
The Inhabitation Problem for Non-idempotent

Intersection Types

Antonio Bucciarelli1, Delia Kesner1, and Simona Ronchi Della Rocca2

1 Univ Paris Diderot, Sorbonne Paris Cit, PPS, UMR 7126, CNRS, Paris, France
2 Dipartimento di Informatica, Università di Torino, Italy

Abstract. The inhabitation problem for intersection types is known to
be undecidable. We study the problem in the case of non-idempotent
intersection, and we prove decidability through a sound and complete
algorithm. We then consider the inhabitation problem for an extended
system typing the λ-calculus with pairs, and we prove the decidability
in this case too. The extended system is interesting in its own, since it
allows to characterize solvable terms in the λ-calculus with pairs.

1 Introduction

Intersection types have been presented in the literature in many variants. His-
torically, one of the first versions is the one characterizing solvable terms, that
we call system C, shown in Fig. 1 [6,15]. Intersection enjoys associativity, com-
mutativity, and in particular idempotency (A ∧ A = A). Given a type A and a
typing environment Γ , the problem of deciding whether there exists a term t

such that Γ � t : A is provable, is known in the literature both as emptiness
problem and as inhabitation problem. The inhabitation problem for system C has
been proved to be undecidable by Urzyczyn [21]. Van Bakel [23] simplified the
system, using strict types, where intersection is not allowed on the right side of
the arrow; his system S is presented on the left part of Fig. 2, where intersec-
tion is naturally represented through set formation, and the universal type ω
by the empty set. The right part of the figure presents the relevant version of
S, Sr, a system being relevant if and only if, in its provable judgments, typing
environments only contain the consumed premises. The systems C, S and Sr are
equivalent with respect to the typability power (neglecting the universal type
ω). Urzyczyn’s proof of undecidability of the inhabitation problem for system
C can be easily adapted to system S. Moreover, the inhabitation problem for C
seems to reduce to that for Sr, proving that the latter is undecidable too [22], so
that relevance has nothing to do with the hardness of the inhabitation problem.

In this paper we consider the type assignment system M, which is a variant
of Sr, where idempotency of intersection has been removed, and we prove that
its inhabitation is decidable, by exploiting the fact that in this case types keep
track faithfully of the different uses of variables in terms. SystemM characterizes
terms having head normal form, so we design a sound and complete algorithm,
that, given a typing environment Γ and a type σ, builds a set of approximate

J. Diaz et al.(Eds.): TCS 2014, LNCS 8705, pp. 341–354, 2014.
c© IFIP International Federation for Information Processing 2014

342 A. Bucciarelli, D. Kesner, and S. Ronchi Della Rocca

x : A ∈ Γ

Γ � x : A
(var)

Γ � t : ω
(ω)

Γ, x : A � t : B

Γ � λx.t : A → B
(→ I)

Γ � t : A → B Γ � u : A

Γ � tu : B
(→ E)

Γ � t : A Γ � t : B

Γ � t : A ∧ B
(∧I) Γ � t : A1 ∧ A2

Γ � t : Ai (i = 1, 2)
(∧E)

Types: A ::= α | ω | A → A | A ∧ A Typing environments: Γ ::= ∅ | Γ, x : A x �∈ dom(Γ)

Fig. 1. System C

x : A ∈ Γ σ ∈ A

Γ � x : σ
(var)

x : {σ} � x : σ
(varr)

Γ, x : A � t : τ

Γ � λx.t : A → τ
(→ I)

Γ, x : A � t : τ

Γ � λx.t : A → τ
(→ I)

Γ � t :{σi}i∈I → τ (Γ � u : σi)i∈I

Γ � tu : τ
(→E)

Γ � t :{σi}i∈I → τ (Δi � u : σi)i∈I

Γ ∪i∈I Δi � tu : τ
(→Er)

Types: Typing environments:
σ ::= a | A → σ (strict types) Γ ::= ∅ | Γ, x : A x �∈ dom(Γ)
A ::= ∅ | {σ} | A ∪ A (set types) (Γ ∪Δ)(x) = Γ (x) ∪Δ(x)

Fig. 2. Systems S and Sr

normal forms from which all and only the head normal forms t such that Γ � t :
σ can be generated. Then we extend the system, and consequently the language,
in order to consider pairs and projections. We obtain a new system P which
characterizes the (suitably defined) solvability in the extended calculus Λπ, and
we prove that inhabitation is decidable also for this extension.

In the last years, growing interest has been devoted to non idempotent inter-
section types, since they allow to reason about quantitative properties of terms,
both from a syntactical and a semantic point of view. In fact, system M is
not new: it is the well known system R of De Carvalho [5], and it is an in-
stance of the class of the essential λ-models defined in [20], which supplies a
logical description of the strongly linear relational λ-models. Some other type
assignment systems with non-idempotent intersection have been studied in the
literature, for various purposes: to compute a bound for the normalization time
of terms [7]), to supply new characterizations of strong normalization [3,12], to
study type inference [14,17], to study linearity [13], to characterize solvability
in the resource λ-calculus [19,18]. Moreover intersection without idempotency,
commutativity nor associativity, has been used to study the game semantics of
a typed λ-calculus [8]. A unified model-theoretic approach covering both the
relevant and non-relevant cases, and unveiling the relations between them, is
presented in [9]. Returning to the inhabitation problem, various restrictions of
the classical intersection types system have been shown to have decidable in-
habitation [16,4]. The approach is substantially different from that used in this

The Inhabitation Problem for Non-idempotent Intersection Types 343

work, since in all cases intersection is idempotent, and the decidability is ob-
tained by restricting the use of rules (∧I) and (∧E), so that the corresponding
type assignment does not characterize interesting classes of terms, anymore.

