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1 INTRODUCTION 

Matrices were introduced to me as a one-year Master's level1949 course in New Zealand 

taught by an A.C. Aitken doctoral graduate. Two years later at Cambridge University's 

Statistics Laboratory, the 24-week mathematical statistics course made no use of matrices, 

not even in the teaching of the bivariate normal distribution or of multiple linear regression. 

This was a great surprise. But it is totally in line with similar comments from others, 

reported by Farebrother (1997), who also quotes Grattan-Guiness and Lederman (1994) as 

saying "the rise of matrix theory to staple diet has occurred only since the 1950s". 

Indeed, not even Aitken himself (much of whose research centered on both statistics 

and matrices) made a strong pitch for using matrices in statistics. Neither of his two books 

(Aitken 1939a and b), Determinants and Matrices and Statistical Mathematics, mentions 

the topic of the other, except for a snippet about quadratic forms in the matrix book. 

For someone having strong interests in both topics these are, surely, unexpected omissions. 

They have been motivation for my trying to trace a little of the infusion of matrices into 

statistics. It all seems remarkably recent when viewed against the longer history of matrices 

themselves. Of course, in trying to be an amateur historian one immediately comes face 

to face with the ocean of literature available, and the consequent near-impossibility of 
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assembling every detail and aspect of one's topic. Therefore there are assuredly gaping holes 

in what follows-and all that can be done is to apologize and ask for help for filling those 

holes. Circumscribed by such lacework, the paper is arranged under four main headings: 

origins, early uses, special topics, and books. 

2 THE ORIGINS OF MATRICES 

In his two-volume Men of Mathematics, Bell (1937, 1953, Vol. 2, pp. 441-443), at­

tributes the invention of matrices and their algebra to Cayley (1855, 1858). "Matrices" 

writes Bell, "grew out of the ... way in which the transformations of the theory of algebraic 

invariants are combined." For example, on substituting 

pz+q 
x=-­

rz+s 
into 

ax+b 
y=cx+d 

each coefficient of z and each non-z term in the resulting expression for y is a term in the 

matrix product 

[~ ~][~ ~]· 
However, Farebrother (1997) indicates that others in the eighteenth and nineteenth centuries 

may well have made greater although indirect contributions than did Cayley, a conclusion, 

he suggests that is supported by Grattan-Guiness (1994, p. 67). 

From that paper, Farebrother (1999) gives the following quote as evidence of the slow 

adaptation of matrices to statistics. 

"Matrix theory was not to emerge until quite late in the 19'th century and 

became prominent only from the 1920s. The papers by Farkas (1902), de la 

Valee Poussin (1911} and Haar (1924) are typical examples of the continuing 

slowness, for they explicitly worked with determinants but wrote out the matrix 

equations and inequalities longhand." 

Nowadays interest centers much more on matrices than determinants, but this was not 

always the case. The 4-volume history of determinants by Muir (1890, 1911, 1920 and 1923) 

attests to this, as does also the 3-volume work of Cullis (1913-1925) who worked with what 
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he called "determinoids", the extension of determinants to rectangular matrices using the 

Laplace expansion. 

This interest in determinants includes the contention that what is nowadays often called 

the direct, or Kronecker, product should be called the Zehfuss product, because for A®B = 

{aijB} Zehfuss (1858) has 

determinant(Aaxa ® Bbxb) = [determinant(A)]b[determinant(B)]a. 

Hensel (1891) promotes the name of Kronecker, resulting, no doubt, from his being a student 

in Berlin when Kronecker lectured there. But Muir (Zoe cit.) espouses the Zehfuss name 

as do Henderson et al. (1983) in their review of this matter. And, of course, whatever 

its name, the ® operator continues to be useful to statisticians as in Vartak (1955), for 

example; also, in calculating Jacobians in multivariate distributions, e.g., Henderson and 

Searle ( 1979) . 

A still current use for determinants, at least in some teaching of elementary econometrics, 

is the solving of linear equations by the somewhat outdated method of Cramer (1750). This 

solves Ax = y of x for the i'th element as IAi' 1/IAI where Af is A with its i'th column 

replaced by y. And, of course, a basic knowledge of determinants enables one to understand 

the elements of the inverse of a non-singular matrix. 

