}\right] \tag{2.2}\\
& +\frac{w_{i}+\left(w_{i}\right)-1}{2}\left[\log \underline{p}_{i}-\log \left(p_{i}\right)_{-1}\right] \\
& -\frac{w_{i}+\left(w_{i}\right)-1}{2}\left[\log m-\log m_{-1}\right]
\end{align*}
$$

Where the subscript -1 indicates that the value of the previous period is considered. It will prove convenient to use an explicit subscript t for time and to simplify the notation by writing

$$
\begin{equation*}
w_{i t}^{*}=\frac{w_{i t}+w_{i, t-1}}{2} \quad D=\Delta(10 g) \tag{2.3}
\end{equation*}
$$

Hence $w_{i t}^{*}$ stands for the average of the $i^{\text {th }}$ value share in t and the preceding period, while D is the operator of taking the change in the natural logarithm (the log-change). Then (2.2) is reduced to

$$
\begin{equation*}
w_{i t}-w_{i, t-1} \approx w_{i t}^{*} D q_{i t}+w_{i t}^{*} D p_{i t}-w_{i t}^{D m_{t}} \tag{2.4}
\end{equation*}
$$

The last two terins are taken as exogenous in demand theory. The first is the dependent variable of the demand ecurtion that will be discussed in the next section.

3. THE DEMAND MODEL

The demand equations are assumed to be of the following form:

$$
\begin{equation*}
w_{i t}^{*}{ }^{*} q_{i t}=B_{i} \bar{m}_{t}+\sum_{j=1}^{n} C_{i j} D \bar{p}_{j t}^{:}+u_{i t} \tag{3.1}
\end{equation*}
$$

the various terms of which will be discussed in the following seven steps: ${ }^{3}$
(1) The left-hand variable, being the first term of the right-hand side of the decomposition (2.4), can be interpreted as the volume component of the change in the $i^{\text {th }}$ value share.

[^0](2) The coefficient B_{i} is the marginal velue share $\partial\left(p_{i} q_{i}\right) / \partial m$. It is assumed to be constant, which implies that tingel curves are approximated linearly. This is restrictive, but probably not too serious, given the moderate changes in real income revealed by our data.
(3) The term $D \bar{m}_{t}$ is the log-change in real income:
(3.3)
\[

$$
\begin{align*}
& D \bar{m}_{t}=D m_{t}-D p_{t} \tag{3.2}\\
& D p_{t}=\sum_{i=1}^{n} w_{i t}^{*} D p_{i t}
\end{align*}
$$
\]

This implies that the log-change in the cost of living price index is defined as a weighted average of the log-changes in the individual prices, the weights being the value share averages wit in the current and the preceding period. It can be shown that this kind of weighting ensures that we have a local quadratic approximation to the change in the "true" index.
(4) The $C_{i j}$ are coefficients of relative prices. It can be shown that they form an $n \times n$ matrix $\left[C_{i j}\right]$ which is ecual to the inverse U^{-1} of the Hessian matrix of the underlying utility function, pre- and postmultiplied by a diagonal matrix. [The specification (3.1) is based on the ordinary procedure of maximizing this function subject to the budget constraint $\Sigma p_{i} q_{i}=m_{0}$] When utility is "adititive" (see [2]) we can write the function as

$$
u\left(q_{1}, \ldots, q_{n}\right)=\sum_{i=1}^{n} u_{i}\left(c_{i}\right)
$$

in which case the marginel utility of the $i^{\text {th }}$ commodity depends only on $q_{i}, i=1, \ldots, n$. Hence the second-order cross derivatives of the utility function are then all zero, so that U is diagonal and the same applies to U^{-1} and $\left[\mathrm{C}_{i j}\right]$. In the empirical part of this paper we shall confine ourselves to that special case, which mesns that each (${ }^{\text {th }}$) demand equation contains only one relative-price term $C_{i i} \bar{p}_{i t}^{\dagger}$.
(5) The term $D \bar{p}_{j t}^{\prime}$ is the log-change in the relative price of the $j^{\text {th }}$ commodity:

$$
\begin{align*}
& D \bar{p}_{j t}^{\prime}=D p_{j t}-D p_{t}^{1} \tag{3.4}\\
& D p_{t}^{\prime}=\sum_{i=1}^{n} B_{i} D p_{i t} \tag{3.5}
\end{align*}
$$

This means that we do not deflate prices by the cost of living index but by the "marginal" price index (see [3] whose log-change is obtained from the log-changes in the individual prices by using as weights corresponding marginal (instead of average) value shares.
(6) The last term $u_{i t}$ is a disturbance, which is assumed to have certain statistical properties. These will be discussed in Section 9 .
(7) The coefficients $B_{i}, C_{i j}$ are subject to certain constreints. One is

$$
\begin{equation*}
\sum_{i=1}^{n} B_{i}=1 \tag{3.6}
\end{equation*}
$$

Another is that $\left[C_{i j}\right]$ os a symmetric matrix; this is, however, irrelevant if we proceed with a diagonal matrix, as we shall do. The third is

$$
\begin{equation*}
\sum_{j=1}^{n} C_{i j}=\varphi B_{i} \quad \varphi=\sum_{i=1}^{n} \sum_{j=1}^{n} C_{i j} \tag{3.7}
\end{equation*}
$$

In words: The sum of the price coefficients of each demand ecustion is proportional to the marginal value share. In our case of a diagonal $\left[C_{i j}\right]$ this means that the ratio $C_{i i} / B_{i}$ is ecual to φ, which is the incone flexibility (the reciprocal of the income elasticity of the marginal utility of income) and is independent of i.

> 4. ThE DATA

We shall work with four comnodity groups: Food (i=1), Vice or pleasure goods ($i=2$), Durables ($i=3$), and Remainder ($i=4$). The data, supplied by A.P. Barten, refer to the Netherlands in the period 1921-1939, 1948-1963; details are given in the Appendix of this paper. We shall consider three periods. The first is the prewar period and consists of 18 observations, starting with the log-changes in 1921/.22 and ending with those of $1938 / 39$. The second is the war transition, which consists of only one observation. Here t should be interpreted as 1948, t-1 as 1939. The third is the postwar period, which consists of 15 observations, the first being 1948/49 and the last 1962/63.

The estimation procedure of the coefficients of the demand ecuation (3.1) is not the objective of the present peper; we refer to a forthcoming publication by A.P. Barten. Several preliminary results are available, however, which induced us to use the following values:
(4.1)

$$
\begin{array}{ll}
B_{1}=0.2 & C_{11}=-0.08 \\
B_{2}=0.1 & C_{22}=-0.04 \\
B_{3}=0.4 & C_{33}=-0.16 \\
B_{4}=0.3 & C_{44}=-0.12
\end{array}
$$

Hence $\varphi=\Sigma C_{i i}=-0.4$, which means that the marginal utility of income decreases by 1 per cent when income goes up by $2 \frac{1}{\underline{Z}}$ per cent,
prices remaining constant. The B values can be judged conveniently when we divide them by the corresponding value shares (the w's), so that we obtsin the income elasticities of the various commodity groups. For all data combined the four average velue shares are 0.29, $0.10,0.24$, and 0.37 , so that on the basis of these averages the $\mathrm{B}^{\prime} \mathrm{s}$ of (4.1) imply income elasticities of about $0.7,1.0,1.6,0.8$ of Pood, Vice, Durables, and Remainder, respectively.

5. A BIT ABOUT INFORMATION THEORY

It will be clear that the demand specification (3.1) is particularly suitable for the preciction of value share chenges. We have to predict the log-changes in real income and relative prices, possibly - if we can - the disturbance $u_{i t}$ as well, which gives an estimate of $w{ }_{i t} D q_{i t}$. We add to this the estinate or $w_{i t} D p_{i t}-W_{i t} D m_{t}$, which gives the value share change according to (2.4). By ading this predicted change to last year's value share $w_{i, t-1}$ we obtain a forecast $\hat{w}_{\text {it }}$ of $\mathrm{w}_{\text {itt }}$ 。

We shall consider several alternative forecasts of this type in the next sections. At this stage: it is sufficient to know that, in one way or another, we have obtained forecests $\hat{w}_{i t}$ which satisfy

$$
\begin{equation*}
\hat{w}_{i t} \geq 0 \text { each } i \text { and } t \tag{5.1}
\end{equation*}
$$

$$
\sum_{i=1}^{n} \hat{w}_{i t}=1 \quad \text { each } t
$$

The question that will be considered here is: Is there an obvious manner to evaluate the ounlity of such forecasts?