2 The Type Assignment System M
In this section we consider a relevant type system for the λ-calculus having
strict intersection types that enjoy associativity and commutativity, but not
idempotency. In order to emphasize this last property we represent intersections
as multisets of types.

We recall that terms and contexts of the λ-calculus are generated by the
following grammars, respectively:

t, u, v ::= x | λx.t | tu C ::= � | λx.C | Ct | tC

Given a context C and a term t, C[t] denotes the term obtained by replacing the
unique occurrence of � in C by t, allowing the capture of free variables of t. The
β-reduction is given by the rule (λx.t)u →β t{u/x} where t{u/x} denotes the
capture free replacement of x by u in t.

Let us recall the notion of head-normal forms (hnf), which is the syntactical
counter part of the well known notion of solvability for the λ-calculus. A λ-term
is in hnf if it is generated by the following grammar J , it has hnf if it β-reduces
to a hnf.

J ::= λx.J | K K ::= x | Kt

Definition 1

1. The set T M of types is defined by the following grammar:

σ, τ, ρ ::= α | A → τ (types)
A ::= [σi]i∈I (multiset types)

where α ranges over a countable set of base types and I is a finite, possibly
empty, set of indices.

2. Typing environements, or simply environments, written Γ,Δ, are functions
from variables to multiset types, assigning the empty multiset to almost all
the variables. The domain of Γ , written dom(Γ), is the set of variables whose
image is different from [].

3. A typing judgement is a triple of the form Γ � t : A. The type system M
is given in Fig. 3. If Π is derivation with conclusion Γ � t : σ we write
Π
 Γ � t : σ, and call t the subject of Π. The measure of a derivation
Π, written meas(Π), is the number of rule applications in Π. By abuse
of notation, Γ � t : σ also denotes the existence of some derivation with
conclusion Γ � t : σ.

4. A derivation Π is a left-subtree of a derivation Σ if either Π = Σ or Π
Δ �
u : σ is the major premise of Σ′
Δ+i∈I Δi � uv : τ and Σ′ is a left-subtree
of Σ.

344 A. Bucciarelli, D. Kesner, and S. Ronchi Della Rocca

Given {Γi}i∈I , +i∈IΓi is the environment mapping x to �i∈IΓi(x), where �
denotes multiset union, where the resulting environment is the one having empty
domain for I = ∅. The notations Γ +Δ and Γ +i∈I Δi are just particular cases
of the previous one. Γ \ x is the environment assigning [] to x, and acting as Γ
otherwise; x1 : A1, . . . , xn : An is the environment assigning Ai to xi, for 1 ≤ i ≤ n,
and [] to any other variable.

x : [ρ] � x : ρ
(var)

Γ � t : ρ

Γ \ x � λx.t : Γ (x) → ρ
(→ I)

Γ � t : [σi]i∈I → ρ (Δi � u : σi)i∈I

Γ +i∈I Δi � tu : ρ
(→ E)

Fig. 3. The type assignment system M for the λ-calculus

Rule (→ E) enables the typability of non strongly normalizing terms, when
I = ∅. For example x : [[] → α] � x((λy.yy)(λy.yy)) : α , where the outermost
application is typed neglecting its unsolvable argument. This feature is shared
by all the intersection type systems characterizing solvability. The same holds
for the fundamental subject reduction property: if Π
 Γ � t : σ and t →β u,
then Π ′
 Γ � u : σ. What is peculiar to M is the fact that the size of Π ′ is
strictly smaller than that of Π , whenever the reduction t →β u takes place in
an occurrence of t which is typed in Π . This property, stated in Thm. 1.1 below,
allows for an original, combinatorial proof of the fact that typed terms do have
hnf.

Definition 2

– The set o(t) of occurrences of t is the set of contexts C such that there exists
a term u verifying C[u] = t, u being the subterm of t at the occurrence C.

– Given Π
 Γ � t : σ, the set to(Π) ⊆ o(t) of typed occurrences of t in Π is
defined by induction on meas(Π) as follows:

• to(Π) = {�} if Π is an istance of the axiom.
• to(Π) = {�} ∪ {λx.C | C ∈ to(Π ′)} if the subject of Π is λx.t and Π ′

is the subderivation of Π typing t.
• to(Π) = {�} ∪ {Cu | C ∈ to(Π ′)} ∪ (

⋃
i∈I{tC | C ∈ to(Π ′

i)}) if the
subject of Π is tu, Π ′ is the subderivation of Π typing t, and Π ′

i, for
i ∈ I, are the sub-derivations of Π typing u.

– Given Π
Γ � t : σ, we say that t is in Π-normal form if for all C ∈ to(Π),
the subterm of t at the occurrence C is not a redex.

