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THE INFORMATIVE SAMPLE SIZE FOR DYNAMIC MULTIPLE EQUATION SYSTEMS WITH

MOVING AVERAGE ERRORS.

by Harry H. Tigelaar

The problem considered here, is that of finding suitable conditions

for dynamic economic systems that exclude the existence of observationally

equivalent structures. Here observational equivalence refers to equality

of distributions or first and second moments of a small finite sample

from the observable process. It is shown, that under these conditions we

may act as if the lagged endogenous variables are nonrandom exoqenous

variables, when global identifiability is investigated.

1. INTRODUCTION.

A LARGE CLASS of econometric models can be represented by an equation

system of the form

P q
(1) kE0 ~yt-k

t Bxt - EO C~Et-~ (t-0, t 1,...).
J-

where {yt} and {et} are m-variate stochastic processes, {xt} is a
nonrandom sequence of k-vectors, Ak and C~ are m x m matrices and B is

an m X k matrix. The integers p and q are supposed to be a priori known,

although the highest order of lag may be less than p(or q) in some

equations (we only consider the case p~ 1). The last mQ equations of the

system (m0 ~ m- i) are identities, i.e. equations with known coefficients

and zero errors. Using partitioned matrices and -vectors, the model (1)

can be written
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p (11)~ ( 12) B(1) q ~jl); o Ét-j (m-mo)
(2) 3: ~c ~~c Yt-k } t - f ~---- jao ----~--- ----

k-U -----~----- '
~(21)~~(22)

B( 2) p ~ p p (mp)

(m-m(~) (mp)
(k) (m-mp)(mp) (1)

where the integers between brackets indicate the dimensions of the
partitioning. We shall use a similar partitioning for the qenerating
functions A(z) - Lk-O Akzk and C(z) - Eq-p Cjz~. Thus we have A(il)(z),
C(1)(z) etc. For notational convenience, all variables and ccefficients
are allowed to take complex values and we ahall transposition of a matrix
or vector always combine with complex conjugation, which shall be denoted
by an asterisk. This dces not complicate the diacussion or affect the
results.

The process {Et} is a zero-mean white noise process with nonsingular
covariance matrix St - E etet . Thus SZE - E EtEt can be partitioned as

E

S2 0 (m-mp)
(3) StE E .

0 0 (mU)

We shall assume that the observable process {yt} has stationary covarian-
ces, i.e. E(yt-Eyt)(ys-Eys)~ only depends on t-s.

The identifiability problems for models related to the type

described above have been treated by several authors e.g. Deistler
[1 , 2], Hannan [3 , 4J and Hatanaka [5] , under various conditions.

They all have in common, however, that observational equivalence is

defined in terms of the infinite dimensional distribution of the

observable process. In this paper we shall restrict our attention to

first and second-order properties of a finite sample (as small as

possible).

Let ut - Eyt and I's - E(Yt-Vt)(yt-s-ut-s)~' (s,t - O,tl,t2, ...).
Then ~e ehall say that the sanrpZe aize T ia aecond order informative

for a parameter 0, if 0 ean be determined urriquely from ul, ..., uT
and I'U, P1, ..., P1,-1. (For a detailed treatment of this concept see
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(7 , ch.l]). As a consequence, the question of identifiability of the
spectral measure (or equivalently the sequence I'~, I'1,...) is not trivial

anymore, and our starting point is to obtain a second-order informative
sample size for it.
We shall assume that the model ( 1) is complete i.e that A~ is nonsingular.
Premultiplication with A~1 yields the reduced form

p -1 q
(4) E PkYt-k t AQ Bxt - E Qjnt-j (t-0,f1,...).

k-0 j-0

where PU - Im (the m x m unit matrix), Pk - A~lAk, Q~ - Ap1CjAU and nt -

A~lEt (the introduction of Q- A~1C.A~ instead of A~1C, will turn out

to be useful later on). Notice, thatJSln - ACIS2EAC1~ is not necessarily
of the form (3).

