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THE INFORMATIVE SAMPLE SIZE FOR DYNAMIC MULTIPLE EQUATION SYSTEMS WITH
MOVING AVERAGE ERRORS.

by Harry H. Tigelaar

The problem considered here, is that of finding suitable conditions
for dynamic economic systems that exclude the existence of observationally
equivalent structures. Here observational equivalence refers to equality
of distributions or first and second moments of a small finite sample
from the cbservable process. It is shown, that under these conditions we
may act as if the lagged endogenous variables are nonrandom exogenous

variables, when global identifiability is investigated.

1. INTRODUCTION.

A LARGE CLASS of econometric models can be represented by an equation

system of the form

q
Akyt—k + th = I C (t=0, + 1,...),

(1)
k=0 jud 3 © D

| =0

where {yt} and {Et} are m-variate stochastic processes, {xt} is a
nonrandom sequence of k-vectors, Ak and Cj are m ¥ m matrices and B is

an m ¥ k matrix. The integers p and g are supposed to be a priori known,
although the highest order of lag may be less than p (or g) in some
equations (we only consider the case p > 1). The last L equations of the
system (mo <m - 1) are identities, i.e. equations with known coefficients
and zero errors. Using partitioned matrices and -vectors, the model (1)

can be written



= Bl

' (1) (1)! ~
P (11),_(12) B g [&7°4 B €, _ (m-m,)
@ 5 ™ % y + X = T 3 t=3 Mo
i t-k -—==] 't ol —— ’
k=0 | ~===- o e— (2) 3 ‘
A:Zl}:h;22l B g = 0 0 {mOJ
(k) {m-mo){mO) (1)

(m—mO} (mol

where the integers between brackets indicate the dimensions of the
partitioning. We shall use a similar partitioning for the generating
ETT?tions A(z) = tP_ A 2" and ca) = o Cjzj. Thus we have a'' ') (z),

o (z) etc. For notational convenience, all variables and coefficients
are allowed to take complex values and we shall transposition of a matrix
or vector always combine with complex conjugation, which shall be denoted
by an asterisk. This does not complicate the discussion or affect the
results.

The process {E£} is a zerc-mean white noise process with nonsingular

ol
covariance matrix Q_ =E e €_ ., Thus §_ =E € E’ can be partitioned as

< E tt
2.0 (m-m,)
(3) ﬂE [ £ ¢ &
0 0 (mo}

We shall assume that the observable process {yt} has stationary covarian-
ces, i.e. E(yt—Eyt}(Ys—Eysl’ only depends on t-s.

The identifiability problems for models related to the type
described above have been treated by several authors e.g. Deistler
[1 , 2], Bannan [3 , 4] and Hatanaka [5] , under various conditions.
They all have in common, however, that observational equivalence is
defined in terms of the infinite dimensional distribution of the
observable process. In this paper we shall restrict our attention to
first and second-order properties of a finite sample (as small as
possible) .
Let u, = By, and T_ = E(Y -4 ) (y, ¥, )% (8,8 =0,41,42, ...).
Then we shall say that the sample size T is8 gecond order informative
for a parameter 0, if © can be determined uniquely from Hys sees ¥

and Tor T

T

1t ot FT—I' (For a detailed treatment of this concept see



e e

[7 i challhs As a consequence, the question of identifiability of the

spectral measure (or equivalently the sequence T r ..) is not trivial

0" "1'°
anymore, and our starting point is to obtain a second-order informative

sample size for it.

We shall assume that the model (1) is complete i.e that Ao is nonsingular.

Premultiplication with A;l yields the reduced form

= q
+ A le =

t4) Pi¥e-x * Bo B%e jEO Q41—

I 10

(t=0,+1,...),

k=0

_ ) -1 _oa-1
wh?re PO = Im (the m ¥ m unit matfix). Pk = A, Ak' Qj = AO CjAO and nt

= . g _
AO €y (the introduction of Qj AO CjAO insfﬁad ?f’ao Cj will turn out
to be useful later on). Notice, that ﬂﬂ = A ﬂgno

0 is not necessarily

of the form (3).

Clearly, Pl' aia e Pp play exactly the same role as ASIB does in the non-
dynamic model (p = q = 0), provided that P,,..., R, and A{;IB are
identifiedl). Therefore the major part of this paper is devoted to obtain

an informative sample size for {Pl,..., Pp, ABIB). Again for notational
convenience, we shall say that a sample is informative for the holomorphic
function ¢(z), if it is informative for the sequence of its Taylor
coefficients. In particular we are interested in informative sample sizes
for the polynomials P(z) = AEIA(Z) and Q(z) = 381C(z)ao, and for the

rational function R_l(zic(z).