To answer this question we start by observing that (5.1) and the analogous condition on the observed $w_{i t}$ imply that we can regard each set of n value shares (predicted as well as observed) as a complete set of probabilities. The forecasts are the "prior" probabilities; at. some point of time a message cones in, which states what the value shares actually are and which thus changes the prior probabilities $\hat{w}_{i t}$ into "posterior" probabilities $w_{i t}$. The information content of such a message is defined in information theory as

$$
\begin{equation*}
I_{t}=\sum_{i=1}^{n} w_{i t} \log \frac{w_{i t}}{\hat{w}_{i t}} \tag{5.2}
\end{equation*}
$$

which is Ilways positive unless $w_{i t}=\hat{w}_{i t}$ for each i (perfect forecasts), in which case $I_{t}=0$. The larger the differences between $w_{i t}$ and $\hat{w}_{i t}$, the worse the forecasts are and the larger the information content of the message on the realization is. Therefore, I_{t} is called the Information inaccuracy of the forecasts \hat{w}_{1}, ..., $\hat{w}_{n t}$ with respect to the corresponding realizations $w_{1 t}, \ldots, w_{n t}($ see [6]).

We shall work with natural logerithms in (5.2), not with logarithrs to the base 2 as is customary in most applications of information theory. The reason is that we already worked with natural logarithms in the decomposition (2.1). We shall present average inPormation inaccuracies,

$$
\begin{equation*}
\bar{I}=\frac{1}{T} \sum_{t=1}^{T} I_{t} \tag{5.3}
\end{equation*}
$$

both prewar $(T=18)$ and postwar $(T=15)$. It will be noted that the simple additive form of $\overline{\mathrm{I}}$ implies that, when additional observations for later years become available, they can be combined very easily with the earlier data.

6. NAJVE MODELS

The simplest prediction method amounts to assuming that there will be no changes in income, prices, and duantities from one year to the next. This amounts to the no-change extrapolation

$$
\begin{equation*}
\hat{w}_{i t}=w_{i, t-1} \tag{6.1}
\end{equation*}
$$

for which we can compute (5.2) and (5.3). The results are presented on the first line of Table ", which contains the average information inaccuracy \bar{I} for the prewer and postwar period and the single inaccuracy value of the war transition. It appears that the two averages are of the order of one twentieth of one per cent, while the war transition value is more then ten times larger. This is qualitatively understandable, given that the composition of the consumer's basket in 1948 differs rather substantially from that of 1939.

It is also clear that the extrapolation method (6.1) requires the availability of the value shares in the year preceding the prediction year. Such data are frequently available only arter some time lag, so that it is worthwhile to consider aiso the extrapolation method

$$
\begin{equation*}
\hat{w}_{i t}=w_{i, t-2} \tag{6.2}
\end{equation*}
$$

This amounts to assuming that, when year t is predicted at the end of year $t-1$, the most recent data are those of year $t-2$. The corresponding average information inaccurccies of the prewar and postwar period are presented on the third line of Teble 1 . Since they c not be based on the first observation (1921/22 and 1948/49) they should be compared with the average inaccuracies of (6.1) which do not include that first year. The latter values are presented on the second

TABLE 1. INFORMATION INACCURACIES OF NO-CHANGT EXTRAPOIATIONS

Forecast $\hat{W}_{\text {it }}$	Prewar	Postwar	War
	Four comnodity groups		
${ }^{w} i_{i, t-1}$	396	556	6082
Same, first observation excluded	369	4.51	
$w_{i, t-2}$	765	1386	
	Food		
$\mathrm{w}_{i, t-1}$	121	148	1155
Same, first observation excluded	102	153	
${ }^{\mathrm{w}} \mathrm{i}, \mathrm{t}-2$	279	42	
	Vice		
${ }^{W}{ }_{i}, t-1$	26	45	2019
Same, first observation excluded	22	46	
$\mathrm{w}_{\mathrm{i}, \mathrm{t}-2}$	38	102	
		urables	
${ }^{W}{ }_{i, t-1}$	244	377	3007
Same, first observation excludeã	221	324	
$\mathrm{w}_{\mathrm{i}, \mathrm{t}-2}$	274	969	
		emainder	
${ }^{W}{ }_{\text {i }}$, t-1	161	204	1831
Same, first observation exciudeo	170	94	
$\mathrm{w}_{\text {i,t-2 }}$	525	410	

Note. 111 figures are to be multiplied by 10^{-6}
Iine. The average information inaccuracy for (6.2) is two to three time as 1.rge as for (6.1). It is also seen that deleting the first observation reduces the \bar{I} of (6.1), particularly in the postwar period. This is aue to the rather sizable value share changes in $1921 / 22$ and $1948 / 49$.

The first three lines of Teble 1 are bssed on I_{t} as defined in (5.2) for $n=4$. They deal with the complete decomposition w_{1}, ... ${ }^{W} n t$. It is also possible to consider only one commodity group by concentrating on one value share $w_{i t}$ and its complement $1-w^{-}$it. This amounts to combining all commodity groups other than the $i^{\text {th }} 4$ Since 1 - $\hat{W}_{i t}$ is the forecast of 1 - $W_{i t}$, the resulting information inaccuracy is
(6.3)

$$
I_{i t}=w_{i t} \log \frac{w_{i t}}{\hat{w}_{i t}}+\left(1-w_{i t}\right) \log \frac{1-W_{i t}}{1-\hat{w}_{i t}}
$$

[^1]and its average over T observations:
\[

$$
\begin{equation*}
\bar{I}_{i}=\frac{1}{T} \sum_{t=1}^{T} I_{i t} \tag{6.4}
\end{equation*}
$$

\]

The results are shown in Table 1 . They too indicete that extrapolation from $t-2$ leads to results that are considerably worse than extrapolating from t - 1 . The iigures differ rather substantially for the four different i values. However, all figures for the individual commodity groups have in common that they are smaller than the corresponding figure in the first three rows, which deals with all four groups simultancously. This, in fact, is generally true, because we have

$$
\begin{equation*}
I_{i t} \leq I_{t} \tag{6.5}
\end{equation*}
$$

which can be shown as follows. The difference between the two $I^{\prime} s$ is

$$
\begin{aligned}
I_{t}-I_{i t} & =\sum_{j \neq i} w_{j t} \log \frac{w_{j t}}{\hat{w}_{j t}}-\left(1-w_{i t}\right) \log \frac{1-w_{i t}}{1-\hat{w}_{i t}} \\
& =\sum_{j \neq i} w_{j t}\left[\log \frac{w_{j t}}{\hat{w}_{j t}}-\log \frac{1-w_{i t}}{1-\hat{w}_{i t}}\right] \\
& =\left(1-w_{i t}\right) \underset{j \neq i}{\sum \frac{w_{j t}}{1-w_{i t}} \log \frac{W_{j t}}{\frac{w_{i t}}{\hat{w}_{j t}}}}
\end{aligned}
$$

Hence $I_{t}-I_{i t}$ is erucl to 1 - $w_{i t}$ multiplied by a conditional information inaccuracy, the condition beinç that the $i^{\text {th }}$ commodity is disregarded. Assuming that $W_{i t}<1$, we conclude that (6.5) holds with the strict inequality sign except when

$$
\frac{\hat{w}_{j t}}{1-\hat{w}_{i t}}=\frac{\hat{w}_{j t}}{1-w_{i t}} \quad \text { for each } j \neq i
$$

in which case $I_{i t}=I_{t}$. This limitine case implies that for each commodity $j \neq i$ there is perfect prediction of the amount spent on that commodity when this amount is measured a fraction of what remains of income after subtraction of what is spent on the $i^{\text {th }}$ commodity.

7. THE DEMAND MODEL SUPPLEMERTED BY DIRECT INCOME AND PRICE PREDICTIONS

We now turn from naive no-change extrapolations to more sophisticated procedures based on demand equations and on income and price predictions. One should expect that such a procedure would be most successful when the log-changes in income and prices are all predicted perfectly. Going back to (2.4) and (3.1), we conclude that the only source of error is then the disturbance $u_{i t}$ of the demand equation, which is put equal to zero instead of its true vilue. ${ }^{5}$ Hence the prediction method amounts to

$$
\hat{w}_{i t}=w_{i t}-u_{i t}
$$

Note that it is assumed here implicitly that the value shares of year t - 1 are known. This seems to be rather obvious in the present context, since the demand equation (3.1) describes only what happens during the transition from $t-1$ to t. ${ }^{6}$

The four-group inaccuracy values of the method (7.1) are shown on the second line of Table 2 below the corresponding v lues of the extrapolation method (6.1), which have been taken from Table 1. It turns out that the former values are about one half of the corresponding latter values in the prewar and postwar period, and about three cuarters for the war transition. Hence knowledge of 2.11 demand equetions and of all income and price chenges enables us to reduce the average information inaccuracy of the no-change extrapolations by about 50 per cent in the periods before and after the war. This knowledge is also useful for the description of the war transition, but not as useful (only 25 per cent). The trble shows further that similar statements can be made for the individual commodity groups, although these are characterized by some variability. The Food value of (7.1) exceeds that of (6.1) for the war transition; the same applies to the average Vice value of the prewar period.