Clearly, P1, ..., Pp play exactly the same role as A~1B does in the non-

dynamic model (p - q- 0), provided that P1,..., Pp and AQ1S are

identifiedl). Therefore the major part of this paper is devoted to obtain
-ian informative sample size for (P1,..., Pp, AQ B). Again for notational

convenience, we shall say that a sample is informative for the holomorphic

function ~y(~), if it-. is informative for the sequence of its Taylor

coefficients. In particular we are interested in informative sample sizes

for the polynomials P(z) - A~lA(z) and Q(z) - A~1C(z)A~, and for the

rational function A 1(z)C(z).

2. INFORMATIVE SAMPLES FOR THE SPECTRAL MEASURE

Since the spectral measure of the process {yt}, or equivalently the co-

variance function Ps does not depend on B and xt, we can without loss of

qenerality put xt - 0. The reduced form is then an m-variate mixed auto-

regressive moving average mo8e1 (ARMA p, q)). We need the following lemma.

1). This statement shall be made more precise in the final section.
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t.~MMA 1: Get U arui U be arbitrary m x m matrices. Then there exist m X m

matrices SO, Sy,...,Sm, such that

Umf 1- E S Uk
k-0 k

PROOF: See [ 7], lemma 3.2.7.

m~mfl -
E sjvi ,

j-0

z~HEOREM 1: If det A(z) is supposed to have no zeros inside the unit cireZe,

C.hen the sarrrple size q t(mf1)p is second-order informative for the

sE~ectraZ measure.

PROOF: Since every m-variate ARMA (p, q) model can be written as an mp-

variate ARMA (1, q) model, we can without loss of generality take p- 1.

We must, however, keep in mind that a sample of size s from the ARMA (l,q)

process corresponds to a sample of size s t p- 1 from the original ARMA

(p, q) process (sample size is interpreted as the number of points in

time the process under consideration is observed). Thus we consider the

m-variate ARMA (1, q) model

(5)
q

yt - UYt-1 - k~o 4knt-k (t - 0, t 1,...),

with covariance function r. Suppose we have an alternative specifications
satisfying the conditions of the theorem,

(6)
q

yt - UYt-1 - k~0 Qnt-k (t - 0, t 1,...),

with covariance function r. Then we have to prove the implications

[ rs - rs for Is I ~ q t m] ~[ rs - rs for all s] .

Since also det P(z) (- det (I -UZ)) has all its zeros outside the unitm
circle, the model (5) has a one-sided moving average representation,

which implies that the covariance functions rs and S satisfy
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(~) rs - u)'s-1 ~ 1's ' u rs-1 ~ ts-qtl, qtz, ...).

Suppose we have r- P for I s~ ~ q t m. Then we have, using (7) ands s -
lemma 1

m
rqtmfl - rqtmtl -(Umtl - Umti)rq - E Sk(Uk-Uk)I'q -

k-0

m
- E Sk(r }k-r }k) - 0

k-0 q q

and so, by induction rs - rs for all s.

7mus the szmple ~,i-r.e ~~ t m f 1 is second order informative for the
::prct.ral measure of an m-variate ARMA ( l,q) process. Hence, for an
m-variate ARMA (p,q) process the sample size q f mp f 1 t p- 1

q t(mtl)p is second-order informative.

This completes the proof.

The spectral density matrix of the process {yt} is well known

to be

(8) f(a) - 2rt P-1(e-ia)4(e-ia)~n Qx(e-ia)P-l~e(e-ia) (-n ~ a ~ n),

thiis if we can prove the factorization (8) to be unique, the sample size

n f(mtl) is also second-order i.nformative for the reduced form i.e.

for (P(z), Q(z), Stn). For nonsingular S2n, conditions where gíven by

HANNAN [ 3]. In the next sections we shall give conditions for the case

that we have identities.

