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1 Introduction

We consider the initial-boundary value problem on the right half-line for the

one-dimensional nonlinear Schrödinger (1D NLS) equation
i∂tu+ ∂2

xu+ λu|u|α−1 = 0 for (x, t) ∈ (0,+∞)× (0, T )

u(0, t) = f(t) for t ∈ (0, T )

u(x, 0) = φ(x) for x ∈ (0,+∞)

(1)

where λ ∈ C.

On R, we define the homogeneous L2-based Sobolev spaces Ḣs = Ḣ(R) by

the norm ‖φ‖Ḣs = ‖|ξ|sφ̂(ξ)‖L2
ξ
and the L2-based inhomogeneous Sobolev spaces

Hs = Hs(R) by the norm ‖φ‖Hs = ‖〈ξ〉sφ̂(ξ)‖L2
ξ
, where 〈ξ〉 = (1 + |ξ|2)1/2. In

addition, we shall need L2-based inhomogeneous Sobolev spaces on the half-line

R+ = (0,+∞), which we denote Hs(R+). These are defined, for s ≥ 0, as:

φ ∈ Hs(R+) if ∃ φ̃ ∈ Hs(R) such that φ̃(x) = φ(x) for a.e. x > 0; in this

case we set ‖φ‖Hs(R+) = inf φ̃ ‖φ̃‖Hs(R). We also similarly define, for s ≥ 0,

φ ∈ Hs(0, L) if ∃ φ̃ ∈ Hs(R) such that φ(x) = φ̃(x) a.e. on (0, L); in this case

we set ‖φ‖Hs(0,L) = inf φ̃ ‖φ̃‖Hs .

The local smoothing inequality of [15] for the 1D Schrödinger group is

‖eit∂2
xφ‖

L∞x Ḣ
2s+1

4
t

≤ c‖φ‖Ḣs

This inequality is sharp in the sense that 2s+1
4

cannot be replaced by any

higher number. We are thus motivated to consider initial-boundary data pairs

(φ(x), f(t)) ∈ Hs(R+
x ) ×H

2s+1
4 (R+

t ) and inclined to consider this configuration

optimal in the scale of L2-based Sobolev spaces.

Note that the trace map φ → φ(0) is well-defined on Hs(R+) when s > 1
2
.
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Thus, if s > 1
2
, then 2s+1

4
> 1

2
and both φ(0) and f(0) are well-defined quantities.

Since φ(0) and f(0) are both meant to represent u(0, 0), they must agree.

Therefore, we consider (1) for 0 ≤ s < 3
2

in the setting

φ ∈ Hs(R+), f ∈ H
2s+1

4 (R+), and if 1
2
< s < 3

2
, φ(0) = f(0) (2)

The solutions we construct shall have the following characteristics.

Definition 1. u(x, t) will be called a distributional solution of (1), (2) on [0, T ∗)

with strong traces if

(a) u belongs to a space X with the property that u ∈ X implies u|u|α−1 is

defined as a distribution.

(b) u(x, t) satisfies the equation (1) in the sense of distributions on the set

(x, t) ∈ (0,+∞)× (0, T ∗).

(c) Space traces: ∀ T < T ∗, we have u ∈ C([0, T ]; Hs
x) and u(·, 0) = φ in

Hs(R+).

(d) Time traces: ∀ T < T ∗, we have u ∈ C(Rx;H
2s+1

4 (0, T )) and u(0, ·) = f

in H
2s+1

4 (0, T ).

For the purposes of uniqueness in the high regularity setting s > 1
2
, we can

consider a weaker notion of solution.

Definition 2. u(x, t) will be called a distributional solution of (1), (2) on [0, T ∗)

with weak traces if it satisfies conditions (a), (b) of Definition 1 and

(c) One-sided space traces: ∀ T < T ∗, we have u ∈ C([0, T ]; Hs(R+
x )) and

u(·, 0) = φ in Hs(R+).
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(d) Boundary values: ∀ T < T ∗, we have lim
x↓0

‖u(x, ·)− f‖
H

2s+1
4 (0,T )

= 0.

So that we may, at a later time, properly address the matter of uniqueness in

the low regularity s < 1
2

setting, we shall introduce the concept of mild solution

used by [1].

