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The initial boundary-value problem for the Korteweg–de Vries (KdV) equation on
the negative quarter-plane, x < 0 and t > 0, is considered. The formulation of
this problem is different to the usual initial boundary-value problem on the positive
quarter-plane, for which x > 0 and t > 0. Two boundary conditions are required
at x = 0 for the negative quarter-plane problem, in contrast to the one boundary
condition needed at x = 0 for the positive quarter-plane problem. Solutions of the
KdV equation on the infinite line, such as the soliton, cnoidal wave, mean height
variation and undular bore solution, are used to find approximate solutions to the
negative quarter-plane problem. Five qualitatively different types of solution are
found, depending on the relation between the initial and boundary values. Excellent
comparisons are obtained between these solutions and full numerical solutions of the
KdV equation.

Keywords: KdV equation; modulation theory; initial boundary-value problems

1. Introduction

The Korteweg–de Vries (KdV) equation is the generic equation for the study of
weakly nonlinear long waves. It arises in physical systems which involve a balance
between weak nonlinearity and weak dispersion at leading order (Whitham 1974).
The KdV equation arises in many physical situations, such as surface water waves,
internal waves in a density-stratified fluid, plasma waves, Rossby waves and magma
flow. The KdV equation is integrable and can be solved on the infinite line using the
so-called inverse scattering transform (Gardner et al. 1967). The inverse scattering
solution shows that when a larger KdV solitary wave overtakes a smaller one, both
the solitary waves retain their original shapes, with the only memory of the collision
being a phase shift. Due to this special, particle-like property, amongst others, the
solitary-wave solution of the KdV equation is termed a soliton. The explicit solution
for interacting KdV solitons was developed using inverse scattering by Hirota (1972).
The initial boundary-value (IBV) problem for the KdV equation has been considered
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by a number of authors. It can be written as

∂u

∂t
+ 6u

∂u

∂x
+

∂3u

∂x3 = 0, x > 0,

u(x, 0) = ui(x), x > 0,

u(0, t) = ub(t), t > 0,




(1.1)

and is commonly referred to as the quarter-plane problem, since x > 0 and t > 0.
A number of physical applications exist for (1.1), such as the generation of waves in
a shallow channel by a wave-making device or the critical withdrawal of a stratified
fluid from a reservoir (Clarke & Imberger 1994).

Chu et al. (1983) considered the positive quarter-plane problem (1.1) numerically.
The energy conservation law for the KdV equation was used to deduce that one
boundary condition should be applied at x = 0, with the other two being boundedness
conditions on the solution as x → ∞. For their examples, a train of solitons was
generated at the boundary and it was found that the soliton amplitudes were related
to the boundary condition by a simple formula. It was also shown that the addition
of a damping term in the KdV equation led to a steady collisionless shock being
generated. Fokas & Ablowitz (1989) examined (1.1) using inverse scattering, which
reduced the problem to that of a nonlinear singular integro-differential equation for
the scattering data. Camassa & Wu (1989) found approximate solutions to (1.1) by
using inverse scattering and assuming values for ux and uxx at the boundary x = 0.
Both trapezoidal and exponentially decaying functions were used for the time-varying
boundary condition ub. Their approximate method gave a reasonable estimate for
the soliton amplitudes (within 20%) for large amplitudes. However, it was unable to
accurately estimate the amplitudes of small solitons. A drawback to their method is
that the values of ux and uxx are generally not known a priori.

Fokas (1997) developed a new transform method for solving IBV problems for
linear and integrable nonlinear partial differential equations, based on the fact that
these types of equations possess a Lax pair. The resulting spectral analysis allows the
solution to be represented in a simple integral form. Examples considered include the
NLS and sine-Gordon equations, and their respective linearized versions. Moreover,
it was found that the boundary and initial conditions must satisfy a certain global
constraint for the IBV problem to be well-posed. Fokas & Pelloni (1998) used this
transform method to solve a number of IBV problems for the linearized KdV equa-
tion. Quarter-plane and wedge-shaped domains with both Dirichlet and Neumann
boundary conditions were examined. The solution of the nonlinear KdV equation was
also discussed, but not undertaken. Fokas & Pelloni (2000) solved a linear dispersive
equation, of general form, on a time-dependent boundary, again using the transform
method. The interested reader is referred to the review paper by Fokas (2000) for
more details and applications of the transform method.