The Inhabitation Problem for Non-idempotent Intersection Types 345

Theorem 1

1. (Subject reduction) Π
 Γ � t : σ and t →β u imply Π ′
 Γ � σ where
meas(Π ′) ≤ meas(Π). Moreover, if the reduced redex is typed in Π, then
meas(Π ′) < meas(Π).

2. (Characterization) Γ � t : σ if and only if t has hnf.

Proof. For 1 see [20] and for 2 see [5].

3 Inhabitation for System M
The system M allows to type a term without giving types to all its subterms
through the rule (→ E) in case I = ∅. So in order to reconstruct the subject
of a derivation we need a notation for these untyped subterms. We will use the
standard notion of approximate normal form [1], which can be defined through
the following grammar:

a, b, c ::= Ω | N N ::= λx.N | L L ::= x | La

Approximate normal forms are ordered by the smallest contextual order ≤
such that Ω ≤ a, for all a. We write a ≤ t when the term t is obtained from a

by replacing all the occurrences of Ω by terms.
Let A(t) = {a | ∃u t →∗

β u and a ≤ u} be the set of approximants of the
λ-term t, and let

∨
denote the least upper bound w.r.t. ≤. We write ↑i∈I ai

to denote that
∨
{ai}i∈I does exist. It is easy to check that, for every t and

a1, . . .an ∈ A(t), ↑i∈{1,...,n} ai. An approximate normal form a is a head subterm
of b if either b = a or b = cc′ and a is a head subterm of c. System M gives
types to approximate normal forms, by simply assuming that no type can be
assigned to the constant Ω. It is easy to check that, if Γ � a : σ and a ≤ b (resp.
a ≤ t) then Γ � b : σ (resp. Γ � t : σ). Given Π
 Γ � t : τ , where t is in
Π-normal form, we denote by A(Π) the minimal approximant b of t such that
Π
 Γ � b : τ . Formally,

Definition 3. Given Π
Γ � t : σ, where t is in Π-normal form, A(Π) ∈ A(t)
is defined by induction on meas(Π) as follows:

– If Π
 Γ � x : ρ, then A(Π) = x.
– If Π
 Γ � λx.t : A → ρ follows from Π ′
 Γ, x : A � t : ρ, then A(Π) =

λx.A(Π ′), t being in Π ′-normal form.
– If Π
 Γ = Γ ′ +i∈I Δi � tu : ρ follows from Π ′
 Γ � t : [σi]i∈I → ρ and

(Π ′
i
Δi � u : σi)i∈I , then A(Π) = A(Π ′)(

∨
i∈I A(Π ′

i)) (remark that t is in
Π ′-normal form, u if in Π ′

i-normal form, for all i ∈ I, and that ↑i∈I A(Π ′
i),

since A(Π ′
i) ∈ A(u), for all i ∈ I).

Remark that, in the final item of the definition above, the approximate normal
form corresponding to the case I = ∅ is A(Π ′)Ω.

A simple induction on meas(Π) allows to show the following:

Proposition 1. If Π
 Γ � t : σ and t is in Π-normal form, then Π
 Γ �
A(Π) : σ.

346 A. Bucciarelli, D. Kesner, and S. Ronchi Della Rocca

3.1 The Inhabitation Algorithm

The inhabitation rules are given in Fig. 4. The algorithm, given an environment
Γ and a type σ, builds the set T(Γ, σ) containing all the approximate normal
forms a such that there exists a derivation Π
 Γ � a : σ, with a = A(Π), then
stops. The algorithm uses two auxiliary predicates, namely TI(Γ, [σi]i∈I) and
HΔa (Γ, σ)
 τ . The set TI(Γ, [σi]i∈I) contains all the approximate normal forms
a =

∨
i∈I ai such that Γ = +i∈IΓi, ai ∈ T(Γi, σi) for all i ∈ I, and ↑i∈I ai.

Finally, HΔa (Γ, σ)
 τ contains all the approximate normal forms b such that a is
a head subterm of b, and such that if a ∈ T(Δ,σ) then b ∈ T(Γ +Δ, τ).

a ∈ T(Γ + (x : A), τ) x /∈ dom(Γ)

λx.a ∈ T(Γ, A → τ)
(Abs)

(ai ∈ T(Γi, σi))i∈I ↑i∈I ai∨

i∈I

ai ∈ TI(+i∈IΓi, [σi]i∈I)
(Union)

a ∈ H
x:[σ]
x (Γ, σ) � τ

a ∈ T(Γ + (x : [σ]), τ)
(Head)

σ = τ

a ∈ H
Δ
a (∅, σ) � τ (Final)

Γ = Γ0 + Γ1 b ∈ TI(Γ0, A) a ∈ H
Δ+Γ0
cb (Γ1, σ) � τ

a ∈ H
Δ
c (Γ, A → σ) � τ

(Prefix)

Fig. 4. The inhabitation algorithm for the λ-calculus

Notice the particular case I = ∅ in (Union), which gives Ω ∈ TI(∅, []), where
∅ denotes the environement having empty domain. The algorithm is not an
obvious extension of the classical inhabitation algorithm for simple types [2,10].
In particular, when restricted to simple types, it reconstructs all the normal
forms inhabiting a given type, while the original algorithm reconstructs just the
long η-normal forms. This is achieved thanks to a non deterministic behaviour,
illustrated in the Example 1.1 below.