3. CONDITIONAL IDENTIFIABZLITY AND INFORMATIONAL INDEPENDENCE

Let 0 E 6 denote some aggregate of unknown parameters of the model, and

suppose () -(p, V~), where ~ E ~ and ~y E Y'. If Rn(0) denotes the covariance

structure of a sample of size n from the observable process, then we shall

say that ~ is second-order identifiable conditionaZ on ~, if we have the
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impLication

~ Rn(01) 3~ Rn(~2) (Oi -(~i~Wi) E 0

The sample size n is then called second-order informative conditional on
~y. It is easily seen that it implies identifiability of ~ if ~y is

identified. We shall say that the sub-aggregates ~ and ~ of 0 are
infcr~rnationaZly independent, i f all observational equivalence classes are
cif r}ie form U Y V, where U C m and V C W. Notlce, that it is not neces-
:rary that ~~ 2 r'I'. (For a more qoneral and formal treatment of theee
~oncepts, see ( 7 , ch. lj .) We have

i~t~MA 2: If ~ is identifiable conditionaZ on :y, and m and ,~ are infor-

mationallz~ idependent, then ~ is identificzbZe.

PROOF: Let ~1 ~~2, and Oi -(~i, ~i) E A, i- 1,2. If ry1 - ~y2 then we
have Rn(~1) ~ Rn(02) by the conditional identifiability of ~. If V~1 ~~2
and Rn(01) - Rn(OZ), then O1 and 02 are observational equivalent, and by
informational independence we have 03 - (~2,~1) E 6 and Rn(01) - Rn(03).
~r}ris contradicts the conditional identifiability of ~ and proves the lem-
ma.

It turns out, that, under rather natural conditions, A~ and

(P(z), Q(z), S2n) are informationally independent. Thus, by lemma 2, it

suffices to prove the identifiability of (P(z), Q(z), Sln) conditional on

A~.
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4. Tlif, IULN'PIF'IAF3ILITY CONDITIONS.

For the identities in the model, we make the following assumptions.

ASSUMPTIONS (a) A~22) is nonsingular

(b) degree [ A(21)(z), A(z2)(z)] ~ p-1

(c) A(22)(z) is proper 2)~

REMARK: Although assumptions (b) and (c) are not always fulfilled in

practice, it is often possible to transform the model so that they are.

(see t}ie example in the final section).

The range of the unknown part of A(z), B(z) and R~ must be restricted, in

order to avoid observational equivalent structures. The following con-

ditions are natural generalizations of those given by HANNAN for the

case m~ - 0.
(21)

In the ramainder of this paper we shall write p~ for degree [A (z),

A( 22 )( z)], and r[ . ] for the rank of a matrix.

CONDZTIONS:

(A) det A(z) ~ 0, Izl ~ 1

(B) det C(1)(z) ~ 0, Iz~ ~ 1

(C) r[A(z), C(z)] - m for all z E C

(D) r[Apll)~ Cql)] - m -
m0

(E) degree [ A(12) (z)] ~ p~

Since Ap22) is nonsingular, the model can be transformed into a model

satisfying A~12) - 0. Clearly this has no effect on the reduced form, and

so the identifiability of the reduced form under the conditions (A) -(E)

is equivalent to identifiability under the extra condition

2). A polynomial matrix is proper if it has a nonsingular leading
coeffícient matrix.



- 8 -

(F) pó12) - 0.

Let 0-(~,~), where ~- AO and t~ -(P(z), Q(z), tEn). We shall say that

the range f3 of 0 is maximal if it is the set of all pairs (~,~) satisfying

tlie conditions (A) -(E), and eub-maximal if it is the set of all pairs

(~p,y) satisfying the conditions (A) - (F)3).

LEMMA 3: If 0 is sub-ma~imal, then ~ and ~y are informationall~ indepen-

dent.