3 MATRICES ENTER STATISTICS IN THE 1930s 

With Gratton-Guiness (1994) having concluded (as previously quoted) that matrices 

"became prominent only from the 1920s", the year 1930 seems a good starting point for 

the entry of matrices into statistics. That was the year of volume 1 of the Annals of 

Mathematical Statistics, its very first paper, Wicksell (1930), being "Remarks on regression". 

Today that would undoubtedly be a welter of matrices; in 1930 the normal equations were 

solved using determinants. But two years later came the Turnbull and Aitken (1932) book 

with several applications of matrices to statistics, all of which are still important and widely 

used today: normal equations X'X/:J = X'y, and X'BX = X'By if errors are assumed to 

be not of "equal importance and uncorrelated"; and E(x' Ax) = tr(AV) for x rv (0, V) 
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obtained by what today is considered to be a very roundabout derivation. 

Then comes the Hotelling (1933) paper on principal components, a landmark both for 

its content and its matrix usage, although it does make reference to Kowalewski {1909) on 

determinants. Cochran {1934) is a next important milestone, dealing with the distribution 

of quadratic forms, and in the same year in Bartlett (1934) we find an early use in Britain 

of the word vector in a title-but no matrices in the paper. And the absence of matrices 

in Kolodziejczyk (1935) and in Welch (1935) is glaringly noticeable on today's standards; 

this is also true of Cochran (1938). All three of these papers deal with topics which lend 

themselves so easily to matrix representation, namely linear hypotheses and regression. 

But even the popular layman's book of that time, Mathematics for the Millions, Hogben 

(1936), has no index entry for determinants and only a single reference to matrix algebra, 

as being but one of several names used for "different ways of counting and measuring"! 

Contrarywise, Frazer, Duncan and Collar {1938) is a substantive book on matrices with 

virtually nothing in statistics but many applications in engineering, such as the oscillations 

of a triple pendulum (p. 310) and the disturbed steady motion of an aeroplane (p. 284). 

So the progress of matrices was slow. Infusion had begun, but the steeping was taking a 

long time. Nevertheless, it was to gain speed. 

Craig (1938) as a follow-on from Cochran {1934), was the first in a long line of papers (by 

many authors) continuing to the present day, dealing with the independence of quadratic 

forms of normally distributed variables (see Section 4.1). Aitken {1937, 1938) continued 

publishing matrix results that would be of later value to statistics but with no explicit 

mention of statistics. The Girshick (1939) and Lukomski {1939) papers used determinants, 

Yates and Hale {1939) could probably have used matrices (but did not) in their discussion 

of missing rows, columns or treatments from Latin squares; and Bishop {1939) used a 

determinant as a generalized variance but has nothing on matrices. But the year 1939 

ended with a flourish: the publication of Aitken's two books referred to at the beginning of 

this paper. 
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4 SPECIAL TOPICS 

This section briefly describes some of the progress that matrices have made into certain 

statistical topics. The choice of topics is undoubtedly personal and the selection of references 

is certainly not complete. 

4.1 Quadratic forms 

Turnbull and Aitken (1932) show how to use a canonical form of a (symmetric) ma­

trix to reduce a quadratic form to a sum of squares. Later, as already mentioned, Craig 

(1938) was an initial paper on the independence of quadratic forms (of "certain estimates 

of variance", actually), followed by Craig (1943) on "certain quadratic forms". In between, 

Hsu (1940) touched on the subject, Aitken (1940) dealt with the independence of linear 

and quadratic forms, and a decade later, Aitken (1950) dealt with the independence of two 

quadratic forms. Marten (1949) also contributes. The necessity condition for independence 

is still a hot topic; Searle (1971) gets it wrong. Graybill (1976) avoids the issue, Driscoll et 

al. (1986, 1988, 1995) have several proofs, Harville (1997) has a proof and Styan (1998) is 

known to be working on yet another proof. Lancaster (1956) confines attention to traces 

and cumulants. 

4.2 Multivariate statistics 

This branch of statistics has spawned more matrix activity than any other except, 

perhaps, for linear models. 