Marchant & Smyth (1991) also considered the quarter-plane problem (1.1) and
found approximate and exact solutions. For the case of constant boundary and ini-
tial conditions, various types of steady and transient solutions were derived, the
particular form of the solution depending on the relationship between ub and ui.
In addition, a case was considered of a time-dependent boundary condition ub, for
which an approximate solution was derived using modulation theory for the KdV
equation (Whitham 1974) and the fact that the solution consisted of a train of soli-
tons. For all the cases considered, excellent comparisons were obtained between the
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approximate solutions and numerical solutions of (1.1). Clarke & Imberger (1994)
considered the critical withdrawal of a two-layer fluid via a sink as a model for the
withdrawal of water from a reservoir. The case of critical withdrawal corresponds to
when the upper layer is just drawn into the sink. The problem was formulated as an
IBV problem for the KdV equation and the solutions of Marchant & Smyth (1991)
were used to show that three different withdrawal regimes exist. These were uniform
withdrawal, when fluid is drawn from both layers, selective withdrawal, when water
is drawn from the lower layer only, and a case termed partial withdrawal.

In the present paper the negative quarter-plane problem for x < 0 and t > 0 will
be examined. This problem can be stated as

∂u

∂t
+ 6u

∂u

∂x
+

∂3u

∂x3 = 0, x < 0,

u(x, 0) = ui(x), x < 0,

u(0, t) = ub(t), t > 0,

∂u(0, t)
∂x

= ubx(t), t > 0.




(1.2)

In the present work, only the case of constant initial and boundary conditions will
be considered, so that ui, ub and ubx are all constants. The negative quarter-plane
problem is of interest for a number of reasons. Firstly, its mathematical formulation
is different from the positive quarter-plane problem (1.1), as the number of bound-
ary conditions needed at x = 0 is different. This leads to solutions for the negative
quarter-plane problem being different to those for the positive quarter-plane prob-
lem. Secondly, it is related to the problem on the positive quarter-plane when the
dispersive term in the KdV equation has a negative coefficient. Applying the trans-
formation x → −x and u → −u to the negative quarter-plane problem (1.2) gives
the problem on the positive quarter-plane for the KdV equation

∂u

∂t
+ 6u

∂u

∂x
− ∂3u

∂x3 = 0. (1.3)

One physical example for which (1.3) is appropriate is weakly nonlinear long waves
propagating on a fluid with surface tension. The coefficient of the dispersive term
becomes negative if the Bond number τ , which measures the magnitude of the surface
tension, is greater than one-third (Kichenassamy & Olver 1992). The paper is orga-
nized as follows. Section 2 discusses the various exact and approximate solutions of
the KdV equation on the infinite-line which are needed to construct solutions for the
negative quarter-plane problem. In § 3 the linear KdV equation is used to illustrate
and justify the number of boundary conditions needed at x = 0 for both the positive
and negative quarter-plane problems. Then the various solutions of § 2 are used to
construct approximate solutions for the negative quarter-plane problem (1.2). In § 4
the approximate solutions of (1.2), found in § 3, are compared with numerical solu-
tions of the KdV equation. The appendix provides details of the numerical scheme
used.

2. Solutions of the Korteweg–de Vries equation

In this section some solutions of the KdV equation on the infinite line, −∞ < x < ∞,
are presented and discussed. These solutions will be used in § 3 to find analytical
solutions of the negative quarter-plane problem (1.2).
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A particular solution of the KdV equation is the cnoidal wave solution (Whitham
1974),

u = β + 2a

[
m−1 − 1 − m−1P (m) + cn2

(
K(m)θ

π

)]
, (2.1)

where the phase θ, wavenumber k and dispersion relation ω are

θ = kx − ωt + φ,

k =
π

K(m)

√
a

m
,

ω = 6βk + 4ak(2m−1 − 1 − 3m−1P (m)).