Note that we have \approx in (2.4), which implies that the right-hand side of that equation does not add up to zero exactly when summed over i. This implies, in turn, that the sum of the forecests (7.1) over i is not exactly 1, but only approximately. Thenever this is the case for any type of prediction, we have raised or lowerad the n forecasts proportionally so that they do add up to 1. (The sum of the $u_{i t}$ over i is related to the information difference component, which is generally small; see [4].)
6
It will be noticed that the w w by which the loc-changes are multiplied in (2.4) is not really $1 t$ known, because it is the average of the past value $W_{i}, t-1$ (which is assumed to be known) and the value w_{i} it This procedure could be refined in the following iterative manner. First, replace wit in (2.4) and (3.1) by wi,t-1, which leads to a
 forecast \hat{W} it is computed, and so on. it However, this would make sense only if one predicts over a longer time span than one year, because the effect of replacing $w{ }_{i t}$ by $w_{i, t-1}$ is otherwise almost negligible。

TABLE 2. INFORMATION INACCURACIES OF DEMAND MODELS
BASED ON DIRECT INCOME AND PRICE PREDICTIONS

\begin{tabular}{|c|c|c|c|}
\hline Forecast $\hat{w}_{i t}$ \& Prewar \& Postwar \& War

\hline \multirow[b]{3}{*}{$$
\left.\begin{array}{l}
6.1 \\
(7.1 \\
7.2
\end{array}\right)
$$} \& \multicolumn{3}{|c|}{Four commodity groups}

\hline \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 396 \\
& 203 \\
& 271
\end{aligned}
$$} \& 556 \& 6082

\hline \& \& 272
414 \& 4613
9971

\hline \multirow{4}{*}{$\left(\begin{array}{l}6.1 \\ 7.1 \\ 7.2\end{array}\right)$} \& \multicolumn{3}{|c|}{Food}

\hline \& \multirow[t]{2}{*}{$$
\begin{array}{r}
121 \\
73 \\
68
\end{array}
$$} \& 148
76 \& 1155
4573

\hline \& \& 116 \& 1980

\hline \& \multicolumn{3}{|c|}{Vice}

\hline \multirow[t]{3}{*}{$\left(\begin{array}{l}6.1 \\ 7.1 \\ 7.2\end{array}\right)$} \& \multirow[t]{3}{*}{26
34
27} \& 45 \& 2019

\hline \& \& 22 \& 397

\hline \& \& 44 \& 2102

\hline \multirow{4}{*}{$\left(\begin{array}{l}6.1 \\ 7.1 \\ 7.2\end{array}\right)$} \& \multicolumn{3}{|c|}{Durables}

\hline \& \multirow[t]{2}{*}{$$
\begin{array}{r}
24 \\
89 \\
129
\end{array}
$$} \& 377 \& 3007

\hline \& \& 160
232 \& 430
6326

\hline \& \multicolumn{3}{|c|}{Remainder}

\hline (6.1) \& 161 \& 204 \& 1831

\hline (7.1) \& 84
158 \& 125 \& 1114

2878

\hline (7.2) \& 158 \& 186 \& 2878

\hline
\end{tabular}

Note. $A l l$ figures are to be multiplied by 10^{-6}

The ordinary demand an lyst must be expected to predict below the level of (7.1), because his income and price predictions will not be perfect. Perhaps the relative price change predictions are the most difficult ones. So let us adopt a macroeconomic point of view by assuming thet the demend analyst confines himself to the prediction of the change in real income and assumes that there are no changes in relative prices. Hence $D \bar{p}_{j t}^{i}$ is predicted to be zero for each j and t. The disturbance $u_{i t}$ is also predicted to be zero. We assume that the change in real income is predicted perfectly. Hence w ${ }_{i t} \mathrm{Dq}_{i t}$ as defined in (3.1) is predicted to be $B_{i} \overline{D m}_{t}$. For the other two terms in the right-hand side of (2.4) we write

$$
w_{i t}^{*} D p_{i t}-w_{i t}^{*} D m_{t}=w_{i t}^{*}\left(D p_{i t}-D p_{t}\right)-w_{i t}^{*}\left(D m_{t}-D p_{t}\right)
$$

(Footnote 6 continued)
We did compute the information inaccuracy of the approximation error implied by replacing w* by $w_{i, t-1}$ in the right-hand side of (2.4), which turned out to be it the ${ }^{i, t-1}$ order of 1 per cent of the corresponaing no-change extrapolation values. The maximum inaccuracy reductions of the more interesting forecasts are of the order of 50 per cent.

The price deals with relative prices $\left(D p_{i t}-D p_{t}\right)$ and is therefore predicted to be zero. The income term is $-W_{i} \mathrm{Dm}_{t}$, which is predicted perfectly. We conclude that the "real income" prediction of value share changes amounts to

$$
\begin{equation*}
\hat{w}_{i t}=w_{i, t-1}+\left(B_{i}-w_{i t}^{*}\right) D \bar{m}_{t} \tag{7.2}
\end{equation*}
$$

This means that the $i^{\text {th }}$ value share is predicted to increase when real income increases if the marginal value share exceeds the average share, i.e., if the income elasticity is larger than 1.

The results are shown in Table 2. As one would have expected, the information inaccuracies are mostly between those of the no-change extrapolation method (6.0^{1}) and the "complete" demand method (7.1). The war transition is a mejor exception, which is primarily due to Durables. This, in turn, was due to the substantial increase in the relative price of Durables from 1939 to $\$ 948$, which was only partly compensated by a decrease in ouantity.

8. THE DEMAND MODEL SUPPLEMENTED BY AUPOREGRESS IVE INCOME AND PRICE PREDICTIONS

We shall now assume that no direct income and price predictions are available. We suppose, however, that there exists some knowledge of the autoregressive nature of the income and price changes. Consider
(8.1)

$$
D \bar{m}_{t}-u=\rho\left(\bar{m}_{t-1}-\mu\right)+\varepsilon_{t}
$$

where μ is the long-run average of the log-change in real income, p some nonnegative constant less than 1 , and ε_{t} a random variable with zoro mean. We shall put $\mu=0.02$ and experiment with alternative ρ values. The observed average log-change in real income over all 18 prewar and 15 postwar observations is 0.010 .

We shall use a similar scheme for relative prices:

$$
\begin{array}{ll}
D \bar{p}_{i t}=\rho D \bar{p}_{i, t-1}+\varepsilon_{i t} & D \bar{p}_{i t}=D p_{i t}-D p_{t} \\
D \bar{p}_{i t}^{\prime}=\rho D \bar{p}_{i, t-1}^{\prime}+\varepsilon_{i t}^{\prime} & D \bar{p}_{i t}^{\prime}=D p_{i t}-D p_{t}^{\prime}
\end{array}
$$

Hence we consider two different sets of relative prices, one of which (D $\overrightarrow{\underline{p}}_{i t}^{\prime}$) we already met in the demand equation (3.1) and the other ($D \vec{p}_{i t}$) will be needed to handle the price term of (2.4). The $\varepsilon_{i t}$ and $\varepsilon_{i t}^{\prime}$ are regarded as random variables with zero mean; hence the longrun average of the log-change in each relative price is supposed to vanish. To simplify the procedure we shall work with the same parameter p in (8.1), (8.2) and (8.3).