Wilks (1932) uses lots of determinants in his work on the multiple correlation coefficient; 

but he uses almost no matrices and certainly no matrix algebra. In contrast, Lederman 

(1940) deals with a matrix problem arising from factor analysis. And Bartlett (1941) 

and Hsu (1941) in their discourses on canonical correlations use matrices aplenty. Bartky 

(1943) uses matrices sparingly, but including I+ M + M2 + · · · = (I- M)- 1 without 

proof or a reference thereto. Bartlett (1947) makes considerable use of matrices in his 

long "Multivariate Statistics" paper wherein he writes that he has "avoided complicated 

analytical discussion of theory" but has made use of "matrix and vector algebra". In doing 
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so, there is reference to Bartlett (1934) and to a paper by Tukey, "Vector methods in analysis 

of variance", described as having been on the programme at Princeton, November 1, 1946. 

From this time on, matrices gather momentum towards becoming standard notation 

for multivariate statistics, peaking in the classic book by Anderson (1958), and continuing 

through to the present day in numerous books and papers, including the start of the Journal 

of Multivariate Analysis in 1971. 

A matrix operation of particular use in multivariate statistics is the vectorizing of a 

matrix: writing its columns one under the other in one long vector. Its origin goes back to 

a Cambridge and London contemporary of Cayley, namely Sylvester (1884), and it is now 

usually called vee. It, and vech, an adaptation of vee to symmetric matrices developed in 

Searle (1978), are considered at length in Henderson and Searle {1979, 1981). A recent use 

is Wong and Li (1997). 

Two important features of multivariate analysis are eigenroots and eigenvectors (known 

originally as latent roots and latent vectors-see Farebrother, 1997, p. 9, for interesting 

comment). Whatever their name they are matrix characteristics which feature frequently 

in multivariate literature. Early examples are Hsu {1940) on analysis of variance, Anderson 

{1948), Geary (1948) and Whittle (1953) in dealing with time series, with continuing interest 

through to Mallows (1961), concerned with "latent vectors of random symmetric matrices", 

and Shi (1997) having a section on "perturbation theory of eigenvalues and eigenvectors of 

a real symmetric matrix." 

4.3 Solving normal equations of full rank 

Normal equations derived from applying least squares to multiple regression data are 

usually of full rank. According to Kruskal and Stigler (1997, pp. 91-2) they have had 

that name since Gauss (1822). Their derivation and numerical solution have always been a 

source of great concern. Some early publications presenting normal equations are Wicksell 

(1930), Aitken and Silverstone (1942) and Bacon {1938) -all of whom use no matrices; but 

of course Turnbull and Aitken (1932) do. Until the acceptance of matrix inverses, methods 

for solving normal equations, being, as they are, just simultaneous linear equations, were 
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simply successive elimination with back substitution~r the Cramer's (1750) method using 

determinants as described previously. 

Despite its algebraic clarity, the use of a matrix inverse initially posed considerable 

arithmetic difficulty. Although today's computers now make light work of that arithmetic, 

that has come about in only the last forty years; and it is accomplished at speeds that were 

utterly unimaginable then. During graduate student days in a small computing group at 

Cornell, there was great excitement when in 1959 we inverted a 10-by-10 matrix in seven 

minutes. After all, only a year or two earlier a friend had inverted a 40-by-40, by hand, using 

electric (Marchant or Monroe) calculators. That took six weeks! So it is understandable 

that statisticians were interested in computational techniques for inverting matrices-and 

they still are, for that matter, although at a much more sophisticated level than in the 

pre-computer days. An early beginning to those days was the Doolittle system for doing, 

and setting out, the individual calculations. The date and location of the publication of 

this system is perhaps surprising: Doolittle (1878) in the U.S. Coast and Geodetic Report 

(1878}, pages 115-120. Numerous abbreviations, improvements and comments followed, 

in a variety of publications, including in the statistical literature Horst (1938) and Dwyer 

(1941a, 1941b, 1944). In his 1944 paper, Dwyer wrote "The reader should be familiar with 

elementary matrix theory such as that outlined on pages 1-57 of Aitken's book" (1939a). 