PROOF: Let m and `Y denote the ranqe of ~ and ~ respectively. We shall

first prove that 0-~ x 4'. Let ~ E~ and y E`~ be arbitrary. If ~- AO

and ~Y -(P(z), Q(z), ~~) -(A01 A(z), A01 C(z)A0, AO1S2E A~lt) then

we must show that AO A01 A(z) and AOA01 C(z)AOA01 satisfy conditions

(A) -(E), and that AOA01 SE AO1~A~ has zeros in the last m0 rows and

columns. This follows easily from the fact that

-1
AOAO -

0

Since A~12) - Á(12) - 0 and [A~21) AO(22)] -[ÁO(21)~ ÁO(22)]

F'inrilly, if (~pi, ~yl) and (~2, ~V2) are (second-order) observational

equivalent, also (`41, ~2) and (~2, ~yl) belong to that equivalence class

since the spectral measure (and so the covariance structure of any sample)

only depends on ~. Hence ~ and ~y are informationally independent.

The followinq lemma, which was proved in [7 , p. 100] shall also

be used to obtain the main result of this paper.

LEMMA ~1: Under the eonditions (AJ -(EJ the poZynomiaZs A(z) and C(zJ

are uniqueZy determined by A~ and the rational function A-1(z)C(zJ.

T j 0
i

-0-~ I
i
t
` m

3). If C(z) is a priori known, we may drop the conditions ( B) and (D).
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If C(z) is an a priori known polynomial (e.g. if q- 0) we shall

assume that it has a determinant not identically zero. (This assumption

takes over the role of condition (B)). In that case we may need the

followinq Variant of lemma 4:

LEru~A 4': Under the conditions (A), (C) and (E) the poZynomiaZ A(z) ia

uniqueZy determined by AU and the rationaZ funetion A-1(z) C(z).

The proof is a simple version of that of lemma 4 and shall be omitted.
Notice that the lemma is non-trivial since C(z) has zeros in the last
m~ rows and columns.

S. INFORMATIVE SAMPLES FOR THE REDUCED FORM.

In this section we shall first prove that there exists a finite set of

covariances I'C, P, ..., I'n, that identifies (P(z), Q(z), Rn) uniquely.

Therefore we put xt - 0 for all t and return to the general case later on.

THEOREM 2: Ur~der the conditions (A) -(E) the sctmpZe size q f (mf1)p is

is aecond-order informative for the reduced form.

PROOF: Since we consider the reduced form, we can without loss of gene-

rality suppose that the range of (AC, P(z), Q(z), S2n) is sub~taximal.

Let A~ be fixed, and suppose that (A(z), C(z), S2E) and (A(z), C(z), SàE)

zire (second-order) observational equivalent (with respect to the sample

size q t(mtl)p). Then it follows from theorem 1 that also the spectral

density matrices coincide which implies

(9) A 1(e-i~)C(e-ia)ft Cx(e-ia)A-l~c(e-ia)
-E

- Á 1(e-ia)C(e-ia)S2 Cx(e-ia)A lx(e-l~), (-n~a~n).
E -

Putting W(z) - A(z)A-1(z) we obtain from (9)
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(10) C(e-i~)12~C~(e-lA) -
W(e-ía)C(e-ia)~EC1t(e-ia)W~(e-i~), (-n~a~~rt)

Partitoninq W(z) according to the identities, and using the facts that

C(z), C(z), S2 and St have zeros in the last m rows and columns, and
(21) (~2) E ~(21) ~(22) 0

[ A (z) , A (z)j -[ A (z) , A (z)] , with rank m0 for almost all z,

it follows from (10) and the definition of W(z) that we Must have W(21)(z) -

- 0 for all z and W(22)(z) - I for all z. But then (10) impliesm0

(11) C(1)(e-ia)~EC(1)ie(e-ia) -

- W(11)(e-ia)~(1)(e-ia)~~ C(1)ie(e-ia)W(11)Y(e-ia), (-n ~ a ~ n).