Example 1

1. Let Γ = ∅ and σ = [[α] → α] → [α] → α. Given input (Γ, σ), the algorithm
can have the following two behaviours:

(1) Choosing the sequence of rules: (Abs), (Abs), (Head), (Prefix), (Final)
the final approximant is λxy.xy;

(2) Choosing the sequence of rules: (Abs), (Head), (Final) the final approxi-
mant is λx.x.

2. Let Γ = ∅ and σ = [[] → α] → α. Given input (Γ, σ), by the sequence of
rules: (Abs), (Head), (Prefix), ((Union), (Final)) we obtain λx.xΩ.

The Inhabitation Problem for Non-idempotent Intersection Types 347

Definition 4. In order to show that the inhabitation algorithm terminates, we
define a measure on types and environments, as follows:

#(α) = 1 #([σi]i∈I) =
∑

i∈I #(σi) + 1
#(A → ρ) = #(A) + #(ρ) + 1 #(Γ) =

∑
x∈dom(Γ) #(Γ (x))

The measure is then be extended to the judgements of the algorithm:
#(T(Γ, ρ)) = #(HΔb (Γ, ρ)
 τ) = #(Γ) + #(ρ)
#(TI(Γ, A)) = #(Γ) + #(A)

Lemma 1 (Termination). The inhabitation algorithm terminates.

Proof Hint. To each call C ∈ {T(,), TI(,), H (,)
 } of the algorithm, we
associate a tree TC as follows: nodes are labeled with elements of C. A node n′

is a son of n iff there exists some instance of a rule having n as conclusion and
n′ as premise. Thus, all possible runs of C are encoded in the tree TC , which
is finitely branching. Moreover, it is easy to see that the measure #() strictly
decreases along the branches of TC , so that every branch has finite depth. Hence,
TC is finite by König’s Lemma, i.e. the algorithm terminates.

Soundness and completeness of the inhabitation algorithm follow from the
following Lemma, relating typings of approximate normal forms in system M
and runs of the algorithm:

Lemma 2. a ∈ T(Γ, σ) ⇔ ∃Π
 Γ � a : σ such that a = A(Π).

Proof. (⇒): We prove the following statements, by induction on the rules in
Fig. 4:

a) a ∈ T(Γ, σ) ⇒ ∃Π
 Γ � a : σ such that a = A(Π).
b) a ∈ TI(+i∈IΓi, [σi]i∈I) ⇒ ∃(Πi
 Γi � ai : σi)i∈I such that ai = A(Πi), for

i ∈ I, ↑i∈I ai and a =
∨

i∈I ai.
c) a ∈ HΔb (Γ, σ)
 τ ⇒ there exists a function F associating to each derivation

Σ
 Δ � b : σ such that b = A(Σ), a derivation Π
 Γ +Δ � a : τ such that
a = A(Π).

If λx.a ∈ T(Γ, A → τ) follows from a ∈ T(Γ + (x : A), τ) by (Abs), then we
conclude by the i.h.(a) and by an application of (→ I).

If
∨

i∈I ai ∈ TI(+i∈IΓi, [σi]i∈I) follows from (ai ∈ T(Γi, σi))i∈I and ↑i∈I ai by
(Union), then by i.h.(a), there exist (Πi
 Γi � ai : σi)i∈I such that for all i ∈ I,
ai = A(Πi), and we are done.

If a ∈ T(Γ + (x : [σ]), τ) follows from a ∈ H
x:[σ]
x (Γ, σ)
 τ by (Head), then the

i. h. (c) provides a function associating to each derivation Σ
 x : [σ] � x : σ a
derivation Π
Γ + x : [σ] � a : τ such that a = A(Π), since x = A(Σ). Applying
this function to the unique derivation of x : [σ] � x : σ, we get the suitable typing
of a.

If a ∈ HΔa (∅, σ)
 τ follows from σ = τ by (Final), then the identity function
satisfies the requirements of (c).

348 A. Bucciarelli, D. Kesner, and S. Ronchi Della Rocca

Finally, if a ∈ HΔc (Γ0 + Γ1, A → σ)
 τ follows from b ∈ TI(Γ0, A) and a ∈
HΔ+Γ0
cb (Γ1, σ)
 τ by (Prefix), then we have to provide a function F associating

to each derivation Σ
 Δ � c : A → σ such that c = A(Σ), a derivation Π

Δ + Γ0 + Γ1 � a : τ such that a = A(Π). To begin with, the i.h.(b) applied to
b ∈ TI(Γ0, A) provides a family of derivations (Πi
 Γ i

0 � bi : σi)i∈I such that
bi = A(Πi), Γ0 = +i∈IΓ

i
0, A = [σi]i∈I , ↑i∈I bi and b =

∨
i∈I bi. Rule (→ E)

with premises Σ and {Πi}i∈I , gives a type derivation Π ′
 Δ + Γ0 � cb : σ,
such that cb = A(Π ′). Then, the i.h.(c) applied to a ∈ HΔ+Γ0

cb (Γ1, σ)
τ provides
a function F ′ such that F ′(Π ′)
 Δ + Γ0 + Γ1 � a : τ and a = A(F ′(Π ′)).To
conclude, we set F (Σ) = F ′(Π ′).