Let us rewrite (2.4) as follows:

$$
\begin{aligned}
w_{i t}-w_{i, t-1} & \approx w_{i t} D q_{i t}+w_{i t}^{*}\left(D p_{i t}-D p_{t}\right)-w_{i t}\left(D m_{t}-D p_{t}\right) \\
& =w_{i t} D q_{i t}+w_{i t}^{*} D \bar{p}_{i t}-w_{i t}^{*} D \bar{m}_{t}
\end{aligned}
$$

On combining this with the demand equation (3.') we conclude that $\left(B_{i}-w_{i t}^{*}\right) D \bar{m}_{t}$ is the part of the $i^{\text {th }}$ value share change which is to be attributed to the change in real income. Using (8.1) we have

$$
\left(B_{i}-w_{i t}^{*}\right) D \bar{m}_{t}=\left(B_{i}-w_{i t}^{*}\right)\left[(1-\rho) \mu+\rho D \bar{m}_{t-1}\right]+\varepsilon_{t}
$$

Which is estimated from the data of year t - by putting $\varepsilon_{t}=0$. Furthermore, we have two price terms. One of these is wit $\bar{p}_{i t}$, which we can estimate by $\rho \operatorname{lW}_{i} t^{D} \bar{p}_{i, t-1}$, using (8.2). The other is the price term $C_{i, i} D_{i t}^{-1}$ of the demand equation (3.1), which we may estimate by $\rho C_{i i} D_{i, t-1}^{-i}$, using (8.3). The two price term estimates combined are therefore

$$
\rho\left(w_{i t}^{*} D \bar{p}_{i, t-1}+C_{i i} D \bar{p}_{i, t-1}^{\prime}\right) \approx \rho\left(w_{i t}+C_{i i}\right) D \bar{p}_{i, t-1}
$$

Where the \approx sign is based on the approximation of $D \bar{p}_{i, t-1}$ by $D \bar{p}_{i, t-1}$. The indices $D p_{t}$ and $D p_{t}^{\prime}$ are close to each other as is shown in the Appendix (Table 6). We could also have approximated in the opposite direction ($D \bar{p}_{i, t-1}$ by $D \bar{p}_{i}^{1}, t-1$), but the cocificient of $D \bar{p}_{i, t-1}$ exceeds on the average that of $D \bar{p}_{i, t-1}$ in absolute value, since $\Sigma W_{i t}=1$ and $\Sigma C_{i i}=\varphi=-0.4$.

On combining these various components we obtain the following autoregressive prediction of the value shares:

$$
\begin{align*}
\hat{w}_{i t}=w_{i, t-1} & +\left(B_{i}-w_{i t}^{*}\right)\left[(1-\rho) \mu+\rho D \bar{m}_{t-1}\right] \tag{8.4}\\
& +\rho\left(C_{i i}+w_{i t}\right) D \bar{p}_{i, t-1}
\end{align*}
$$

The μ tern of the right-hand side implies that the $i^{\text {th }}$ value share is subject to an upward trend if the income elasticity of the $i^{\text {th }}$ comnodity is larger than 1 . This is understandable, because that particular term has to do with the long-term increase in real income. The expression in square brackets is a weighted average of last year'alog-change in real income and the long-run average log-change μ. If last year's value $D \bar{m}_{t-1}$ exceeds μ, this is a prima facie (autoregressive) indication that this year's value $D^{\prime} \bar{m}_{\text {als }}$ exceeds μ, so that the effect just described becomes more pronounced. The relative price term has a coefficient $\rho\left(C_{i i}+w_{i t}\right)$ which is usually positive. This impies that, if the relative price of the $i^{\text {th }}$ commodity increased last year, the $i^{\text {th }}$

TABLE 3. INFORIAPION INACCURACIES OF DEMAND MODEIS BASED ON AUTOREGRESSIVE INCONE AND PRICE PREDIOTIONS

Forecast $\hat{w}_{\text {it }}$	Prewar	Postwar
	Four c	ty groups
Extrapolation (6.1) Autoregressive forecast (8.4), $\rho=0$ $\begin{aligned} & 0.2 \\ & 0.4 \\ & 0.6 \\ & 0.8 \end{aligned}$	369	451
	430	463
	397	446
	386	438
	399	442
	434	455
	Food	
Extrapolation (0.1) Autoregressive forecast (8.4), $\rho=0$ $\begin{aligned} & 0.2 \\ & 0.4 \\ & 0.6 \\ & 0.8 \end{aligned}$	102	153
	92	155
	91	148
	104	146
	130	148
	171	153
	Vice	
Extrapolation (6.1) Autoregressive forecast (8.4), $0=0$ $\begin{aligned} & 0.2 \\ & 0.4 \\ & 0.6 \\ & 0.8 \end{aligned}$	22	46
	23	46
	24	48
	25	51
	28	54
	31	59
	Durables	
$\begin{aligned} & \text { Extrapolation }(6.1) \\ & \text { Autoregressive forecast (8.4), } p=0 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & 0.2 \\ & \\ & \\ & 0.6 \\ & \end{aligned}$	221	324
	284	334
	271	318
	265	308
	267	305
	278	308
	Remainder	
Extrapolation (6.1) Autoregressive forecast (8.4)	170	94
	200	101
0.2	165	96
0.4	140	95
0.6	124	96
0.8	118	101

value share is predicted to increase. Bvidently, the price effect via the quantity term is outweighed by the airect price effect on the value share change. We have a negative price coefficient in (8.4) only if $C_{i j}+W_{i t}<0$, which in view of $C_{i i}=\varphi B_{i}$ is equivalent to $B_{i} / w_{i}>-1 / \varphi=2 \frac{1}{2}$. In words: The income elasticity of the $i^{\text {th }}$ commodity must be lareer in absolute value than the income elasticity of the marginal utility of income; $i . e$. the comodity must be a real "Iuxury."

The results of the prediction method (8.4) for some alternative ρ values are presented in Table 3 , together with those of the no-change extrapolation method (6.1). [The figures presented reier to the preWar and postwar period excluding the first year, beceuse the $\overline{D m}_{t-1}$ and $D \bar{p}_{i, t-1}$ data are not available for that year.] The outcomes moke us
sadder but also wiser. There is no gain at all compared with no-change extrapolation in the prewar period, whatever ρ we cere to choose, which is probably due to the fact that $\mu=0.02$ overestimates the increase in real income during that period. [The no-change extrapolation assumes $\mu=0$, of course, which is about as good an approximation to the observed average prewar log-change.] There iss a minor inaccuracy decrease from the extrapolation velue in the postwer period (for which a larger μ value than 0.02 would have been more accurate), provided that we choose ρ aropriately. For both periods the best ρ value is around 0.4 . The picture of the individual comodity groups varies somewhat, but it is not essontially difrorent.

The autoregressive achievements are therefore rather modest. Given the fairly positive results of the real income predictions of the previous section, we must conclude that - as far as the present evidence goes - it is essential that one have forecasts of real income changes which are more accurate than those afforded by this simple autoregressive approach.

9. THE EXPECTED INFORMATION INACCURACY DUE TO THE RATDOM VARIIBILITY OP COEFFICIENTS AND DISTURBANCES

Up to this point we assumed that the true velues of the coefficients of the demand eautions (the B 's and $C^{\prime} s$) are known. This will normally not be the case; what we usually have is a set of point estimates and an estimated covariance matrix. The implications of the estimation procedure can also be ev luated along informational lines, although the logarithmic criterion is difficult to adjust to the cuadratic estimation criterion which is implied by the use of variances and covariances. We con, however, expand the natural logarithm of $\hat{w}_{i t} / w_{i t}$ according to powers of the ratio $\left(\hat{w}_{i t}-w_{i t}\right) / w_{i t}$ 。 The leading nonzero term is quadratic:

$$
\begin{equation*}
I_{t} \approx \frac{1}{2} \sum_{i=1}^{n} \frac{\left(\hat{w}_{i t}-w_{i t}\right)^{2}}{w_{i t}} \tag{9.1}
\end{equation*}
$$

The expansion converges when $\hat{w}_{i t}$ is positive and smaller than $2 w_{i t}$. Actually, all of our forecasts are close to the corrosponding realization, because even the no-change extrapolations have very small relative errors. Therefore, the quadratic approxination (9.1) mey be regarded to be sufficiently accurnte.