(11)
As AO - AO we have W(0) - Im and so W (0) - Im-m .0
Since also C(i)(z), C(1)(z) and W(11)(z) are nonsingular inside the unit

circle, (il) implies S2É - SZÉ and C(1) (z) - W(11) (z) C(1 )(z). (see

[ 7, Lemma 3.2.1]). But then we also have C(z) - W(z) C(z) or equivalent-

ly A 1(z)C(z) - A 1(z)C(z) .

Hence, by Lemma 4 it follows that A(z) - A(z) and C(z) - C(z). Thus the

sample size q}(mtl)p is second-order informative for (A(z), C(z), S2E)

eondittional on A0. Hence it is also second-order informative for (P(z),

Q(z), S2n) conditional on A0. Since AO and (P(z), Q(z), SZn) are information-

ally índependent by lemma 3, it follows from lemma 2 that the sample size

q t(mtl)p is second-order informative for (P(z), Q(z), S2n).

in the case that C(z) is a priori known, we can prove (using

lemma 4' instead of lemma 4):

THEOREM 2': Under the conditions (A1, (C) and (E) the sample size

q f(mt1)p is second-order informative for the reduced form.
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h. IUI!N'I'il'tc'A'I'}UN (I}~' S'CRUC'I91t211L Ep[IATIONS : B:XAMPLE.

Iti ttiis section we shall suppose that the model ( i) ís non-coZlinear i.e.
np

that there exists an integer n~ such that r(Et-1 xtxt] - k.

T}iEOREM 3: If the sampZe size n is second-order informative for P(zJ,

t.hen the sarrrpZe size max {n, n~} tis second-order informative for A~IB.

PROOF: Since the model is non-collinear, the sample size n~ is second-

order informative for A~IB conditional on P(z). The result follows then

from the fact that the sample size n is second-order informative for P(z).

Iqnoring the MA-part for the moment, we shall sav that the i-th

structural eq~aation is identified if the i-th row of [A(z), B] is
identified. Let Mi be the matrix, consisting of the columns of [A~, A1,
..., Ap, B] havínq zeros in the i-th row. Then the well known rank
condition for the structural form states that the i-th row of [A(z), B]

-1
is uniquely determined by [ P(z) , A~ B] if R[ Mi] - m-1.

Thus if the rank condition is satisfied for i- 1,..., m-m~, and the
reduced form is identified, then A(z) and B are identified and so are

C(t) and SZ .
i.

To illustrate the results we shall derive an informative sample

size for the model of KLEIN (see e.g. [ 6, P.412])- In the notation of the

preceding sections it is:

yt,l - S6 } Slyt,S } 82yt-1,5 } 83(yt,3 } xt,4) t et,l

, , ,
yt,2 - SO } SSyt,S } S2yt-1,5 } 3 yt-1,6 } et,2

yt,3 - SO } Slyt,4 } s2yt-1,4 } S3 xtl

yt,4 - yt,l } yt,2 - xt,2

yt,5 - yt,4 - yt,3 - xt,3

yt,ó - Yt-1,6 } Yt,2

} Et,3
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Clearly assumptions (b) and ( c) are not fulfilled. When we laq the second
equation once, substract it from the second equation and substitute

yt-1,6 - yt-2,6 - yt-1,2 we obtain

yt~2 -(itR3)yt-1,2 } S1(yt.5-yt-1,5)
t S2(yt-1,5-Yt-2,5) t

t Et,2 - Et-1,2 '