An alternative approach was Bingham (1941) using the Cayley-Hamilton theorem and then 

Newton's equations. Other contributions included Hotelling (1943), Quenouille (1940), Fox 

(1950) and Fox and Hayes (1951). The arrival of computers soon put paid to these pencil­

and-paper based methods, which by then had collected other variants of Doolittle such as 

abbreviated Doolittle, Grout-Doolittle, and so on. 

4.4 Design of experiments 

In the 1950s a widely used-book on experiment design was Cochran and Cox (1950, 

2nd ed.); it has but one, brief, mention of matrices, related to regression. But only a 

year later Box and Wilson (1951) make substantial use of matrices for normal equations, 

their solution and resulting sums of squares. Likewise, Tocher (1952) has solid matrix 
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usage. Both papers give, for order n, (I+ aJ)- 1 = I- aJ/(1 +an); and Tocher extends 

this to (I+ A® J)-1 =I- [(I+ nA)-1 A]® J. This is an example of a class of designs 

involving its own special matrices. There are many other examples, one of the most extensive 

being factorial designs, for which Cornfield and Thkey (1956) developed far-reaching use of 

Kronecker (or direct) products of matrices for fixed effects models. Searle and Henderson 

(1979) extended this to the dispersion matrix for models involving random effects. Another 

example is Latin squares, for which Yates and Hale (1939) could have benefited from using 

matrices-but they did not. But Cox (1956) certainly did-in abundance. Design features 

involving circulant matrices include autocorrelation and spectral density functions (Wise, 

1955), circular stationary models (Olkin and Press, 1969) and partial factorial balance 

(Anderson, 1972); for these Searle (1979) gives methods for inverting circulants of two and 

three non-zero elements per row. Block designs have always been a fertile field for the use 

of matrices (although, of course, Fisher made no use of them), two papers in the 1980s 

being John and Williams (1982) on optimal designs and Constantine (1983) on balanced 

incomplete block designs. And the use of matrices continues apace in this area. 

4.5 Linear models 

H.O. Hartley makes an interesting comment in the published discussion of Tocher 

(1952, p.96), suggesting that it was Barnard who introduced the unifying principle of de­

veloping "analysis of variance by analogy to regression analysis". This is, of course, the 

vital connection for what used to be called "fitting constants" and is now usually known 

as linear models. It is the foundation on which enormous numbers of research papers have 

been built-and also, numerous books, so many in fact that commenting on them is well 

beyond the scope of this paper. And certainly during the last forty or more years, all of 

them use matrices as the lingua franca. The earliest book to do so seems to be Kempthorne 

(1952). Nevertheless, seven years later the Williams' (1959) book on regression had only a 

tiny mention of matrices. 

One of the greatest contributions to understanding the apparent quirkiness of normal 

equations of non-full rank (as is customary with linear models), which have an infinity of 
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solutions, is due to Rao (1962). Using the work of Moore (1920) and Penrose (1955), he 

showed how a generalized inverse matrix yields a solution to the normal equations, and how 

that solution can be used to establish estimable functions and their estimators-and these 

results are invariant to whatever generalized inverse is being used. Although the arithmetic 

of generalized inverses is scarcely any less than that of regular inverses, the use of generalized 

inverses is of enormous help in understanding estimability and its consequences. 

4.6 Other topics 

Of the many other topics and places where matrices have contributed substantially to 

statistics, a few are mentioned briefly here. 

4.6.1 Probability theory and Markov Chains 

Back-to-hack papers using matrices for branching processes and queuing processes are 

Hammersley and Morton (1954) and Bailey (1954). More recently, generalized inverse 

matrices (so useful to linear models) have been incorporated by Hunter (1982, 1988 and 

1990) into applications of applied probability and of Markovian kernels. They also play 

an important role in his book, Hunter {1983), its fourth chapter, "Matrix Techniques", 

constituting some 20% of the book. 