(⇐): We prove the following statements, by induction on the definition of
A(Π) (Def. 3):

1. Given Σ
 Δ � b : τ and Π
 Γ � a : σ, if b = A(Σ) and a = A(Π) are
L-approximate normal forms, and Σ is a left-subtree of Π , then there exists
Γ ′ s.t. Γ = Γ ′ +Δ and HΔ+Γ ′

a (Θ, σ)
 ρ ⊆ HΔb (Θ + Γ ′, τ)
 ρ.
2. Π
 Γ � a : σ and a = A(Π) imply a ∈ T(Γ, σ).

1. If a = x, then Π is an instance of the axiom (var); Σ being a left subtree

of Π , we get Σ = Π , b = x, Γ ′ = ∅, σ = τ and the inclusion HΔ+Γ ′
b (Θ, σ)
 ρ ⊆

HΔa (Θ + Γ ′, τ)
 ρ holds trivially.
If a = ca′, c being a L-approximate normal form, then the last rule of Π is

an instance of (→ E), with premises Π ′
 Γ ′′ � c : [σi]i∈I → σ and (Πi
 Γi � a′ :
σi)i∈I , so that Γ = Γ ′′+i∈I Γi; moreover Σ
Δ � b : τ is also a left-subtree of Π ′.
We have in this case a′ =

∨
i∈I A(Πi), where by the i.h.(2), A(Πi) ∈ T(Γi, σi).

Then H
Δ+Γ ′′+i∈IΓi

ca′ (Θ, σ)
 ρ ⊆(Prefix) H
Δ+Γ ′′
c (Θ +i∈I Γi, [σi]i∈I → σ)
 ρ ⊆i.h.(1)

HΔb (Θ + Γ ′′ +i∈I Γi, σ)
 ρ.
2. If a is a L-approximate normal form, then ∃τ s.t. Γ = Γ0+(x : [τ]) and the

type derivation x : [τ] � x : τ is a left subtree of Γ0 + (x : [τ]) � a : σ. Then we

have a ∈(Final) H
Γ
a (∅, σ)
 σ ⊆Point(1) H

x:[τ]
x (Γ0, τ)
 σ ⊆(Head) T(Γ0 + {x : [τ]}, σ).

Otherwise, a = λx.a′, and we conclude by the i.h.(2) on a′.

Theorem 2 (Soundness and Completeness)

1. If a ∈ T(Γ, σ) then, for all t such that a ≤ t, Γ � t : σ.
2. If Π
Γ � t : σ then there exists Π ′
Γ � t′ : σ such that t′ is in Π ′-normal

form, and A(Π ′) ∈ T(Γ, σ).

Proof. Soundness follows from Lem. 2 (⇒) and the remark that, if Γ � a : σ
and a ≤ t, then Γ � t : σ. Completeness follows from Thm. 1.1, ensuring that
given Π
 Γ � t : σ, there exists Π ′
 Γ � t′ : σ such that t′ is in Π ′-normal
form, then from Prop. 1 and Lem. 2 (⇐).

4 Adding Pairs and Projections

The language Λπ is an extension of λ-calculus with pairs and projections. Its
terms and contexts are defined by the following grammars:

The Inhabitation Problem for Non-idempotent Intersection Types 349

t, u, v ::= x | λx.t | tu | π1t | π2t | 〈t, u〉
C ::= � | λx.C | Ct | tC | π1C | π2C | 〈t, C〉 | 〈C, t〉

The reduction relation, also denoted by →, is the contextual closure of the
following rules:

(λx.t)u →β t{u/x} π1〈t, u〉 →π t π2〈t, u〉 →π u

As usual, →∗ denotes the reflexive-transitive closure of →. We write t and
π (resp. tn and πn) to denote a possibly empty sequence (resp. a sequence of
length n) of terms and projections, respectively.

Λπ inherits from the λ-calculus important properties, such as confluence. Solv-
ability is defined as usual, but pairs are solvable independently from their con-
tent, since we want to consider them as lazy data structures:

Definition 5

1. A head context is a context of the shape: (λx.�)t;
2. A term t is solvable if and only if there is a head context C such that C[t] →∗

u, where u is either a pair 〈u1, u2〉 or the identity I.

We will prove that solvability can be syntactically characterized by the notion
of hnf, defined by the following grammar:

J ::= λx.J | 〈t, t〉 | P P ::= x | Pt | π1P | π2P

The head variable of a term in P is defined by: x is the head variable of x and
x is the head variable of ut (resp. πiu, i = 1, 2) if x is the head variable of u. A
term has hnf if it reduces to a hnf.

We will prove now that if a term has hnf then it is solvable. The converse will
be proved through a suitable type assignment system, which will be introduced
in the next subsection.

Lemma 3. It t has hnf then it is solvable.