2. INFORMATIVE SAMPLES FOR THE SPECTRAL MEASURE

Since the spectral measure of the process {yt}, or equivalently the co-

variance function Fs does not depend on B and x_, we can without loss of

t
generality put X, = 0. The reduced form is then an m-variate mixed auto-

regressive moving average model (ARMA p, gq)). We need the following lemma.

1). This statement shall be made more precise in the final section.



LEMMA 1: Let U and U be arbitrary m x m matrices. Then there exist m x m

matrices So, SI""’S such that

m
m m
gl 5 oz skuk o ey sjuj ,
k=0 4=0

PROOF: See [ 7 ], lemma 3.2.7.

THEOREM 1: If det A(z) is supposed to have no zercs inside the unit circle,
then the sample size q + (m+1l)p 18 second-order informative for the

spectral measure.

PROOF: Since every m-variate ARMA (p, gq) model can be written as an mp-
variate ARMA (1, gq) model, we can without loss of generality take p = 1.
We must, however, keep in mind that a sample of size s from the ARMA (1,q)
process corresponds to a sample of size s + p - 1 from the original ARMA
(p, q) process (s8ample size is interpreted as the number of points in
time the process under consideration is observed). Thus we consider the
m-variate ARMA (1, g) model

q
(5) Ve “Uge g = kio Qe (=0, +1,...9,

with covariance function FS. Suppose we have an alternative specification

satisfying the conditions of the theorem,

- G
(e) ¥e ~ 02 4 = & QW o =0y ¥ Lyeasde
k=0

with covariance function Fs' Then we have to prove the implication
=T + = =~f 1 .
[T, =T for [s| < q+ m [r, =T, for all s]
Since also det P(z) (= det (Im-Uz)) has all its zeros outside the unit

circle, the model (5) has a one-sided moving average representation,

which implies that the covariance functions FS and i; satisfy



(/) I. =4 Fs—l i by =8 ra-l F (s=q+1, gq+2, ...).

Suppose we have Ts = FE for |s| < q + m. Then we have, using (7) and

lemma 1

m

~ m+1 1 ~
Tgbmet ~ Fgrmey = U - Ty = kio sk(uk—uk)rq -
m ~
= ¥ g lr - ) =0 7
k=0 k' gtk gtk
and so, by induction F5 = ?s for all s.
Thus the sample size  + m + 1 is second order informative for the

spectral measure of an m-variate ARMA (1,q) process. Hence, for an
m-variate ARMA (p,q) process the sample size g + mp + 1 + p - 1 =
g + (m+1l)p is second-order informative.

This completes the proof.

The spectral density matrix of the process {y } is well known
to be

qute_“)Q(e_umn e Mp ety (rcr<em,

e

(8) £(A) =

thus if we can prove the factorization (B) to be unique, the sample size
q + (m+1) is also second-order informative for the reduced form i.e.
for (P(z), Q(z), ﬁn}. For nonsingular Qn. conditions where given by
HANNAN [ 3]. In the next sections we shall give conditions for the case

that we have identities.

3. CONDITIONAL IDENTIFIABILITY AND INFORMATIONAL INDEPENDENCE

Let O € A denote some aggregate of unknown parameters of the model, and
suppose O = (¢, V), where ¢ € ¢ and ¢ € ¥. If Rn{e) denotes the covariance
structure of a sample of size n from the observable process, then we shall

say that ¢ is second-order identifiable eonditional on y, if we have the



implication
b, # 9,
= R (6,) # R (8,) (0, =(¢,,4,) €8
-\ul & ,4}2 i= 1,2.]

The sample size n is then called second-order informative conditicnal on
§. It is easily seen that it implies identifiability of ¢ if Y is
identified. We shall say that the sub-aggregates ¢ and Y of © are
informationally independent, if all observational equivalence classes are
of the form U * V, where U C ¢ and V C ¥. Notice, that it is not neces-
sary that Y 4 » ¥, (For a more qgeneral and formal treatment of these

concepts, see [ 7 , ch. 1].) We have

LEMMA 2: If ¢ 18 identifiable conditional on ¢, and ¢ and  are infor—
mationally idependent, then ¢ 18 identifiable.