Let us take the expectation of both sides of (9.1):7

[^2]$$
\xi I_{t} \approx \frac{1}{2} \sum_{i=1}^{n} \frac{\mathscr{E}\left(\hat{W}_{i t}-w_{i t}\right)^{2}}{W_{i t}}
$$

We shall now evaluate the expectation in the right-hand numerator under the assumption of perfect income and price predictions. Writing $\hat{\mathrm{B}}_{i}$ and $\widehat{C}_{i i}$ for the point estimates of B_{i} and $C_{i i}$, respectively, we then have

$$
\begin{aligned}
& \hat{w}_{i t}=w_{i, t-1}+\hat{B}_{i} D \bar{m}_{t}+\hat{C}_{i i} D \bar{p}_{i t}+w_{i t} D p_{i t}-w_{i t} D_{t} \\
& w_{i t} \approx w_{i, t-1}+B_{i} D \bar{m}_{t}+C_{i i} D p_{i t}^{p}+u_{i t}+w_{i t}^{*} D p_{i t}-w_{i t} D n_{t}
\end{aligned}
$$

We subtract, scurre and obtain

$$
\begin{aligned}
\left(\hat{w}_{i t}-w_{i t}\right)^{2} & \approx\left(D \bar{m}_{t}\right)^{2}\left(\hat{B}_{i}-F_{i}\right)^{2}+\left(D \bar{p}_{i t}^{\prime}\right)^{2}\left(\hat{C}_{i i}-C_{i i}\right)^{2}+u_{i t}^{2} \\
& +2 D \bar{m}_{t} D \bar{p}_{i t}^{\prime}\left(\hat{B}_{i}-B_{i}\right)\left(\hat{C}_{i i}-C_{i i}\right) \\
& -2 D \bar{m}_{t}\left(\hat{B}_{i}-B_{i}\right) u_{i t}-2 D \bar{p}_{i t}\left(\hat{C}_{i i}-C_{i i}\right) u_{i t}
\end{aligned}
$$

Let us assume that $\hat{\mathrm{B}}_{i}$ and $\hat{\mathrm{C}}_{i \mathrm{i}}$ are unbiased estimates; let us also make the (classical) assumption that $D \bar{m}_{t}$ and $D \bar{p}_{i t}^{\prime}$ are fixcd (nonstochastic) numbers. Then, after taking the expectation, we conclude that the first term on the right is $\left(\bar{m}_{t}\right)^{2}$ multiplied by the variance of \hat{B}_{i}, that the second is $\left(D_{i t}^{\prime}\right)^{2}$ multiplied by the variance of $\hat{C}_{i i}$, and that the fourth is $2 \overline{D m}_{t} \bar{D} \bar{p}_{i t}^{\prime}$ multiplied $b y$ the coveriance of \hat{B}_{i} and $\hat{C}_{i i}$. We assume also that the disturbances $u_{i t}$ are random with zero mean and variance σ_{i}^{2} (independent of t) and that they are uncorrelated with \hat{B}_{i} and $C_{i i}{ }^{8}$ Then the oxpectation of the third tem is σ_{i}^{2} and that of the last two terms is zero. Hence:

$$
\begin{aligned}
E\left(\hat{w}_{i t}-w_{i t}\right)^{2} & \approx\left(D \bar{m}_{t}\right)^{2} \operatorname{var} \hat{B}_{i}+\left(D \bar{p}_{i t}\right)^{2} \operatorname{var} \hat{C}_{i i} \\
& +2 D \bar{m}_{t} D \bar{p}_{i t} \operatorname{cov}\left(\hat{B}_{i}, \hat{C}_{i i}\right)+\sigma_{i}^{2}
\end{aligned}
$$

On substituting this into (9.2) and avereging over time, so that we obtain the expected value of the average inaccuracy, we find

[^3]\[

$$
\begin{align*}
E \bar{I} & \approx \frac{1}{2 T} \sum_{t=1}^{T}\left(\bar{m}_{t}\right)^{2} \sum_{i=1}^{n} \frac{\operatorname{var} \hat{B}_{i}}{W_{i t}} \tag{9.3}\\
& +\frac{1}{2 T} \sum_{t=1}^{T} \sum_{i=1}^{n} \frac{\left(D \bar{p}_{i t}^{\prime}\right)^{2} \operatorname{var} \hat{C}_{i j}}{W_{i t}} \\
& +\frac{1}{T} \sum_{t=1}^{T} \overline{D m}_{t} \sum_{i=1}^{n} \frac{D_{i t}^{\prime}}{\operatorname{cov}\left(\hat{B}_{i}, \hat{C}_{i i}\right)} \\
& +\frac{1}{2 T} \sum_{t=1}^{T} \sum_{i=1}^{n} \frac{\sigma_{i}^{2}}{W_{i t}}
\end{align*}
$$
\]

The first three terms on the right represent jointly the effect of the random variation of the demand function coefficient estimates on the expected value of the average information inaccuracy \bar{I}. The fourth represents the effect of the disturbances of the demand eouation. Each of the first three terms deals with one aspect of the random variation of the coefficient estimates: the first with the variances of the marginal value shares, the second with the variances of the price coefficients, the third with the covariance of \hat{B}_{i} and $\hat{C}_{i i}$ in each demand equation. Note that covariances of coefficients and disturbances of different demand equations do not occur.

The result (9.3) shows that its computation requires the knowledge of several variances and coveriances. We shall estimate the variances σ_{i}^{2} of the disturbences by the mean squares of the $18+25=$ 33 prewar and postwar observations on the $u_{i t}$ which are implied by the B^{\prime} s and C's of (4.1). This gives

$$
\begin{align*}
& \sigma_{1}^{2}=3214 \times 10^{-8} \\
& \sigma_{2}^{2}=491 \times 10^{-8} \\
& \sigma_{3}^{2}=4644 \times 10^{-8} \tag{9.4}\\
& \sigma_{4}^{2}=4441 \times 10^{-8}
\end{align*}
$$

To specify the variances and covariances of the $B^{\prime} s$ and $C^{\prime} s$ we start by interpreting the values of (4.) as unbiased point estimates. Next, we shall specify a covariance matrix of the C^{\prime} s. The preliminary computations mentioned in section 4 suggest the following matrix:

$$
V=10^{-4}\left[\begin{array}{rrrr}
4 & 2 & 4 & 3 \tag{9.5}\\
2 & 9 & 4 & 4 \\
4 & 4 & 16 & 8 \\
3 & 4 & 8 & 16
\end{array}\right]
$$

The diagonal elements of V determine the standard errors of the $\hat{C}^{\prime} s$, which take the following values (in brackets):

$$
\begin{array}{ll}
\hat{\mathrm{C}}_{11}=-0.08(0.02) & \hat{\mathrm{C}}_{33}=-0.16(0.04) \\
\hat{\mathrm{C}}_{22}=-0.04(0.03) & \hat{\mathrm{C}}_{44}=-0.12(0.04)
\end{array}
$$

This implies that \hat{C}_{22} does not differ significantly from zero. Furthermore, since $\varphi=\Sigma C_{i i}$, we have

$$
\begin{aligned}
& \operatorname{var} \hat{\varphi}=\sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{cov}\left(\hat{C}_{i i}, \hat{C}_{j j}\right)=95 \times 10^{-4} \\
& \operatorname{cov}\left(\hat{\varphi}, \hat{C}_{i j}\right)=\sum_{j=1}^{n} \operatorname{cov}\left(\hat{C}_{i i}, \hat{C}_{j j}\right)
\end{aligned}
$$

This result implies that $\hat{\varphi}=-0.4$ has a standard error of almost 0.1 . This standard error tends to be on the high side due to the positive values of the covariances of the $\hat{G} ' s$.

We see from (9.3) that variances and covariances involving \hat{B}^{\prime} s are also needed. These will be evaluated on the busis of a large-sample approximation. We have $d B_{i} / B_{i}=d C_{i i} / C_{i i}-d \varphi / \varphi$ in view of $B_{i}=C_{i i} / \varphi$. If we interpret differentials as sampling errors, square both sides and take the expectation, we obtein

$$
\frac{\operatorname{var} \hat{B}_{i}}{B_{i}^{2}}=\frac{\operatorname{var} \hat{C}_{i i}}{C_{i i}^{2}}+\frac{\operatorname{var} \hat{\varphi}}{\varphi^{2}}-2 \frac{\operatorname{cov}\left(\hat{C}_{i i}, \hat{\varphi}\right)}{C_{i i} \varphi}
$$

apart from terms of higher order of smallness. The variance of \hat{B}_{i} is then approximated by substituting point estimates for the coefficients in the various denominators. This leads to the following standard errors (in brackets):

$$
\begin{array}{ll}
\hat{B}_{1}=0.2(0.04) & \hat{B}_{3}=0.4(0.06) \\
\hat{B}_{2}=0.1(0.06) & \hat{\mathrm{B}}_{4}=0.3(0.06)
\end{array}
$$

Finally, the covariance of \hat{B}_{i} and $\hat{C}_{i i}$ is obtained by multiplying both sides of $d B_{i} / B_{i}=d C_{i i} / C_{i i}-d \varphi / \varphi$ by $d C_{i i}$, which gives

$$
\frac{\operatorname{cov}\left(\hat{B}_{i}, \hat{C}_{i i}\right)}{B_{i}}=\frac{\operatorname{var} \hat{C}_{i i}}{C_{i i}}-\frac{\operatorname{cov}\left(\hat{C}_{i i}, \varphi\right)}{\varphi}
$$

This completes the derivation of the ingredients which are necessary for the breakdown of $\overline{G I}$ as defined in (9.3). The numerical results for both periods are presented on the first six lines of Table 4. They indicate that about 80 to 90 per cent of the total expected inaccuracy is due to the disturbance variances, both prewar and postwar.