Since we eliminated y~6, we may now skip the six-th equation. Notice that

the constant term has disappeared and that a MA-part is introduced with

knc~wn coefficient.s. The qenerating functions are now

A(z) -

1 0 -9j ~ C - (S1tf~2z)
0 1-(lts3)z 0 ~ 0 -{Si-(Bit~2)z-SZz2}

0 0 1 ~-(Sïtszz) 0

-----------------------~--------------------------------
-1 -1 0 i 1 0

0 0 1 ; -1 1

and 1 0 0

C(1)(z) - 0 1-z 0

The next step is to transform the system in order to satisfy condition

(E), which means that we must eliminate the lagged values of yt 4 and Yt,5'
Straight forward calculation yields the following system

yt,i - s0 } S2(yt-1,1}yt-1,2) } ~3yt,3 - S2yt-1,3 }

t Slyt~ - R2(xt-1,2}xt-1,3) t S3xt~4 t etll

yt,2 - (~2-~1)yt-1,1 - R2 Yt-2,1 } (1-51 t ~2}R3)yt-1,2 - s 2Yt-2,2 }

0 0 1

t(~i-S2)yt-1,3 }~2 yt-2,3
t Bi yt~5 t(Si-62)xt-1,2 }
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t S2 xt-2,2 }(R1-s2)xt-1,3 } s2 xt-2,3 t Et,2 - Et-1,2

yt,3 - SO } S2(yt-1,1}yt-1,2)} S1 yt,4 } s3 xt,l-s2 xt-1,2 } Et,3

yt,4 - yt,l t Yt,2 - xt,2

yt,5 - yt,4 - yt,3 - xt,3 '

Let A(z) denote the coefficient generatinq function for the y's. Then

0 0 1

~
~~
' -1

Note, that also lagged values of the x's occur. when we put

~ 1 `

xt,l

x

xt,2

t-1,2

I xt-2,2xt -

1-~2z -á2z -S3}S2z ~ 0 -ál
I
I

(8'-B')zt~'z2 1-(1-9'ts't6')zt6'z2 ( S'-B')z-S'z2 ~ 0 -9'
1 2 2 1 2 3 2 2 1 2 ~ i

-s2Z
i

1 ~ -Rï 0
i

------------------------------------------------------~----------
-s2z

xt,3

xt-1,3
xt-2,3

~xt,4 ~
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the corresponding matrix of coefficíents is

ao 0 0 -s2 0 0 -s2 0 ~3

0 0 o ai-e2 sZ o sl-B2 62 0

~~ ~3 0 -s2 0 0 0 0 0

0 0-1 0 0 0 0 0 0

0 0 0 0 0 -1 0 0 0

In order that the transformed model is non-collinear, we must have

observations on the x's for at least 11 periods.

When we restrict the values of the coefficients such that det A(z) ~ 0,

Izl ~ 1, and r[A(z), C(z)] - S(which is equivalent to IBi~ f 1á3~ ~ 0),

then it follows from theorems 2' and 3 that the sample size 13 is second-

order informative for the reduced form of the transformed system. The

rank conditions for the structural equations of the transformed system

are:

Í 0 0 0 0 0 0 ~

r~ M t ~ - r

1 0 SZ 0 0 0

0 -Bï 0 83 0 0

-1 1 0 0 -1 0

0 -1 0 0 0 -1

- 4" ~Rï~ } ~R3~ ' o ~
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r~ MZ] - r

r{ M3] - r

1 -s3 0 RQ 0 0 0 S3

0 0 0 0 0 0 0 0

0 1 -aï s~ a3 0 0 - 4 ,

-1 0 1 0 0 -1 0 0

0 -1 -1 0 0 0 -1 0

1 0 -sl s2 0 0 0 R3,

0 1 -si s2-Bi 62 0 0 0

0 0 0 0 0 0 0 0

-1 -1 0 0 0 -1 0 0

0 0 -1 0 0 0 -1 0

- 4 ,

where equal columns are only written down once and we skipped columns of

zeros. Only the first condition restricts the range of some coefficients.

Thus the sample size 13 is now second-order informative for the parameters

of the transformed system. Apart from S~, the parameters of the original

system can be uniquely determined from the transformed system; hence they

are also identified. On the other hand, S~ is easily seen to be identified

conditional on all other parameters and so the original system is also

identified.
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