PROOF: Let ¢y i ¢2, and 01 = (¢i, wi) €8, 1= 1;2; IF wl = wz then we
have R (0;) # R (0,) by the conditional identifiability of ¢ . If vy £V,
and Rntoll = Rnlez], then 81 and @2 are observational equivalent, and by
informational independence we have O, = (¢,,¥,) € 8 and Rn(el) = Rnfea).
This contradicts the conditional identifiability of ¢ and proves the lem-

ma.

It turns out, that, under rather natural conditions, AO and
(p(z), Q(z), Qn) are informationally independent. Thus, by lemma 2, it
suffices to prove the identifiability of (P(z), Q(z), Rn] conditional on

AO.



4. THE IDENTIFIABILITY CONDITIONS.

For the identities in the model, we make the following assumptions.

A(22)

ASSUMPTIONS (a) 0

is nonsingular

(22)

(b) degree [A(21)(z), A (z)] < p-1

A(22) 2).

(c) (z) is proper
REMARK: Although assumptions (b) and (c) are not always fulfilled in
practice, it is often possible to transform the model so that they are.

(see the example in the final section).

The range of the unknown part of A(z), B(z) and RE must be restricted, in
order to avoid observational equivalent structures. The following con-
ditions are natural generalizations of those given by HANNAN for the

case my = 0.

In the ramainder of this paper we shall write Py for degree [Atzi}[z),
A(ZZ}IZ)]. and r [ . ] for the rank of a matrix.
CONDITIONS:
() det A(z) # 0, |z| <1
(®) aet ¢V (z) #£0, |z| <1
(c) Ha(z), clz)] =m for all z €E C
(11) (1), _ _
(D) r{Ap ,cq ] =m my
(E) degree [A‘iz]{z}] < pg
Since AéZZ) is nonsingular, the model can be transformed into a model

élz) = 0. Clearly this has no effect on the reduced form, and

so the identifiability of the reduced form under the conditions (a) = (B)

satisfying A
is equivalent to identifiability under the extra condition

2). A polynomial matrix is proper if it has a nonsingular leading
coefficient matrix.



Let 0 = ( ¢,¥), where ¢ = R, and § = (P(z), Q(z), ﬂn). We shall say that
the range 8 of O is marimal if it is the set of all pairs (¢,y) satisfying
the conditions (A) - (E), and sub-maximal if it is the set of all pairs

(¢,¢) satisfying the conditions (A) - (F]3).

LEMMA 3: If 8 is sub-maximal, then ¢ and y are informationally tindepen—
dent.

PROOF : Let ¢ and ¥ denote the range of ¢ and |} respectively. We shall
first prove that 8 = & x ¥. Let ¢ € ® and ¥ € ¥ be arbitrary. If ¢ = KD
and y = (P(z), Q(z), Q) = (!

Alz), Al ciza A—lﬂg aal’) then

0 0 0! (o}
~ - e | ~
we must show that AO Aol A(z) and AOAO C(z}noaol satisfy conditions
(A) = (E), and that Konai Qe ABIHA; has zeros in the last m, rows and

columns. This follows easily from the fact that

-1 i
AgAg R i
T
()
pampe, Aém - P Iﬁézl). “c(zzz)] _ [ném}' 3522}1_

Finally, if (¢1. wl) and (¢2, wz) are (second-order) observational
equivalent, also (¢1. ¢2) and (¢2. w1) belong to that equivalence class
since the spectral measure (and so the covariance structure of any sample)

only depends on . Hence ¢ and y are informationally independent.

The following lemma, which was proved in [7 , p. 100] shall also
be used to obtain the main result of this paper.

LEMMA 4: Under the conditions (A) - (E) the polynomials A(z) and C(z)
are uniquely determined by A, and the rational funetion A-Jrz)c(z).

3). If C(z) is a priori known, we may drop the conditions (B) and (D).



If C(z) is an a priori known polynomial (e.g. if q = 0) we shall
assume that it has a determinant not identically zero. (This assumption
takes over the role of condition (B)). In that case we may need the

following variant of lemma 4:

LEMMA 4': Under the conditions (4), (C) and (E) the polynomial A(z) is
uniquely determined by A, and the rational function A_IfzJ clz).

The proof is a simple version of that of lemma 4 and shall be omitted.
Notice that the lemma is non-trivial since C(z) has zeros in the last

mO rows and columns.