TABLE 4. DECORPOSITION OF me EXPECTED VALUE
OF AVERAGE INFORMATION INACCURACTES

Breakdown of inaccuracy	Prewar	Postwar
	Four commodity groups	
Total expected inaccuracy	278	299
Due to disturbances	243	232
Due to coefficients	36	66
due to variances of income coefficients	31	57
due to variances of price coefficients	8	6
due to covariances	-3	3
	Food	
Total expected inaccuracy	82	86
Due to disturbances	77	79
Due to coefficients	5	8
due to variance of income coefficient	3	7
due to variance of price coefficient	1	1
due to covariance	1	0
	Vice	
Total expected inaccuracy	50	70
Due to disturbances	30	27
Due to coefficients	21	44
due to variance of income coefficient due to variance of price coefficient	20	36
due to variance of price coefficient due to covariance	4	3
	Durables	
Total expected inaccuracy	145	139
Due to disturbances	134	120
	11	20
due to variance of income coefficient	8	15
due to covariance	2	3
	1	2
	Remainder	
Total expected inaccuracy	101	110
Due to disturbances	94	98
	7	43
due to variance of income coefficient	7	14
due to variance of price coefficient	3	2
due to covariance	-3	-3

Note. All figures are to be multiplied by 10^{-6}

This suggests that our limited knowledge of the demand function coefficients is not very serious compared with that of the disturbances. The contributions of the variances of the marginal value shares are four to nine times larger than those of the variances of the price coefficients in spite of the fact that the stanaard errors of the former coefficients, when measured as fractions of the point estimates, are smaller than the corresponding fractions of the latter coefficients. This must be ascribed to the greater importance of the logchanges in real income relative to those in relative prices. The covariance contributions are small and not of the same sign in the two periods.

For individual conmodity groups the derivation is as follows. We start by considering (9.1), which takes the Pollowing form in the case or $I_{i t}$:

$$
\frac{1}{2} \frac{\left(\hat{w}_{i t}-w_{i t}\right)^{2}}{w_{i t}}+\frac{1}{2} \frac{\left(1-\hat{w}_{i t}-1\right.}{\left.1-w_{i t}\right)^{2}} \frac{1}{i t} \frac{\left(\hat{w}_{i t}-w_{i t}\right)^{2}}{w_{i t}\left(1-w_{i t}\right)}
$$

The further derivation is completely andogos; for the expected value or the average \bar{I}_{i} we obtain:

$$
\begin{align*}
\mathcal{B I}_{i} & \approx \frac{\operatorname{var} \hat{B}_{i}}{2 T} \sum_{t=1}^{T} \frac{\left(D \bar{m}_{t}\right)^{2}}{w_{i t}\left(1-w_{i t}\right)}+\frac{\operatorname{var} \hat{C}_{i i}}{2 T} \sum_{t=1}^{T} \frac{\left(D \bar{p}_{i t}\right)^{2}}{w_{i t}^{\left(1-w_{i t}\right)}} \tag{9,6}\\
& +\frac{\operatorname{cov}\left(\hat{B}_{i}, \hat{C}_{i i}\right)}{T} \sum_{t=1}^{T} \frac{D \bar{n}_{t} D \bar{p}_{i t}^{i}}{\left.W_{i t}^{(1-} W_{i t}\right)}+\frac{\sigma_{i}^{2}}{2 T} \sum_{t=1}^{T} \frac{1}{w_{i t}\left(1-W_{i t}\right)} .
\end{align*}
$$

This result shows thet the one-commodity values ${ }^{E} \bar{I}_{i}$ depend only on the variances and the covariance of the coefficients and disturbances of the corresponding ($i^{\text {th }}$) demand equation. The empirical breakdown is shown in Table 4, which reveals that the picture is largely the same as that of all commodities combined. Vice is an exception to the extent that the coefficient contribution to BI_{2} has the same order of magnitude as the disturbance contribution.

REFERENCES

[1] A.P. Barten, "Consumer Demand Functions under Conditions of limost Additive Preferences." Econometrica, Vol. 32 (1964), pp. 1-38.
[2] H.S. Houthakker, "Adaitive Preferences." Pconometrice, Vol. 28 (1960) , pp. 244-257.
[3] V. Rajaoja, \& Study in the Theory of Demand Functions and Price Indexes. Societas Scientiarum Fennica, Helsinki. 1958.
[4] H. Theil, "The Information Λ proach to Demand Analysis," Econometrica, vol. 33 (1965), pp.67-87.
[5] H. Theil, "Simulteneous Wstimation of Complete Systems of Demand Equations." Mimeographed lecture notes, Center for Mathematical

Studies in Business and Tconomics, The University of Chicago. 1964.
[6] C.I. Tilanus and H. Theil, "The Information Approach to the Evaluation of Input-Output Forecasts." Report 6409 of the Bconometric Institute of the Netherlands school of Economics, 1964. To be published in Econometrica.

APPENDIX

The price an $\bar{\alpha}$ volume log-changes $D p_{i t}$ and $D q_{i t}$ are given in Table 5. Their construction by A.P. Barten can be briefly described as follows. From various sources, both published and unpublished, prices and total expenditure series are constructed for 99 basic commodities before the war, and for 108 after the war. Price indices for the four major groups are defined as follows:
(A.1) $D p_{i t}=\sum_{k \in S_{i}} \frac{\frac{1}{2}(w(k) t+w(k) t-1)}{W_{i t}^{*}} D p(k) t \quad i=1, \ldots, 4$

Where S_{i} is the set of all basic commodities which are part of the $i^{\text {th }}$ aggregate, $D p(k) t^{\text {the }}$ log-change in the price of the $k^{\text {th }}$ basic commodity, and ${ }^{W}(k) t$ the share of that commodity in the total expenditure on all four major groups. The volume log-change of each basic commodity is defined as the log-change in the expenditure on this commodity minus the log-change in its price, after which $\mathrm{Dq}_{i t}$ for each major group is derived in a manner similar to ($A .1$), the two p^{i} s being replaced by q^{i}. [Note that the volume figures are all per capita, constructed by dividing expenditures by the mid-year population.] The following survey gives a minor-group idea of the composition of the major group:

Food: Groceries, Dairy products, Vegetables anf fruits, Meat, Fish and Bread

Vice: Tobacco products, Confectionary and ice cream, Beverages
Durables: Clothing and other textiles, Footwear, Household durables, Other durables

Remainder: Water, light and heat, House rent, Services and other commodities.

The all-commodity aggregates $D m_{t}$. $D p_{t}$. $D p_{t}^{\prime}$ are presented in Table 6. It appears that there are only five observations which show a discrepancy between $D p_{t}$ and $D p_{t}^{p}$ of about 1 or 2 per cent - disregarding the war transition, of course. Table 6 contains also the disturbances $u_{i t}$ of the four demand equations. The second-order moment matrix

$$
\left[\frac{1}{T} \sum_{t} u_{i t} u_{j t}\right]
$$

takes the following values for the prewar and postwar periods (when multiplied by 10^{6}):

$$
\left[\begin{array}{rrrr}
32 & -1 & -8 & -22 \\
& 6 & -6 & 1 \\
& & 31 & -18 \\
& & 39
\end{array}\right]\left[\begin{array}{rrrr}
33 & 2 & -10 & -20 \\
4 & & -8 & 2 \\
& & 65 & -41 \\
& & & 51
\end{array}\right]
$$

respectively, and the following value for all 33 prewar and postwar observations combined:
(A.2)

$$
\left[\begin{array}{rrrr}
32 & 0 & -9 & -21 \\
& 5 & -7 & 1 \\
& & 46 & -28 \\
& & & 44
\end{array}\right]
$$

The computations of Section 9 are based on the diagonal elements of the last matrix, see (9.4). This procedure of using adjusted figures obtained from the sample period is somewhat asymmetric compared with the procedure of the $\mathrm{B}^{\prime} \mathrm{s}$ and $\mathrm{C}^{\prime} \mathrm{s}$, for which we used round members. This objection can be met as follows. A theoretical model has been developed in [5], according to which - under additive preference conditions - the variance of $u_{i t}$ is of the form $\mathrm{kB}_{i}\left(1-B_{i}\right)$ and the covariance of $u_{i t}$ and $u_{j t}$ is $-k B_{i} B_{j}$. If we specify $k=2 \times 10^{-4}$, this gives the following theoretical covariance matrix (multiplied by 10^{6}):
(A.3)

$$
\left[\begin{array}{rrrr}
32 & -4 & -16 & -12 \\
& 18 & -8 & -6 \\
& & 48 & -24 \\
& & & 42
\end{array}\right]
$$

The correspondence between (A.2) and (A.3) is rather close. This holds particularly for the variances, which are the only elements of the covariance matrix which are needed for (9.3) and (9.6). The variance of the Vice equation is the main exception, since the theoretical value in (A.3) is three or four times as large as the observed value in (A.2). If we would use the theoretical value, the exception mentioned at the end of the text would vanish.