Proof. Let us define, for every sequence of projections π and every term t, the
term Pπ(t) such that πPπ(t) →∗ t. If π is the empty sequence, Pπ(t) = t, if
π = π′π1 (resp. π′π2), then Pπ(t) = 〈Pπ′(t), I〉 (resp. 〈I, Pπ′(t)〉). Moreover, let
Π and J be two lists of same lenght, the first containing sequences of projections
and the second one natural numbers. The term ∇(Π, J) is defined inductively
as follows:
if Π and J are empty, then ∇(Π, J) = I else if Π = π :: Π ′ and J = j :: J ′ then
∇(Π, J) = Pπ(λyj .∇(Π ′, J ′)).
Now we prove that, if t has a P-hnf and x is its head variable, then for all Π, J
there exists a term Ot

∇(Π,J) such that t{Ot
∇(Π,J)/x} →∗ ∇(Π, J). If t = xtn,

then Ot
∇(Π,J) = λyn.∇(Π, J).

If t = πutn, then Ot
∇(Π,J) = Ou

∇(π::Π,n::J). In fact, πutn{Ou
∇(π::Π,n::J)/x}

→∗ π(u{Ou
∇(π::Π,n::J)/x})t′n →∗

(i.h.) π∇(π :: Π,n :: J)t′n which reduces to

πPπ(λyn.∇(Π, J))t′n →∗ ∇(Π, J), where t′n = tn{Ou
∇(Pπ ::Π,n::J)/x}. Now, to

show the statement of the lemma we proceed by cases.

350 A. Bucciarelli, D. Kesner, and S. Ronchi Della Rocca

If t ∈ P , then let x be the head of t and let C = (λx.�)Ot
∇(ε,ε). By the

previous point we have C[t] = (λx.t)Ot
∇(ε,ε) → t{Ot

∇(ε,ε)/x} →∗ ∇(ε, ε) = I.

If t = λyn.〈u, v〉, then let C = �In. Then C[t] →∗ 〈u, v〉. If t = λyn.u, where
u ∈ P , then let x be the head of u. If x /∈ yn, we let C = (λx.�)Ou

∇(ε,ε)In.

Then C[t] →∗ (λyn.u{Ou
∇(ε,ε)/x})In →∗ (λyn.I)In →∗ I. If x = yi, we

let C = (�)Ii−1O
u
∇(ε,ε)In−i. Then C[t] →∗ u{Ou

∇(ε,ε)/x}{In−1/yn−1} →∗

I{In−1/yn−1} = I.

4.1 The Type Assignment System P
We now present the system P , an extension of system M which assigns types
to Λπ-terms in such a way that typability coincides with solvability.

Definition 6

1. The set T P of types is extended using the following grammar:

σ, τ, ρ ::= ω× | α | A → τ | ×1(τ) | ×2(τ) (types)
A ::= [σi]i∈I (multiset types)

where ω× is a type constant.
2. A typing judgement is a triple of the form Γ � t : A, where Γ is a typing

environment defined as in Def. 1. The type system P is obtained by adding
to the system M the rules given in Fig. 5.

3. The definition of left-subtree of a derivation Σ is as Def. 1.4, with the the
following additional cases:
– a derivation Π
 Δ � t : σ is a left subtree of a derivation Σ if Π is

the premise of Σ′
 Δ � 〈t, u〉 : ×1(σ) and Σ′ is a left subtree of Σ (and
similarly for the case ×2(σ)).

– a derivation Π
 Δ � t : ×i(σ) is a left subtree of a derivation Σ if Π
is the premise of Σ′
 Δ � πi(t) : σ and Σ′ is a left subtree of Σ, for
i = 1, 2.

The constant ω× is a universal type for pairs, making all pairs typable. The
system is relevant, and it enjoys both subject reduction (in a weighted version)
and subject expansion. The notions of occurrences and typed occurrences are
extended as expected from those of Def. 2.

� 〈t, u〉 : ω×
(emptypair)

Γ � t : σ

Γ � 〈t, u〉 : ×1(σ)
(pair1)

Γ � u : τ

Γ � 〈t, u〉 : ×2(τ)
(pair2)

Γ � t : ×1(σ)

Γ � π1t : σ
(proj1)

Γ � t : ×2(σ)

Γ � π2t : σ
(proj2)

Fig. 5. Typing rules for pairs in P

The Inhabitation Problem for Non-idempotent Intersection Types 351

Lemma 4

1. (Subject reduction) Π
 Γ � t : σ and t → u imply Π ′
 Γ � u : σ
where meas(Π ′) ≤ meas(Π). In particular, if the reduced redex is typed,
then meas(Π ′) < meas(Π).

2. (Subject expansion) Γ � u : σ and t → u imply Γ → t : σ.

Lemma 5. Let Π
 Γ � t : σ. Then t has hnf.

Proof. By induction on meas(Π) using Lem. 4.1.

The solvability characterization is proved in the next theorem.

Theorem 3. The following statements are equivalent: (1) t is solvable; (2) t

has hnf; (3) t is typable in system P.

Proof. 2 ⇒ 1 holds by Lem. 3 and 3 ⇒ 2 holds by Lem. 5. We now show 1 ⇒ 3: t
solvable implies, by definition, the existence of a context C such that C = (λx.�)v
and either C[t] →∗ I or C[t] →∗ 〈u1, u2〉, for some u1, u2. Both I and 〈u1, u2〉 can
be typed, so C[t] is typed, by Lem. 4.2. Note that C[t] = (λx.t)v, so for typing
C[t] we need to type t.