5. INFORMATIVE SAMPLES FOR THE REDUCED FORM.

In this section we shall first prove that there exists a finite set of
covariances FO' Ty racave Fn, that identifies (P(z), Q(z), Qn} uniquely.

Therefore we put x, = 0 for all t and return to the general case later on.

2 2

THEOREM 2: Under the conditions (A) — (E) the sample size q + (m+l)p s
i8 gecond-order informative for the reduced form.

PROOF: Since we consider the reduced form, we can without loss of gene-
rality suppose that the range of (A , P(z), Q(z), ﬂn) is sub-maximal.

Let A. be fixed, and suppose that (A(z), C(z), @) and (A(z), c(z), ac)

0
are (second-order) observational equivalent (with respect to the sample

size g + (m+l)p). Then it follows from theorem 1 that also the spectral

density matrices coincide which implies

1

(9) A te e T T

A)nec"{e'i T TR

- BB e B, e HE e, ram.

Putting wW(z) = A(z)rltz] we obtain from (9)



— 1

~% ix

10 ce M Me-th = weTHEe ™ e e wt e ™, ragm

Partitoning W(z) according to the identities, and using the facts that

clzl); E(z}, 1_ and ﬁ have zeros in the last m, rows and columns, and

(2D 6y, a2 () = 5@V 5y, 322 )] , witn rank m, for almost all z,
it follows from (10) and the definition of W(z) that we Must have ﬁ{21)(z) =
= 0 for all z and w(zz)(z) = Im for all z. But then (10) implies
0
= 1 =
(11) et e “m;c("*te =
N e - S T ey Ny D O IR R
= (11)

As A. = A, we have W(0) = I and so W (0) =1 i

0 0 m m—-mo
Since also C(l)(z), E{l)(z) and W(il)(z) are nonsingular inside the unit
circle, (11) implies Qg = ﬁz and Ctl)(z] = W(11)(z) 5(11 (z). (see
[ 7, Lemma 3.2.1] ). But then we also have C(z) = W(z) C(z) or equivalent—

1y A" (2)c(z) = 3 @E(@).

Hence, by lemma 4 it follows that A(z) = A(z) and C(z) = C(z). Thus the
sample size g + (m+l)p is second-order informative for (A(z), C(z), ﬂe}
conditional on A.. Hence it is also second-order informative for (P(z),

0

Q(z), Qn} conditional on A,. Since A, and (P(z), Q(z), Qn)'are information-

0°
ally independent by lemma 3, it follows from lemma 2 that the sample size

q + (m+1)p is second-order informative for (P(z), Q(z), Qn).

In the case that C(z) is a priori known, we can prove (using

lemma 4' instead of lemma 4):

THEOREM 2': Under the conditions (A), (C) and (E) the sample size
q + (mt1)p is second-order informative for the reduced form.
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G TUENTTFLICATION OF STRUCTURAL EQUATIONS : EXAMPLE.

In this section we shall suppose that the model (1) is non-collinear i.e.

no
that there exists an integer ng such that z{}:t=1 xtx:] = K

THEOREM 3: If the sample size n ig eecond-order informative for P(z),

then the sample size max {n, na} ig second-order informative for ABIB.

PROOF: Since the model is non-collinear, the sample size nj, is second-
order informative for ABIB conditional on P(z). The result follows then

from the fact that the sample size n is second-order informative for P(z).

Ignoring the MA-part for the moment, we shall sav that the i-th
structural equation is identified if the i-th row of [A(z), B] is

identified. Let Mi be the matrix, consisting of the columns of [AO, hl,

i3 Ap, B] having zeros in the i-th row. Then the well known rank

condition for the structural form states that the i-th row of [A(z), B]

m-1.

is uniquely determined by [P(z), ABIEI if R{Mi]

Thus if the rank condition is satisfied for i = 1,..., m—-m and the

0?
reduced form is identified, then A(z) and B are identified and so are

Clz) and ﬁl.