The observed and predicted value shares of the four commodity groups are given in Tables 7 through 10.

TABIE 5. LOG-CHANGES IN PRICE AND QUANTITY OF FOUR COMMODITY GROUPS

	$\mathrm{DP}_{1 \mathrm{t}}$	$\mathrm{Dp}_{2 t}$	$D p_{3}$	$D \mathrm{p}_{4} \mathrm{t}$	$\mathrm{Dq}_{1} \mathrm{t}$	$\mathrm{Dq}_{2} \mathrm{t}$	$D q_{3 t}$	$D q_{4} t$
1921/22	-1629	-652	-1349	-281	944	-23	1756	104
1922/23	-475	-123	-965	-82	23	-346	-394	-178
1923/24	57	23	41	-13	-111	215	-49	-90
1924/25	331	-86	51	-118	-569	-147	-162	357
1925/26	-687	-637	-713	-88	469	856	467	-44
1926/27	-359	-34	-55	53	251	-16	553	58
1927/28	94	-58	8	74	202	354	246	340
1928/29	-16	-487	-7	25	-117	204	257	265
1929/30	-650	-121	-799	-131	223	201	619	422
1930/31	-1279	-226	-658	-283	311	-258	-394	93
1931/32	-1473	-621	-1176	-320	235	-653	-63	-235
1932/33	-111	-499	-783	-310	-380	-241	245	-9
1933/34	47	-157	-265	-227	-269	-388	-819	-46
1934/35	-371	-542	-337	-287	21	22	-253	-153
1935/36	-97	-281	-919	-376	-142	156	1058	232
1936/37	693	120	724	205	-65	115	-251	-110
1937/38	4.21	38	425	2	26	313	-738	87
1938/39	-128	37	518	31	443	456	1063	305
1939/48	7957	9148	11.019	5173	-2058	-322	-2656	921
1948/49	591	871	267	378	648	193	1386	-312
1949/50	1163	378	927	536	212	71	182	13
1950/51	758	898	1409	958	187	-177	-1027	-105
1951/52	401	111	-948	377	84	89	-262	-159
1952/53	-125	-61	-159	-32	496	465	573	424
1953/54	352	229	86	659	424	369	1245	173
$1954 / 55$	127	46	-29	342	119	274	1186	551
1955/56	394	-74	-71	293	310	822	1233	437
1956/57	474	696	92	637	-244	297	-10	-43
1957/58	-210	387	-68	507	245	-139	- 531	-105
1958/59	183	-17	-7	124	155	364	464	256
1959/60	-101	-32	152	457	332	402	1063	386
1960/61	202	47	80	245	422	594	733	141
1961/62	295	83	90	302	244	352	573	308
1962/63	332	130	114	396	340	487	971	345
Average: prewar	-313	-261	-347	-118	83	45	175	78
postwar	322	246	125	$41 ?$	263	298	532	154

Note. All figures are to be multiplied by 10^{-4}. The prewar averages are based on the 18 observations $1921 / 22$ through $1938 / 39$, the postwar averages on the 15 observations 1948/49 thr ough ${ }^{1962 / 63 .}$

TABTE 6. LCG-CHANGES IN TOTAI EXPENDITURE AND IN PRICE INDICES AND DISTURBANCES OF DEMAND EQUATIONS

	Dm_{t}	$D p_{t}$	$D p_{t}^{q}$	$u_{1 t}$	$u_{2 t}$	u_{3}	$u_{4 t}$	$\sum_{i=1}^{4} u_{i t}$
1921/22	-255	-1019	-1015	110	-64	66	-106	5.5
1922/23	-609	-426	-518	47	2	-93	46	2.3
1923/24	-33	26	26	-22	26	15	-18	0.4
1924/25	-42	69	42	-139	-8	8	139	1.2
1925/26	-152	-475	-513	71	44	-54	-62	-0.6
1926/27	117	-111	-81	12	-22	42	-31	-0.2
1927/28	328	52	39	12	2	-57	43	0.0
1928/29	97	-42	-47	-61	-13	12	63	0.3
1929/30	-55	-444	-501	-23	-5	-56	85	-0.1
1930/31	-641	-651	-626	35	-9	-100	74	-0.2
1931/32	-965	-861	-923	42	-38	-13	8	-0.7
1932/33	-451	-376	-478	-60	-15	35	39	-0.5
$1933 / 34$ $1934 / 35$	-454	-153	-180	4	-3	-66	66	-0.3
$1934 / 35$ $1935 / 36$	-452	-343	-349	26	5	-6	-25	0.0
1935/36	-111	-400	-528	-63	-6	39	31	0.2
1936/37	338	445	502	18	5	26	-50	0.1
1937/38	134	215	259	37	26	-93	30	0.4
1938/39	606	88	195	1	-18	69	-51	0.4
1939/48	6854	7722	8465	-441	83	123	222	-12.4
$1948 / 49$ $1949 / 50$	861	459	425	108	-2	181	-238	48.9
1949/50	920	803	802	65	-21	24	-63	4.6
1950/51	739	1018	1092	83	2	-121	33	-2.4
1951/52	-76	17	-174	90	30	-154	40	6.2
1952/53	395	-94	-104	53	2	-66	8	-2.6
1953/54	914	379	326	25	-19	56	-61	1.0
1954/55	713	153	121	-76	-32	59	49	-0.5
1955/56	840	188	131	-20	7	38	-25	-0.1
1956/57	393	450	392	-51	48	-28	32	0.0
1957/58	77	145	121	55	3	-89	29	-1.2
1958/59	384	92	69	-6	5	-11	12	0.1
1959/60	725	176	174	-42	-22	53	10	-0.2
1960/61	589	169	151	32	14	18	-63	0.7
1961/62	588	220	194	-1	-6	-7	14	0.0
1962/63	806	274	244	-10	-10	37	-17	0.1
Average: prewar	-144	-245	-261		-5			
postwar	591	-297	264	20	-5	-1	16 -16	0.5 3.6

See note below Table 5 .

TABIE 7. OBSERVED AND FREDICTED VALUE SHARES FOR FOOD

Year	Observed	Forecasts Section 7		Forecasts (8.4)				
		(7.1)	(7.2)	$p=0$	$=0.2$	$=0.4$	$=0.6$	$=0.8$
1921	3374							
22	3235	3126	3274					
23	3283	3236	3258	3209	3165	3120°	3076	$303 i^{\circ}$
24	3275	3297	3290	3257	3262	3268	3273	3279
25	3212	3352	3289	3250	3258	3266	3274	3282
26	3191	3119	3173	3188	3208	3228	3247	3267
28	3111	31098	3165	3168	3154 3086	3141	3127	3114
29	3040	3102	3096	3089	3089	3075	3063	3051 3089
30	2929	2952	3002	3020	3023	3025	3027	3029
31	2835	2800	2928	2912	2888	2885	2871	2858
32	2759	2717	2844	2819	2797	2775	2753	2730
33	2749	2809	2765	2744	2724	2703	2682	2662
34	2814	2810	2772	2733	2746	2759	2772	2785
35	2842	2816	2823	2797	2.8.3	$28=9$	2845	2860
36	2806	2870	2819	2825	2830	2834	2837	2841
37	2888	2870	2815	2789	2798	2807	2816	2825
	2980	2943	2896	2870	2887	2904	2921	2938
39	2894	2894	2931	2961	2976	2990	3005	3020
1948	2678	3115	2963					
1949	2732	2637	2650					
50	2854	2791	2723	2716	2718	2719	2721	2722
51	2915	2831	2879	2836	2852	2869	2885	
52	3074	2986	2925	2895	2895	2895	2895	2895
53 54 5	3070	3016	3022	3053	3073	3092	3111	3130
5	3027	3003	3014	3049	3041	3034	3026	3019
56	2851	2871	2973	3008	3000	2991	2983	2975
57	2805	2856	2856	2873	2865	2857	2849	2842
58	2794	2738	2810	2789	2793	2835	2835	2835
59	2781	2787	2771	2778	2767	2757	2746	2736
60	2647	2689	2742	2767	2769	2771	2772	2774
61	2656	2624	2620	2634	2619	2604	2589	2575
62	2643	2644	2632	2643	2641	2639	2637	2635
53	2608	2618	2610	2631	2631	2631	2631	2632

Note. All figures are to be multiplied by 10^{-4}.