4.6.2 Age distribution vectors 

When the proportions (or numbers) in different age groups of an animal population 

are arrayed in a vector it is an age distribution vector, Lewis (1942). That vector is seldom 

constant over time. Leslie (1945, 1948), by using age-specific birth rates as the first row of 

a matrix, and age-specific survival rates as the sub-diagonal of that matrix (now called a 

Leslie matrix) shows how pre-multiplying an age-distribution vector for time t by a Leslie 

matrix yields (deterministically) the age distribution vector at time t + 1. In a practical 

application of this, using monthly Leslie matrices and a killing (diagonal) matrix, Darwin 

and Williams (1964) adapt this procedure to ascertain optimum months of the year for 

poisoning rabbits on New Zealand farms. Rabbits there are a seriously overpopulated pest, 
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consuming grass needed for producing meat, wool and milk which sustain the country's 

economy through exports. 

4.6.3 Random effects in linear models 

In regression, and in the earliest use of linear models for ''fitting constants", the ele­

ments of {3 in y = X/3 + e were deemed to be constants, or fixed effects. But in the 1940s 

geneticists, in particular, wanted to include in {3 random variables (or more truthfully, re­

alized but unobservable values of random variables) representing genetic worth of animals 

whose production records were to be analyzed. These soon came to be called random ef­

fects. Incorporating them into y = X/3 + e solely by having var( e) be something other than 

u 21 (to include the variance structure of the random effects) made it impossibly difficult to 

estimate both the fixed effects and the variances of the random effects. Thus was born the 

representation 

E(y) = X/3 + Zu (1) 

where {3 contains the fixed effects and u the random effects, with X and Z being the 

corresponding incidence matrices. This simple, matrix motivated rewriting of the model 

has been of tremendous value, and is the basis for a vast array of papers and book chapters. 

A particularly valuable extension of Zu in (1) is that of Zu = ~Ziui where each Ui has 

all the random effects occurring in the data of a single (main effect or interaction) factor. 

This was initiated by Hartley and Rao (1967) and with var(ui) = ufl and cov(ui, ~) = 0 

for i i= t, it enabled them to derive equations for maximum likelihood (under normality) 

estimation of both {3 and the variances u~. This was a major breakthrough in the problem 

of estimating variance components, and has become a standard estimation procedure. 

4.6.4 Estimating genetic worth 

Programs for improving the genetic worth of an animal species through planned matings 

often include estimating the genetic worth of an untried animal from records of its ances­

tors. Searle (1963), shows that the correlation between genetic worth and an ancestor-based 

estimate of it is of the form x' A -lx where x' is closely related to rows of A. As a result, 
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through knowing how elements of A - 1 involve cofactors and the determinant of A, a re­

currence relationship for the correlation (based on the number of generations of ancestors) 

was established. Conclusions are that going beyond grandparents contributes very little to 

one's estimate of the untried animal. (Horse-racing enthusiasts wanting to buy an untried 

yearling should take heed!) 

4.6.5 Inverting A + UBV 

The matrix A + UBV arises in various forms in statistics. For example, one special 

case is the dispersion matrix D(p)- pp' for a multinomial random variable, where pis a 

vector of probabilities and D (p) is the diagonal matrix of elements of p. It also occurs as an 

intraclass correlation matrix (1-p)l+pJ, it arises as discriminant analysis, Bartlett (1951), 

and it turns up when elements of a matrix are altered, Sherman and Morrison (1950). 

What is interesting about the inverse of A + UBV is that although 

as the standard result is widely known, there are many variations of it, as well as numerous 

special cases. Henderson and Searle (1981) give a number of these as well as much of the 

history. They and Harville (1997) also deal with generalized inverses. 

4.6.6 Partitioned inverses 

The value of generalized inverses in linear models analysis has already been mentioned. 

They are particularly useful when dealing with partitioned models E(y) = Xtf31 + X2(32. 

For 

Q' ~ [ ~ ~ r ~ [ :- ~ l + [ -~-B l (D-CA -Bn-cA- I]. (2) 

Q* is a generalized inverse of Q provided, for r(Q) being the rank of Q, 

r{Q) = r(A) + r(D- CA-B), (3) 

as in Marsaglia and Styan {1974). For non-singular Q the generalized inverse Q- becomes 

the regular inverse Q-1. In the case of Q = X'X for X= [X1 X2], the rank condition 

11 



{3) always holds, and Q* = Q-. The use of Q- in providing /3 = Q-X'y then leads 

immediately to very useful results such as 131 , 132 and R(,131 l,132), the reduction in sum of 

squares for fitting ,131 adjusted for ,132 . 