To illustrate the results we shall derive an informative sample
size for the model of KLEIN (see e.g. [ &, p-412]). In the notation of the

preceding sections it is:

Yo q =8 % By p Y050, g s * Balyy, 5 % B p) 8 4
Yo =B BN o ¥ B¥e 5 B3 ¥ g * €2
Yo, 3= Bo* Bi¥e g4 * BO¥e g4 % B3 %y S
Ye,qa T Y10 T Y27 ¥ 2
Ye, 5 T Ye,4 ™ Ye,3 7 %¢,3

Ye,6 = Ye-1,6 ¥ Ye,2



Clearly assumptions (b) and (¢) are not fulfilled. When we lag the second

equation once, substract it from the second equation and substitute

v we obta

Ye-1,6 = Ye-2,6 = Ye-1,2

= ' " = -
Yo, 3= (M4BYy. 4 o + 1V 5 ¥eoq,5) * BaWWe g sV 0,5

Since we eliminated y

t6

in

+

, we may now skip the six-th equation. Notice that

the constant term has disappeared and that a MA-part is introduced with

known coefficients. The generating functions are now

1]
1 0 -8, 4 0 - (B +B,2) 5
0 1-(1+83)z o | 0 -{B}-(B}+B83)z-B2"}
= |_ " "
Alz) = 0 0 1 : (Bl+ﬂ2z) 0
<1 - g 1 0
]
L 0 0] 1 | -1 1
”
and 1 0 0
c'Vz) = 0 1-z 0O
0o 0 1

The next step is to transform the system in order to satisfy condition
(E), which means that we must eliminate the lagged values of Ye . and y, ¢-
L r

Straight forward calculation yields the following system

Ye,1 = Bo * BylWp g, 1% q,2) * Ba¥e,3 = Bo¥p g3 *

* By¥es = Bylm g a%en,9’ * B%,4 Y S

- r_qan _an —an 100 = A
Ye o = (B3Bilye_g g = B Yep,q + (1-B{+ B3B3y, 4 5 = Bo¥e 2.2

+

r_Qt ] ] Tgt
(Bi-83)y, 3 3 + By Yoo 3+ B) Yy 5% (By-B2)%¢ 4 o ¥

+



= i

" A [ -

By X o0t BRI _1,3* B3 XKen, 3 B2 "7 By 2

- aw " " " —g"
Ye,3 = Bp * B3Weq,1MWe-1,2% BF Ye,a * B3 %, 17P2 Xoq,2 * S¢,3
Yed "Y1 Y ¥ 2™ %3

Ye, 5 “¥e,4 " Ye,37 %e,3 o

Let E{z) denote the coefficient generating function for the y's. Then

1-8,2 -8,z -By+8z ) O -311
(Bl ] Bu 2 1 1 [ Bn Bl) Bl 2 (B' Bl Br 2} 0 Bt
1783) 24852 ={1=f +i5+Bileebon ne s B4
]
Alz) = -gz -8%z 1 I g o
2 2 ) 1
__________ T Tn m—
)
=1 -1 0 I 0
]
]
]
i 0 0 1 V-1 -1

Note, that also lagged values of the x's occur. When we put

(g \

£
]
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the corresponding matrix of coefficients is

0 2 2 3
_pe 1 "
0 0 0 Bj-B5 By O B1-B) By O
- " " —amw 0 (o] -
B By 8y O -8y 0o o0 o
0 o-1t 0o 0 ©0 0 0 O
[ o ©o 0o 0o 0 -1 0 0 0

In order that the transformed model is non-collinear, we must have
observations on the x's for at least 11 periods.

When we restrict the values of the coefficients such that det A(z) £ 0,
|z] <1, and r[A(z), C(z)] =5 (which is equivalent to 18i| + |B§| ¥ ),
then it follows from theorems 2' and 3 that the sample size 13 is second-
order informative for the reduced form of the transformed system. The

rank conditions for the structural equations of the transformed system

are:
[ o 0 0 0 0 0 )
1 0 8! 0 0 0
rlMllzr =4“|B'{1+IBS|>O,
0o -8y o 83 © 0
“q 1 0 0 -1 0
L B 0 o o -1 |




A

r o -
1 B, O By O o o B,
0 0 0 0 0 o o o0
dM)] =r 0 1 -8% 85 84 0 ] 0 =4,
-1 0 1 0 o -1t 0 o©
[ 0o -1 -1 0 0 8§ <L 6
1 o -8, B, o 0 o0 B
0 1 -} B8 B8 © o @0
qmMy] =r 0 0 0 0 o o o o =4,
-1 -1 0 0 0o -t 0 ©
| o 0o -1 0 o 0o -1 0]

where equal columns are only written down once and we skipped columns of
zeros. Only the first condition restricts the range of some coefficients.
Thus the sample size 13 is now second-order informative for the parameters
of the transformed system. Apart from 86, the parameters of the original
system can be uniquely determined from the transformed system; hence they
are also identified. On the other hand, Bé is easily seen to be identified
conditional on all other parameters and so the original system is also

identified.
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