(2.2)

Here cn is the Jacobian elliptic cosine function of parameter (modulus squared) m.
P (m) is defined as the ratio

P (m) =
E(m)
K(m)

, (2.3)

where K(m) and E(m) are complete elliptic integrals of the first and second kinds,
respectively. The mean height of the cnoidal wave (2.1) is β and its amplitude is a.
A special case (for m = 1) of the cnoidal wave solution (2.1) is the soliton solution

u = β + 2a sech2 √
a[x − (6β + 4a)t + φ]. (2.4)

Many of the solutions of the next section for the IBV problem (1.2) will be based
on modulation theory for the KdV equation, which was derived by Whitham (1965,
1974). Modulation theory assumes that the amplitude, mean height and wavenumber
of the cnoidal wave (2.1) are slowly varying functions of x and t. Based on an averaged
Lagrangian technique, Whitham (1965, 1974) showed that the modulation equations
governing the evolution of these parameters form the third-order hyperbolic system

P: 2β + 4am−1(1 − P (m)) − 2a − 2am−1 = const.

on
dx

dt
= U − 4a

1 − P (m)
,

Q: 2β + 4am−1(1 − P (m)) − 2am−1 = const.

on
dx

dt
= U − 4a(1 − m)

P (m) − (1 − m)
,

R: 2β + 4am−1(1 − P (m)) − 2a = const.

on
dx

dt
= U +

4a(1 − m)
mP (m)

,



(2.5)

where the phase velocity and wavenumber of the modulated cnoidal wavetrain are

U = 6β + 4a(2m−1 − 1 − 3m−1P (m)), k =
π

K(m)

√
a

m
. (2.6)

The modulation equations (2.5) have a simple wave solution, whose physical inter-
pretation is an undular bore. This solution was first derived by Gurevich & Pitaevskii
(1974) and Fornberg & Whitham (1978). The simple wave solution is formed as an
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expansion fan on the characteristic Q, which links a level A ahead of the bore to
a level B behind the bore, for B > A. In detail this simple wave, or undular bore,
solution is

β = (B − A)m + 2A − B + 2(B − A)P (m),
a = (B − A)m,

k =
π

K(m)
(B − A)1/2,




(2.7)

on

x

t
= 2(B − A)m + 4A + 2B − 4(B − A)m(1 − m)

P (m) − (1 − m)
,

12A − 6B � x

t
� 4B + 2A, 0 � m � 1. (2.8)

At the front of the bore the mean level β = A. At this leading edge m = 1 and
solitons of amplitude 2(B − A) occur. At the rear of the bore, where m = 0, the
mean level β = B and sinusoidal waves of small amplitude occur. As B > A, this
bore represents a step up in mean height from the front to the rear of the bore.
Another solution of the KdV equation which will be used in the present work is

u =
x

6t
, 6Bt � x � 6At, (2.9)

with u = A for x > 6At and u = B for x < 6Bt, so that the mean levels ahead
of and behind the expansion wave (2.9) are A and B, respectively. This solution is
valid for B < A, so is the resolution of a step down in mean height, in contrast to
the undular bore solution (2.7), which is the resolution of a step up in mean height.
Fornberg & Whitham (1978) found both the undular bore solution (2.7) and the
mean height variation (2.9) to be in excellent agreement with numerical solutions of
the KdV equation on the infinite line for step initial conditions.

3. Solutions of the initial boundary-value problem

The solutions (2.1), (2.4) and (2.7)–(2.9) of the KdV equation on the infinite line
will now be used to determine solutions of the negative quarter-plane problem (1.2).
These solutions will be compared with numerical solutions of the KdV equation in the
next section. The specific form of the solution of the negative quarter-plane problem
depends on the relation between the values of ui, ub and ubx. Before calculating
these solutions, we shall first justify the form of the boundary conditions in (1.2). To
do this, consider the linearized KdV equation,

∂u

∂t
+

∂3u

∂x3 = 0. (3.1)

Taking Laplace transforms of this equation in t,

d3ū

dx3 + sū = ui, (3.2)

is obtained, where an overbar denotes the Laplace transform and s is the Laplace
transform variable. The solution of (3.2) is

ū = Aeλ1x + Beλ2x + Ceλ3x + ui/s, (3.3)
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where
λ1 = −s1/3, λ2, λ3 = s1/3(1

2 ± i
√

3
2 ).