Definition 3. u(x, t) is a mild solution of (1) on [0, T ∗) if ∀ T < T ∗, ∃ a

sequence {un} in C([0, T ]; H2(R+
x )) ∩ C1([0, T ]; L2(R+

x )) such that

(a) un(x, t) solves (1) in L2(R+
x ) for 0 < t < T .

(b) lim
n→+∞

‖un − u‖C([0,T ]; Hs(R+
x )) = 0.

(c) lim
n→+∞

‖un(0, ·)− f‖
H

2s+1
4 (0,T )

= 0.

[1] have announceed a method for proving uniqueness of mild solutions for

the Korteweg-de Vries (KdV) equation on the half-line (to be discussed further

in [2]), and the techniques of this forthcoming paper may also apply here to

resolve the uniqueness problem for 0 ≤ s < 1
2
.

We establish in §8 the following straightforward fact.

Proposition 1. For s > 1
2
, u is a distributional solution of (1), (2) with weak

traces if and only if it is a mild solution; in this case u is unique.

Our main result is the following existence statement.

Theorem 1.

(a) Subcritical: Suppose

0 ≤ s < 1
2
, and 2 ≤ α < 5−2s

1−2s
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or

1
2
< s < 3

2
, and 2 ≤ α <∞

Then ∃ T ∗ > 0 and u that is both a mild solution and a distributional solu-

tion with strong traces of (1),(2) on [0, T ∗). If T ∗ <∞, then limt↑T ∗ ‖u(·, t)‖Hs
x

=

∞. Also, ∀ T < T ∗, ∃ δ0 = δ0(s, T, φ, f) > 0 such that if 0 < δ ≤ δ0 and

‖φ − φ1‖Hs(R+) + ‖f − f1‖
H

2s+1
4 (R+)

< δ then there is a solution u1(as

above) on [0, T ], corresponding to (φ1, f1), such that ‖u − u1‖C([0,T ]; Hs
x) +

‖u− u1‖
C(Rx; H

2s+1
4 (0,T ))

≤ cδ, with c = c(s, T, f, φ).

(b) Critical: Suppose 0 ≤ s < 1
2

and α = 5−2s
1−2s

. Then ∃ T ∗ > 0 maximal and u

that is both a mild solution and a distributional solution with strong traces

of (1),(2) on [0, T ∗). Also, ∃ T = T (s, φ, f) < T ∗ and ∃ δ0 = δ0(s, φ, f) >

0 such that if 0 < δ ≤ δ0 and ‖φ− φ1‖Hs(R+) + ‖f − f1‖
H

2s+1
4 (R+)

< δ then

there is a solution u1(as above) on [0, T ], corresponding to (φ1, f1), such

that ‖u− u1‖C([0,T ]; Hs
x) + ‖u− u1‖

C(Rx; H
2s+1

4 (0,T ))
≤ cδ, with c = c(s, f, φ).

Note that in (b), we may not have blow-up in the norm ‖u(·, t)‖ as t ↑ T ∗.

The proof of Theorem 1 involves the introduction of a boundary forcing

operator analogous to that introduced by [9] in their treatment of the general-

ized Korteweg de-Vries equation (gKdV) on the half-line, and incorporates the

techniques of the standard proof of local well-posedness of the corresponding

initial-value problem based on the Strichartz estimates (see [7]).

One could also consider the left half-line problem
i∂tu+ ∂2

xu+ λu|u|α−1 = 0 for (x, t) ∈ (−∞, 0)× (0, T )

u(0, t) = f(t) for t ∈ (0, T )

u(x, 0) = φ(x) for x ∈ (−∞, 0)
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although this is actually identical to the right half-line problem (1) by the trans-

formation u(x, t) → u(−x, t).

We plan, in a future publication, to examine the initial-boundary value prob-

lem for the line-segment

i∂tu+ ∂2
xu+ λu|u|α−1 = 0 for (x, t) ∈ (0, L)× (0, T )

u(0, t) = f1(t) for t ∈ (0, T )

u(L, t) = f2(t) for t ∈ (0, T )

u(x, 0) = φ(x) for x ∈ (0, L)

and consider global existence questions for the half-line and line-segment prob-

lems.