5 Books 

Tracing the intermingling of matrices and statistics in published books could be a long 

process. It will here be brief, in terms of a dichotomy: the occurrence of matrices in statistics 

books, and of statistics in matrix books. 

Fisher ( 1935 et seq) had no matrices in any of its numerous editions. Many sets of 

numbers are laid out in rectangular arrays, but they are designs, not matrices. Snedecor 

{1937), Kendall {1943-1952), Mood {1950), and Mood and Graybill (1963) had either no 

matrices or almost none, but by Kendall and Stuart {1958, Vol. I, 1st Ed.), their Chapters 

15 and 19 had matrix notation for the multi-normal distribution, for quadratic forms, and 

for least squares. But the Snedecor book took much longer to join the matrix crowd. It is 

in Snedecor and Cochran {1989, 8th Ed.), where the preface heralds the arrival of matrices 

with the following near-apologia: 

" A significant change in this edition occurs in the notation used to describe the 

operations of multiple regression. Matrix algebra replaces the original summa­

tion operators, and a short appendix on matrix algebra is included." 

Cramer {1946) was early in having a whole chapter "Matrices, determinants and quadratic 

forms", referencing Cochran {1934) for the last of those three topics. But Kempthorne 

{1952) and Rao (1952) seem to be the first books having substantial sections in matrix no­

tation and making considerable use of matrix algebra. Rao (1952) begins with some thirty 

pages of matrices, having written in his preface "The problems of multivariate analysis re­

solve themselves into an analysis of the dispersion matrix and reduction of determinants." 

Thereafter came Anderson (1958), Rao {1965), Searle {1971), Graybill (1976), Seber (1977), 

Hocking (1997) and many others too numerous to mention, all using matrices extensively. 

So do Katz et al. {1985) in the Encyclopedia of Statistical Sciences (Vol. 5) and the Ency-
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clopedia of Biostatistics, the latter having "Matrix Algebra" as a major entry. 

Now to the occurrence of statistics in matrix books. Those by Frazer et al. (1938), 

Aitken (1939a) and Ferrar (1941) have no statistics. Bellman (1960) has two chapters (10%) 

on Markov matrices and probability theory. And the Graybill (1969, 1983) books have 

plenty of statistics, as one would expect from their titles. The same is true of Searle (1982) 

and Magnus and Neudecker {1988), also of Harville (1997) which is very comprehensive, 

and of Schott {1997) which is at a more elementary level with but a modest amount of 

statistics. 

Then there are the specialized books on generalized inverses, three in the same year: 

Pringle and Rayner {1971), Rao and Mitra (1971), both with plenty of statistics, and 

Boullion and Odell {1971) with a modest tilt to statistics. Shortly thereafter came Ben­

Israel and Greville {1974) with virtually none. There are also specialty books on matrix 

calculus, Rogers {1980) with little statistics, and Magnus and Neudecker {1988) with plenty. 

Whilst this incursion of statistics in matrix books was taking place, we can note that 

it was also happening in linear algebra journals. In Linear Algebra and its Applications 

(begun in 1968 and then referred to as LAA) and Linear and Multilinear Algebra (started 

1972) the early issues showed little evidence of statistics, whereas nowadays there is quite a 

good representation of statistics. In particular, LAA periodically now has special issues on 

matrices and statistics; the 1990 such issue had 650 pages. Many papers in these issues stem 

from the new almost annual meeting of the Workshop on Matrices and Statistics. Started 

in 1990, the only years of this decade in which the workshop has not met are 1991 and 1993. 

So matrices in statistics are alive and well. 

OMISSIONS 

To those whose work has not been mentioned, my apologies. For a hint at the vastness 

{in both time and geography) of the literature, they are referred to Puntanen and Styan 

(1988). It has 1,596 literature references on matrices and statistics; and many many more 

have been added in supplements during the last eleven years. 
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