Two of the roots of the characteristic equation for (3.2) have positive real parts,
while the other has a negative real part (see (3.3)). Therefore, if the problem is solved
on the positive quarter-plane, boundedness of the solution as x → ∞ implies that
B = C = 0 and so one boundary condition is needed at x = 0 (Marchant & Smyth
1991). On the other hand, if the problem is solved on the negative quarter-plane,
then only one boundedness condition must be imposed as x → −∞, giving A = 0.
Two boundary conditions are then needed at x = 0, as stated in (1.2). The same
conclusions regarding the appropriate number of boundary conditions for a well-
posed problem for the linear KdV equation are drawn by Fokas (2000) (see theorem
(3.1) on p. 4201) and by Chu et al. (1983), the latter using an energy conservation
argument.

In the present work the special case for which the derivative boundary condition
is ubx = 0 will be considered. This is done for simplicity as the solution of tran-
scendental algebraic equations is required when ubx �= 0, while for ubx = 0 explicit
solutions can be found. Moreover, the solutions presented for the case ubx = 0 rep-
resent all the qualitatively different solution types which can occur for the negative
quarter-plane problem and once the solutions for ubx = 0 have been determined,
it will be clear how they can be extended to ubx �= 0. A further point is that the
negative quarter-plane problem (1.2) is formulated in a frame of reference moving
with the linear wave speed c0. On the infinite line this does not matter as there is a
simple Galilean transformation which takes solutions back to the physical frame of
reference. For quarter-plane problems, however, this Galilean transformation results
in the boundary at x = 0 becoming a moving boundary with velocity −c0. This does
not present a problem, however, as the solutions found here for a fixed boundary can
be simply extended to a boundary moving with a constant velocity, as will be clear
once these solutions are derived.

(a) Positive ub

Let us first consider positive boundary values ub. The soliton solution (2.4) can
be made steady by taking β = −2a/3. Then satisfying the boundary conditions at
x = 0 in the initial boundary-value problem (1.2), we obtain

u = −1
2ub + 3

2ub sech2 1
2

√
3ubx. (3.4)

Now as x → −∞, u → −ub/2, so this solution will not satisfy the initial condition
in (1.2). To satisfy this initial condition, we now match this steady solution onto
a transient front. For ui � −ub/2, we have a step down in mean height, so the
appropriate transient front is the mean height variation (2.9) with A = −ub/2 and
B = ui. Therefore, for ub � 0 and ui � −ub/2, the solution of the negative quarter-
plane problem is (3.4) for −3ubt � x � 0 and (2.9) for 6uit � x < −3ubt, with
u = ui for x < 6uit. It can be seen that for the front to move backwards, we require
ub � 0.

On the other hand, if ui > −ub/2, we have a step up in mean height, so the
appropriate solution for the transient front is the undular bore solution (2.7) with
A = −ub/2 and B = ui. From (2.8) the bore ranges as follows,

−6(ub + ui)t � x � (4ui − ub)t, (3.5)

Proc. R. Soc. Lond. A (2002)



The initial boundary problem for the KdV equation 863

since m = 1 at the leading edge and m = 0 at the trailing edge of the bore. From
the leading edge of (3.5), it can be seen that for the transient front to propagate
into x < 0 we require 4ui < ub. The solution of the negative quarter-plane problem
for ub � 0 and −ub/2 < ui < ub/4 is then (3.4) for (4ui − ub)t � x � 0 and the
undular bore solution (2.7) for −6(ub + ui)t � x < (4ui − ub)t, with u = ui for
x < −6(ub + ui)t.

For 4ui � ub, the undular bore (2.7) would propagate into x > 0, which is clearly
not possible. For the positive quarter-plane problem, a partial undular bore occurs
in this case (Marchant & Smyth 1991). A partial undular bore is the undular bore
solution (2.7) cut off at a value of m �= 0 or m �= 1. This partial bore solution
does not occur for the negative quarter-plane problem, as the imposition of a fixed
derivative at the boundary does not allow the bore to evolve. Instead, for 4ui � ub a
steady cnoidal wave solution (2.1) forms near the boundary. Let us set a0, β0 and m0
to be the amplitude, mean height and modulus, respectively, of this steady cnoidal
wave. The steady cnoidal wave must have zero velocity, so the dispersion relation
(2.2) gives