5 Inhabitation for System P
We extend approximate normal forms (cf. Sec. 3) as follows:

a, b, c ::= Ω | N N ::= λx.N | 〈a, a〉 | L L ::= x | La | πiL

The order relation ≤ and the sets A(t) are defined as in the case of the pure
λ-calculus. The type assignment system P for the Λπ-calculus is extended to
approximate normal forms, assuming as before that no type can be assigned to
the constant Ω. Given Π
Γ � t : τ , where t is in hnf, we extend the definition
of minimal approximant of t.

Definition 7. Given Π
Γ � t : σ, where t is in Π-normal form, A(Π) ∈ A(t)
is defined by extending Def. 3 with the the following additional cases:

– If Π
 � 〈t, u〉 : ω×, then A(Π) = 〈Ω,Ω〉.
– If Π
 Γ � 〈t1, t2〉 : ×i(τ) follows from Πi
 Γ � ti : τ , then i = 1 implies

A(Π) = 〈A(Π1), Ω〉 and i = 2 implies A(Π) = 〈Ω,A(Π2)〉.
– If Π
 Γ � πit : τ follows from Π ′
 Γ � t : ×i(τ), then A(Π) = πiA(Π ′).

5.1 The Inhabitation Algorithm

The algorithm in Fig. 4 is extended with the additional rules in Fig 6.

Example 2. Let Γ = ∅ and τ = ×1([α] → α) and σ = [τ] → τ . Then given the
input (Γ, σ), the algorithm can have the following two behaviours:

Choosing the sequence of rules: (Abs), (Prod1), (Abs), (Head), (Proj),
(Prefix), (Final) the final approximant is λy.〈λx.π1yx, Ω〉;

Choosing the sequence of rules: (Abs), (Head), (Final) the final approximant
is λy.y;

352 A. Bucciarelli, D. Kesner, and S. Ronchi Della Rocca

a ∈ H
Δ
πi(b)

(Γ, σ) � τ

a ∈ H
Δ
b (Γ,×i(σ)) � τ

(Proj) 〈Ω,Ω〉 ∈ T(∅, ω×)
(Pair)

a ∈ T(Γ, τ)

〈a, Ω〉 ∈ T(Γ,×1(τ))
(Prod1)

a ∈ T(Γ, τ)

〈Ω,a〉 ∈ T(Γ,×2(τ))
(Prod2)

Fig. 6. The inhabitation algorithm for the λ-calculus with products

To show that the inhabitation algorithm terminates, we extend the measure
given in Sec. 2 by adding #(ω×) = 1 and #(×i(τ)) = #(τ) + 1. Termination
and soundness hold, and the extension is straightforward.

Lemma 6 (Termination). The inhabitation algorithm terminates.

Proof. As for Lem. 1, using the extended measure above.

Lemma 7. a ∈ T(Γ, σ) ⇔ ∃Π
 Γ � a : σ such that a = A(Π).

Proof. We follow the proof of Lem. 2, with the suitable additional cases:
(⇒): Let a ∈ HΔb (Γ,×i(σ))
 τ follow from a ∈ HΔπi(b)

(Γ, σ)
 τ by (Proj).

Suppose Δ � b : ×i(σ) (i = 1, 2). Then Δ � πi(b) : σ. By the i.h. (c) we get
Π
 Γ +Δ � a : τ , where a = A(Π) and we are done.

If 〈Ω,Ω〉 ∈ T(∅, ω×) follows by (Pair); then Π
 � 〈Ω,Ω〉 : ω×, and 〈Ω,Ω〉 =
A(Π).

If 〈a, Ω〉 ∈ T(Γ,×1(τ)) follows from a ∈ T(Γ, τ) by (Prod1), then by the i.h.
(a) Γ � a : τ . Then by (pair1), ∃Π
 Γ � 〈a, Ω〉 : ×1(τ), and we are done, since
〈a, Ω〉 = A(Π). Analougsly for (Prod2).

(⇐): 1. Let a = πia
′ (i = 1, 2). By construction Π ends by an application of

the rule (proji) with premiseΠ ′
Γ � a′ : ×i(σ), where by definition a′ = A(Π ′).
Moreover,Σ
Δ � b : τ is also a left-subtree ofΠ ′ and A(Π) = πia

′ by definition,

thus HΔ+Γ ′
πia′ (Θ, σ)
 π ⊆(Proj) H

Δ+Γ ′
a′ (Θ,×i(σ))
 π ⊆i.h.(1) H

Δ
b (Θ + Γ ′, τ)
 π.

2. If a is a pair then there are three cases to consider. If Π
 � a : ω×, then
a = 〈Ω,Ω〉 ∈(Pair) T(∅, ω×). If Π
 Γ � a : ×1(τ) follows from Π ′
 Γ � a′ : τ
by (proj1), then a = 〈a′, Ω〉. We have a′ ∈i.h.(2) T(Γ, τ), so that a ∈(Prod1)

T(Γ,×1(τ)). The case Π
 Γ � a : ×2(τ) is similar.