TABIE 8. OBSERVET AND PREDICTED VAIUE SHAPES FOR VICE

Year	Observed.	Forecasts Section 7		Porecasts (8.4)				
		(7.1)	(7.2)	$0=0$	$=0.2$	$=0.4$	$=0.6$	$=0.8$
1921 22 23	948 909	973	953					
23	922	919	907	911	915	920	924	929
24	947	921	921	923	925	927	929	930
25	929	937	946	948	948	947	947	947
26	964	920	931	930	928	926	924	921
27	948	971	965	965	963	961	959	957
28	945	943	950	949	950	951	953	954
29	910	923	946	947	946	944	943	942
30	922	928	913	912	907	902	898	893
31	937	946	923	924	927	930	933	936
32	908	946	936	938	943	947	951	955
33	883	897	908	910	912	913	914	915
34	875	878	879	885	882	880	877	874
35	869	864	873	877	876	874	872	871
36	867	873	872	871	869	866	863	860
38	858 877	853 851	866	870 861	870 858	871 854	871 851	871 847
39	867	886	884	880	878	876	874	871
1948	1052	967	864		-			
1949	1073	1080	1049					
	1024	1046	1072	1072	1077	1082	1087	1092
51	1022	1020	1024	1023	1048	1013	1007	1002
52	1051	1021	1022	1021	1021	1021	1020	1020
53	1052	1050	1048	1050	1049	1049	1049	1048
54	1019	1038	1050	1051	1051	1051	1051	1052
55	980	1012	1019	1019	1017	1015	1013	1010
56	971	964	981	980	979	978	977	975
57	1031	983	971	971	967	964	960	957
58	1049	1046	1031	1030	1033	1036	1038	1041
59	1045	1039	1047	1048	1051	1054	1057	1060
60	1008	1030	1043	1044	1043	1041	1039	1038
61	1013	1000	1008	1008	1005	1003	1000	997
62	998	1004	1013	1013	1012	1010	1008	1007
63	979	989	999	998	996	995	993	991

Note. All figures are to be multiplied by 10^{-4}.

TABIE 9. OBSERVED AND PREDICTED VAIUE SHARES FOR DURABIES

Year	Observed	Forecasts Section 7		Forecasts (8.4)				
		(7.1)	(7.2)	$\rho=0$	$=0.2$	$=0.4$	$=0.6$	$=0.8$
1921	2343			。	-			
22	2495	2430	2463					57°
23	2315	2409	2466	2527	2539	2551	2564	2576
24	2321	2306	2305	2349	2325	2301	2277	2254
25	2305	2296	2302	2354	2346	2337	2329	2320
26	2283	2337	2360	2339	2327	2315	2304	2292
27	2372	23.30	2321	2317	2316	2316	$23+5$	2315
28	2354	2411	2417	2404	2407	2410	2412	2415
29	2390	2379	2377	2387	2388	2389	2391	2392
30	2360	2416	2453	2422	2421	2419	2418	2416
31	2265	2366	2362	2394	2393	2392	2391	2390
32	2204	2217	2247	2300	2294	2288	2281	2275
33	2185	2150	2190	2240	2223	2206	2189	2172
34	2052	2118	2128	2223	2204	2186	2168	2150
35	2024	2030	2030	2091	2069	2048	2026	2004
36	2075	2036	2080	2063	2050	2038	2026	2014
37	2103	2077	2054	2113	2107	2102	2096	2090
38	2011	2104	2087	2142	2134	2127	2119	2111
39	2217	2148	2109	2049	2042	2035	2027	2020
1948	2544	2418	2076	-	-	-	-	-
1949	2753	2585	2599	778	777		-	$77{ }^{\circ}$
50	2805	2783	2768	2778	2777	2777	2776	2775
51	2708	2828	2771	2831	2831	2832	2832	2833
52	2421	2576	2695	2737	2734	2731	2728	2725
53	2425	2490	2498	2452	2420	2388	2356	2325
54	2528	2472	2507	2456	2463	2470	2478	2485
55	2643	2584	2608	2557	2559	2561	2563	2565
56	2730	2691	2729	2670	2674	2679	2683	2688
57	2646	2674	2722	2756	2760	2765	2769	2773
58	2524	2612	2636	2674	2658	2641	2525	2608
59	2542	2553	2566	2553	2540	2527	2515	2502
60	2669	2615	2618	2569	2569	2569	2569	2569
61	2729	2711	2724	2695	2703	2712	2720	2729
62	2749	2756	2775	2754	2757	2760	2763	2766
63	2827	2790	2814	2774	2774	2774	2774	2774

Note. All figures are to be multiplied by 10^{-4}.

TABLE 10, OBSERVED AND PREDICTED VAIUE SHARES FOR REMAINDER

Year	Observed	Forecasts Section 7		Forecasts (8.4)				
		(7.1)	(7.2)	$\rho=0$	$=0$.	$=0$.	$=0$.	$=0.8$
1921	3336	${ }^{\circ}$	${ }^{\circ}$					
22	3362	3470	3309					
23	3481	3436	3369	3353	3381	3409	3436	3464
24	3457	3476	3484	3472	3488	3505	3521	3537
25	3554	3415	3463	3447	3448	3449	3450	3451
26	3562	3623	3536	3543	3537	3531	3525	3520
27	3560	3591	3549	3551	3567	3582	3598	3614
28	3590	3547	3544	3548	3556	3564	3572	3580
29	3660	3597	3581	3577	3577	3577	3577	3577
30	3788	3703	3632	3645	3649	3654	3658	3662
31	3963	3889	3787	3771	3782	3793	3805	3816
32	4128	4120	3973	3942	3966	3991	4015	4040
33	4184	4144	4137	4105	4142	4179	4215	4252
34	4260	4195	4221	4159	4167	4175	4183	4191
35	4265	4290	4274	4235	4242	4250	4257	4264
36	4252	4221	4229	4240	4254	4262	4273	4285
37	4150	4200	4265	4228	4224	4220	4217	4213
38	4132	4102	4160	4127	4121	4115	4109	4103
39	4021	4072	4076	4110	4105	4099	4094	4089
1948	3726	3500	4097	-	-	-	-	
1949	3442	3698	3702	33°	3	-	$1 \stackrel{0}{7}$	3 ${ }^{\circ}$
50	3316	3381	3437	3434	3428	3422	3417	3411
51	3354	3321	3326	3310	3298	3287	3276	3265
52	3454	3416	3358	3346	3350	3353	3357	3361
53	3453	3444	3432	3445	3458	3471	3484	3497
54	3425	3486	3430	3445	3445	3445	3445	3445
55	3487	3438	3400	3416	3425	3433	3441	3450
56	3448	3473	3456	3477	3482	3486	3491	3495
57	3518	3487	3451	3439	3438	3437	3436	3435
58	3634	3605	3522	3507	3517	3527	3537	3547
59	3633	3621	3616	3622	3642	3662	3682	3702
60	3676	3665	3597	3619	3619	3619	3619	3619
61	3602	3665	3649	3663	3672	3681	3690	3699
62	3610	3596	3579	3590	3590	3591	3591	3592
63	3586	3603	3578	3598	3599	3600	3602	3603

Note. All figures are to be multiplied by 10^{-4}.

[^0]: 1 For details see [4].

[^1]: 4 It is equally possible to make any other combinations, such as $w_{1 t}+w_{2 t}$ and $w_{3 t}+w_{4 t}$, but this will not be pursued here.

[^2]: 7 We disregard here the random nature of the right-hand denominator ($w_{i t}$) of (9.1). This is of minor importance, however, since the random component of $w_{i t}$ given $w_{i, t-1}$, is the disturbance $u_{i t}$ of
 compared with the expectation of $w_{i t}$; see (9.4) below.

[^3]: 8
 Note that we do not have to assume that the disturbances are uncorrelated over time. [If they are correlated, however, we can improve on the prediction method (7.1) by taking the correlation pattern and past disturbance values into account.]