3β0 + 2a0

(
2m−1

0 − 1 − 3E(m0)
m0K(m0)

)
= 0. (3.6)

The boundary condition ux = 0 at x = 0 gives φ = 0 or π in the phase (2.2). Taking
φ = 0 and applying the boundary condition u = ub at x = 0 gives

ub = β0 + 2a0

(
m−1

0 − E(m0)
m0K(m0)

)
. (3.7)

The mean level of the cnoidal wave is β0, which is always less than the initial condition
ui. Hence a transient front, consisting of a partial undular bore, must be matched
onto the steady cnoidal wave in order to bring the mean level up to ui and so satisfy
the initial condition. This partial undular bore is based on the full bore solution (2.7)
and has modulus squared in the range 0 � m � m0 and increases the mean level
from β0 to the initial value ui. At the rear of the bore m = 0, so that from (2.7)
B = ui. At the front of the bore, which matches onto the steady cnoidal wavetrain,
the modulus squared m = m0 and the wave amplitude is a0 = (ui −A)m0 from (2.7).
Also, at the front of the partial undular bore, the mean level (2.7) must be that of
the steady cnoidal wavetrain, giving

β0 = (ui − A)m0 + 2A − ui + 2(ui − A)P (m0). (3.8)

Solving (3.6)–(3.8) gives

A = ui +
ui − ub

m0
, (3.9)

which completes the solution for the partial undular bore and the modulus, amplitude
and mean-level of the steady cnoidal wavetrain are then

m0 =
2(ub − ui)
ub + 2ui

, a0 = ub − ui, β0 = ui +
a0

m0
(m0 − 2 + 2P (m0)). (3.10)

This solution is valid for ub/4 � ui � ub, which gives the modulus squared of the
steady cnoidal wave in the range 0 � m0 � 1. The partial undular bore is (2.7) with
0 � m � m0, B = ui and A given by (3.9) and extends in the range

6
(

ui − 2
a0

m0

)
t < x < rft, (3.11)
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where
rf = 6ui + 2a0 − 4a0m

−1
0 − 4a0(1 − m0)

P (m0) − (1 − m0)
.

For rft � x � 0 the solution is the steady cnoidal wave of modulus squared m0,
amplitude a0 and mean height β0. For 6(ui − 2a0/m0)t � x � rft the solution is the
partial undular bore (2.7), while for x � 6(ui − 2a0/m0)t the solution is u = ui.

For the case ui > ub we must take φ = π to satisfy the boundary condition ux = 0
at x = 0. Then in a similar manner to the determination of the parameters for φ = 0,
it is found that the amplitude and modulus squared of the steady cnoidal wavetrain
are given by

m0 =
2(ui − ub)
4ui − ub

and a0 = ui − ub. (3.12)

The mean height is again given by the third of (3.10) and the extent of the partial
undular bore by (3.11). In this case the modulus squared of the steady cnoidal wave
ranges between 0 � m0 � 0.5. The partial undular bore which forms the front of the
steady cnoidal wave is given by (2.7) with 0 � m � m0, B = ui and

A = ui − ui − ub

m0
. (3.13)

Ahead of this front, again u = ui. This then completes the determination of the
solutions of the initial boundary-value problem in the parameter space (ui, ub) for
positive ub.

(b) Negative ub

Let us now consider negative boundary values ub. The solutions of the negative
quarter-plane problem in this case are determined in a similar manner as in the
previous subsection for positive ub, so only the basic details of the determination of
these solutions will be given.

Again taking the soliton solution (2.4) to be steady, we have β = −2a/3. Then
satisfying the boundary condition ux = 0 at x = 0 gives φ = ∞, so that the solution
is the uniform shelf

u = ub. (3.14)

This solution will be preceded by a transient front in order to match to the initial
condition. For ui � ub, we have a step down in mean height, so that the appropriate
transient front is the mean height variation (2.9) with A = ub and B = ui. The
solution of the negative quarter-plane problem for ub < 0 and ui � ub is therefore
(3.14) for 6ubt � x � 0, (2.9) for 6uit � x < 6ubt and u = ui for x < 6uit to match
with the initial condition.