Theorem 4 (Soundness and Completeness)

1. If a ∈ T(Γ, σ) then, for all t such that a ≤ t, Γ � t : σ.

2. If Π
Γ � t : σ then there exists Π ′
Γ � t′ : σ such that t′ is in Π ′-normal
form, and A(Π ′) ∈ T(Γ, σ).

Proof. As in the proof of Thm. 2, but using Lem. 7 (⇒) for soundness, Thm. 4.1
and Lem. 7 (⇐) for completeness.

The Inhabitation Problem for Non-idempotent Intersection Types 353

6 Conclusion

We proved that the inhabitation problem is decidable for the types systems M
and P , based on non-idempotent intersection types, and characterizing solvabil-
ity for the λ-calculus and for its extension with pairs and projections, that we
call Λπ, respectively. To the best of our knowledge, solvability in Λπ had not been
studied before. Our result is a first step towards the study of further extensions
of Λπ, including patterns [11].

In fact, the logical characterization of solvability is related to the inhabitation
problem of the underlying type system. While this relation is implicit for the
λ-calculus, it can become crucial for extensions lacking a syntactical characteri-
zation of solvability.

Concerning denotational models, it is well known that system M induces a
relational model of Λ. We aim to complete the picture studying the semantics
of Λπ through the system P .

References

1. Barendregt, H.: The Lambda Calculus: Its Syntax and Semantics, revised edn.
North-Holland, Amsterdam (1984)

2. Ben-Yelles, C.: Type-assignment in the lambda-calculus; syntax and semantics.
PhD thesis, University of Wales Swansea (1979)

3. Bernadet, A., Lengrand, S.: Non-idempotent intersection types and strong
normalisation. Logical Methods in Computer Science 9(4) (2013)

4. Bunder, M.W.: The inhabitation problem for intersection types. In: CATS. CRPIT,
vol. 77, pp. 7–14. Australian Computer Society (2008)

5. Carvalho, D.D.: Sèmantique de la logique linéaire et temps de calcul. PhD thesis,
Université de la Mediterranée Aix-Marseille 2 (2007)

6. Coppo, M., Dezani-Ciancaglini, M.: An extension of the basic functionality theory
for the λ-calculus. Notre Dame J. Form. Log. 21(4), 685–693 (1980)

7. De Benedetti, E., Ronchi Della Rocca, S.: Bounding normalization time through
intersection types. In: Proc. of ITRS 2012. EPTCS, pp. 48–57 (2013)

8. Di Gianantonio, P., Honsell, F., Lenisa, M.: A type assignment system for game
semantics. Theor. Comput. Sci. 398, 150–169 (2008)

9. Ehrhard, T.: The Scott model of linear logic is the extensional collapse of its
relational model. Theor. Comput. Sci. 424, 20–45 (2012)

10. Hindley, J.R.: Basic Simple Type Theory. Cambridge Tracts in Theoretical Comp.
Scie. Cambridge University Press, Amsterdam (2008)

11. Jay, C.B., Kesner, D.: First-class patterns. Journal of Functional Programming
19(2), 191–225 (2009)

12. Kesner, D., Ventura, D.: Quantitative types for the linear substitution calculus.
In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705,
pp. 296–310. Springer, Heidelberg (2014)

13. Kfoury, A.J.: A Linearization of the Lambda-Calculus and Consequences. J. Logic
Comp. 10(3), 411–436 (2000)

14. Kfoury, A.J., Wells, J.B.: Principality and type inference for intersection types
using expansion variables. Theor. Comput. Sci. 311(1-3), 1–70 (2004)

354 A. Bucciarelli, D. Kesner, and S. Ronchi Della Rocca

15. Krivine, J.L.: Lambda-Calculus, Types and Models. Ellis Horwood, Hemel Hemp-
stead, Masson, Paris (1993)

16. Kurata, T., Takahashi, M.: Decidable properties of intersection type systems.
In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902,
pp. 297–311. Springer, Heidelberg (1995)

17. Mairson, H., Neergaard, P.M.: Types, potency, and idempotency: why nonlinearity
and amnesia make a type system work. In: Proc. of ICFP 2004, pp. 138–149 (2004)

18. Pagani, M., Ronchi Della Rocca, S.: Linearity, non-determinism and solvability.
Fundamenta Informaticae 103, 358–373 (2010)

19. Pagani, M., della Rocca, S.R.: Solvability in resource lambda-calculus. In: Ong, L.
(ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 358–373. Springer, Heidelberg (2010)

20. Paolini, L., Piccolo, M., Ronchi Della Rocca, S.: Logical relational lambda-models.
Accepted for publication in MSCS (2013)

21. Urzyczyn, P.: The emptiness problem for intersection types. Journal of Symbolic
Logic 64(3), 1195–1215 (1999)

22. Urzyczyn, P.: personal communication (2014)
23. van Bakel, S.: Complete restrictions of the intersection type discipline. Theor.

Comput. Sci. 102, 135–163 (1992)

	The Inhabitation Problem for Non-idempotent Intersection Types
	1 Introduction
	2 The Type Assignment System M
	3 Inhabitation for System M
	3.1 The Inhabitation Algorithm

	4 Adding Pairs and Projections
	4.1 The Type Assignment System P

	5 Inhabitation for System P
	5.1 The Inhabitation Algorithm

	6 Conclusion
	References