On the other hand, when ui > ub, there is a step up in mean height and the
transient front is given by the undular bore solution (2.7) with A = ub and B = ui.
At the leading edge of the bore m = 1 and at its trailing edge m = 0. Therefore,
from (2.8), the bore extends in the range

6(2ub − ui)t � x � 2(ub + 2ui)t. (3.15)

Now the bore must propagate into the region x < 0. Therefore, from the velocity
of the leading edge of (3.15), we see that we require ui < −ub/2. So summing up,
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Table 1. Summary of parameter regions

mean height variation undular bore

uniform shelf ui � ub � 0 ub � ui � − 1
2ub

sech2 profile 0 � ub � −2ui − 1
2ub � ui � 1

4ub

cnoidal wave −2ui � ub � 4ui

we have that the solution of the negative quarter-plane problem for ub < 0 and
ub < ui < −ub/2 is u = ub for 2(ub + 2ui)t � x � 0, the undular bore solution (2.7)
with A = ub and B = ui as a transient front in 6(2ub − ui)t < x < 2(ub + 2ui)t and
u = ui for x � 6(2ub − ui)t to match with the initial condition.

The final portion of the parameter space (ui, ub) for ub < 0 is ui > −ub/2, for
which the leading edge of the undular bore solution (2.7) would propagate into x > 0.
As in the mirror case for positive ub, the solution in this regime is a steady cnoidal
wave of the form (2.1) matched to a partial undular bore. The parameters of this
steady cnoidal wave are given by (3.12), but in this case the cnoidal wavetrain has
modulus 0.5 � m0 � 1. This completes the solutions of the negative quarter-plane
problem for negative ub.

As a summary, the regions of the (ui, ub) parameter space in which the five different
types of solutions of the negative quarter-plane problem occur are listed in table 1.

4. Results and discussion

In this section the approximate solutions found in § 3 will be compared with numerical
solutions for the negative quarter-plane problem (1.2). The boundary values ub and
initial values ui were chosen so that each of the five different solution types, as
summarized in table 1, were obtained. The numerical solutions of the present work
were found using a hybrid Runge–Kutta finite-difference scheme, which is described
in the appendix. The parameters used in the numerical scheme were ∆x = 0.1 and
∆t = 1 × 10−3. Numerical solutions were obtained for different values of ∆x and
Richardson extrapolation was then used to estimate the accuracy of these solutions.
It was found that the maximum error, in all the presented solutions, was less than
1%. The largest errors typically occurred at the peaks of the cnoidal waves with large
amplitude.

Figure 1 shows the free-surface elevation u versus −x at t = 20 for the parameters
ui = −0.5 and ub = 0.5. The approximate solution consists of three main portions, as
outlined in the previous section and summarized in table 1. Next to the boundary, for
0 < −x < 30, the steady-state sech2 profile occurs. This takes the solution from the
boundary value u = ub = 0.5 to the level of the uniform shelf u = −ub/2 = −0.25.
The solution for 30 < −x < 60 then consists of a mean height variation, while for
−x > 60 it is the initial value u = ui = −0.5. The comparison with the numerical
solution is excellent, with the differences between the solutions seen in the figure
easily explained. Firstly, for −x > 60 the numerical solution consists of a train of
small amplitude waves with mean level u = ui. These waves are due to the dispersive
smoothing of the discontinuities in ux at the edges x = 6At and x = 6Bt of the mean
height variation (Fornberg & Whitham 1978). The mean level variation solution (2.9)
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u

Figure 1. The free-surface elevation u versus −x at t = 20 for the parameters ui = −0.5 and
ub = 0.5. Shown are the approximate (dashed) and numerical (solid) solutions of (1.2). The
approximate solution consists of a sech2 profile for 0 < −x < 30, a mean height variation for
30 < −x < 60 and the initial value u = −0.5 for −x > 60.

neglects these small amplitude waves. In this regard it is noted that these small
amplitude waves propagate to x = −∞ as time increases.

Figure 2 shows the free-surface elevation u versus −x at t = 20 for the parameters
ui = −1 and ub = −0.5. For these initial and boundary conditions, it is seen from
table 1 that the analytical solution consists of a steady shelf near the boundary and
a mean height variation. This solution is qualitatively similar to the solution shown
in figure 1, since the shelf is a limiting case of the steady sech2 profile. The shelf
extends from x = 0 out to x = −60 at the level ub. A mean height variation then
occurs for 60 < −x < 120, taking the solution down to the initial value u = ui = −1.
As for figure 1, there is excellent agreement between the numerical and approximate
solutions. Again the numerical solution has a small amplitude wavetrain ahead of
the mean height variation. This wave train is due to the dispersive resolution of the
discontinuities in ux at its ends, as for the numerical solution shown in figure 1.

Figure 3 shows the free-surface elevation u versus −x at t = 20 for the parameters
ui = 0 and ub = 1. For these initial and boundary values, table 1 shows that the
analytical solution consists of the steady sech2 profile and the undular bore solution
as a front. The solution is then the sech2 profile for 0 < −x < 20, which takes the
solution from the boundary level u = ub = 1 to a shelf of height u = −ub/2 = −0.5.
Linking the level at the end of the shelf to the initial value u = ui = 0 is the
undular bore solution. This undular bore solution consists of a modulated cnoidal
wave with modulus squared m which varies through the bore. At the leading edge,
at x = −20, the modulus squared is m = 1, so from (2.7) the leading edge of the
bore consists of solitons of amplitude unity on a mean level β = −0.5. At the trailing
edge, at x = −120, the modulus squared is m = 0, so that the trailing edge of the
bore consists of linear (small amplitude) waves on a mean level β = 0. The undular
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Figure 2. The free-surface elevation u versus −x at t = 20 for the parameters ui = −1 and
ub = −0.5. Shown are the approximate (dashed) and numerical (solid) solutions of (1.2). The
approximate solution consists of a uniform shelf for 0 < −x < 60, a mean height variation for
60 < −x < 120 and the initial value u = −1 for −x > 120.
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Figure 3. The free-surface elevation u versus −x at t = 20 for the parameters ui = 0 and ub = 1.
Shown are the approximate (dashed) and numerical (solid) solutions of (1.2). The approximate
solution consists of a sech2 profile for 0 < −x < 20, an undular bore for 20 < −x < 120 and the
initial value u = 0 for −x > 120. For the approximate undular bore, the averaged quantities of
the mean height and wave envelope are shown.
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Figure 4. The free-surface elevation u versus −x at t = 20 for the parameters ui = 0 and ub = −1.
Shown are the approximate (dashed) and numerical (solid) solutions of (1.2). The approximate
solution consists of a uniform shelf for 0 < −x < 40, an undular bore for 40 < −x < 240 and
the initial value u = 0 for −x > 240. For the approximate undular bore, the averaged quantities
of the mean height and wave envelope are shown.

bore solution (2.7) and (2.8) for the front provides averaged information, such as the
mean level and the envelope of the wavetrain. For this reason, in figure 3 the mean
level, β, and the wave envelope, β +2am−1(1−P (m)), are plotted for the analytical
solution in the region of the undular bore. It can be seen that the wave envelope
gives an excellent comparison with the numerical solution throughout the bore. For
−x > 120 the numerical solution consists of linear (small amplitude) waves on a
mean level u = ui, these waves propagating to x = −∞ as time increases.

Figure 4 shows the free-surface elevation u versus −x at t = 20 for the parameters
ui = 0 and ub = −1. Table 1 shows that the analytical solution for these initial and
boundary values consists of a steady shelf at the boundary preceded by an undular
bore taking the solution to the initial value. As for figure 3, in the region of the
undular bore the mean level and wave envelope of the analytical solution are shown.
The solution is qualitatively similar to that shown in figure 3: a steady shelf of mean
level u = ub = −1 extends to x = −40 and then an undular bore links this level
to the initial level u = ui at x = −240. Again an excellent comparison is obtained
between the numerical and analytical solutions.

Figures 5 and 6 shows the free-surface elevation u versus −x at t = 20 for the
parameters ui = 1 and ub = 0. For this choice of initial and boundary values table 1
shows that the analytical solution consists of a steady cnoidal wavetrain at the bound-
ary and a partial undular bore which brings the solution up to the mean level. The
steady cnoidal wave has modulus squared m0 = 0.5, an amplitude a0 = 1 and a mean
level β0 = 0.914. The wavelength is λ0 = 2.40. Further the steady cnoidal wave has
a minimum value of u = 0 and a maximum value of u = 2 and extends from the
boundary to x = −175. The partial undular bore extends between 175 < −x < 356
and links the mean level β0 = 0.914 at x = −175 to the initial level u = ui = 1
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Figure 5. The free-surface elevation u versus −x at t = 20 for the parameters ui = 1 and
ub = 0. Shown are the approximate (dashed) and numerical (solid) solutions of (1.2). The
approximate solution consists of a steady cnoidal wave for 0 < −x < 170, a partial undular bore
for 170 < −x < 356 and the initial value u = 1 for −x > 356. For the approximate solution, the
averaged quantities of the mean height and wave envelope are shown.
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Figure 6. The free-surface elevation u versus −x at t = 20 for the parameters ui = 1 and ub = 0.
For the region displayed, the solution is a steady cnoidal wave. Shown are the approximate
(dashed) and numerical (solid) solutions of (1.2).
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at x = −356. In figure 5 both the mean level and wave envelope are plotted. An
excellent comparison between the numerical solution and the analytical wave enve-
lope is obtained, both for the steady cnoidal wavetrain and the partial undular bore.
Some small oscillations in amplitude can be seen in the steady cnoidal wavetrain.
These oscillations are produced at the boundary during the initial evolution of the
wavetrain and are associated with the discretization of the initial discontinuity in u.
They propagate to infinity at large times. Beyond the undular bore, for −x > 356,
the numerical solution shows small amplitude waves on a mean level u = ui = 1. A
detailed comparison for the steady cnoidal wave at the boundary is made in figure 6
and again the comparison is excellent.

5. Summary

Five qualitatively different types of approximate solutions of the negative quarter-
plane problem (1.2) are derived, the particular solution depending on the relation
between the initial and boundary values. A good comparison is obtained between all
these approximate solutions and numerical solutions of the initial boundary-value
problem (1.2). A key feature of the problem is the choice of boundary conditions;
it is shown that the appropriate boundary conditions are different for the positive
and negative quarter-plane problems. The techniques presented here for developing
approximate solutions are simple and directly motivated by the physics of the prob-
lem. They should prove useful for solving initial boundary-value problems for other
nonlinear dispersive wave equations, such as the Boussinesq equations, the modified
KdV equation and the Benjamin–Ono equation.

Appendix A. The numerical scheme

The numerical solutions of the KdV equation are obtained by using centred finite-
differences in the spatial coordinate x and a fourth-order Runge–Kutta method for
the temporal coordinate t. This method was chosen over straight finite-difference
methods, such as the finite-difference scheme of Zabusky & Kruskal (1965), because
of its stability. Given that the solution at time tk is

uk,j = u(tk = k∆t, xj = −j∆x), j = 0, . . . , N, (A 1)

the solution at time tk+1 is given by

uk+1,j = uk,j + 1
6(ak,j + 2bk,j + 2ck,j + dk,j), j = 1, . . . , N, (A 2)

where

ak,j = ∆tf(ηk,j), bk,j = ∆tf(ηk,j + 1
2ak,j),

ck,j = ∆tf(ηk,j + 1
2bk,j), dk,j = ∆tf(ηk,j + ck,j).

The function f is the finite-differenced form of all the terms in the KdV equation
involving spatial derivatives,

f(pk,j) = −3pk,j

∆x
(pk,j+1 − pk,j−1)

− 1
2∆x3 (pk,j+2 − 2pk,j+1 + 2pk,j−1 − pk,j−2), j = 2, . . . , N,

f(pk,0) = f(pk,1) = 0.




(A 3)

Proc. R. Soc. Lond. A (2002)



The initial boundary problem for the KdV equation 871

Near the boundary, for j = 0, 1, the function f = 0 as the solution is given by the
boundary conditions. The boundary and initial conditions used are

u0,j = ui, j � 2, u(k, 0) = ub, u(k, 1) = ub + ∆xubx, ∀k. (A 4)

The boundary condition maintains the appropriate conditions at x = 0 and as x →
−∞. The accuracy of the numerical method at each time-step is O(∆t4, ∆x2).
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