We now briefly mention some earlier work and alternate perspectives on this

problem and related problems. The main new feature of our work is the low

regularity requirements for φ and f . Under higher regularity assumptions, more

general results are already available. [18] considered a bounded or unbounded

domain Ω ⊂ Rn with smooth boundary ∂Ω, and proved global existence of

solutions to 
i∂tu+ ∆u+ λu|u|α−1 = 0 for (x, t) ∈ Ω× (0, T )

u(x, t) = f(x, t) for x ∈ ∂Ω

u(x, 0) = φ(x) for x ∈ Ω

(3)

where f ∈ C3(∂Ω) is compactly supported, φ ∈ H1(Ω), and λ < 0. This solution

is obtained as a limit of solutions to approximate problems after several a priori

identities have been established. Earlier, [6] and [5] had obtained solutions to

(1) for α > 3, λ < 0 and α = 3, λ ∈ R for φ ∈ H2(R+) and f ∈ C2(0, T ), using
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semigroup techniques and a priori estimates. The problem (3) with f = 0 had

been considered previously ([4] [22] [20] [21] [23]).

[10] in the integrable case α = 3, λ = ±2 with φ Schwartz and f sufficiently

smooth, obtained a solution to (1) by reformulating the problem as a 2×2 matrix

Riemann-Hilbert problem. In this setting, [3] obtain an explicit representation

for ∂xu(0, t).

Outline: In §2, we discuss some notation, introduce function spaces and

recall some needed properties of these function spaces. In §3, we review the

definition and basic properties of the Riemann-Liouville fractional integral. In

§4, 5, we state the needed estimates for the group and inhomogeneous solution

operator. In §6, we define the boundary forcing operator, adapted from [9], and

prove the needed estimates for it. In §7, we prove Theorem 1. In §8, we prove

Prop. 1.

2 Notations and some function space proper-

ties

Let χS denote the characteristic function for the set S. We shall write Lq
T to

mean Lq([0, T ]). Set φ̂(ξ) =
∫

x
e−ixξφ(x) dx. Define (τ − i0)α as the limit, in

the sense of distributions, of (τ + iγ)−α as γ ↑ 0. Let 〈ξ〉s = (1 + |ξ|2)s/2. Let

D̂sf(ξ) = |ξ|sf̂(ξ). The homogeneous L2-based Sobolev spaces are Ḣs(R) =

(−∂2)−s/2L2(R) and the inhomogeneous L2-based Hs(R) = (1 − ∂2)−s/2L2(R).

We also set, for 1 ≤ p ≤ ∞, W s,p = (I − ∂2)−s/2Lp. We use the notation Hs

to mean Hs(R) (and not Hs(R+) or Hs
0(R+)). The trace operator φ 7→ φ(0) is

defined for φ ∈ Hs(R) when s > 1
2
. For s ≥ 0, define φ ∈ Hs(R+) if ∃ φ̃ ∈ Hs(R)
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such that φ̃(x) = φ(x) for x > 0; in this case we set ‖φ‖Hs(R+) = inf φ̃ ‖φ̃‖Hs(R).

For s ≥ 0, define φ ∈ Hs
0(R+) if, when φ(x) is extended to φ̃(x) on R by setting

φ̃(x) = 0 for x < 0, then φ̃ ∈ Hs(R); in this case we set ‖φ‖Hs
0(R+) = ‖φ̃‖Hs(R).

Define φ ∈ C∞
0 (R+) if φ ∈ C∞(R) with supp φ ⊂ [0,+∞) (so that, in particular,

φ and all of its derivatives vanish at 0), and C∞
0,c(R+) as those members of

C∞
0 (R+) with compact support. We remark that C∞

0,c(R+) is dense in Hs
0(R+)

for all s ∈ R. We shall take a fixed θ ∈ C∞
c (R) such that θ(t) = 1 on [−1, 1] and

supp θ ⊂ [−2, 2]. Denote by θT (t) = θ(tT−1).

Lemma 1 ([9] Lemma 2.8). If 0 ≤ α < 1
2
, then ‖θTh‖Hα ≤ c〈T 〉α‖h‖Ḣα,

where c = c(α, θ).

Lemma 2 ([13] Lemma 3.5). If −1
2
< α < 1

2
, then ‖χ(0,+∞)f‖Hα ≤ c‖f‖Hα,

where c = c(α).

Lemma 3 ([9] Prop. 2.4, [13] Lemma 3.7, 3.8). If 1
2
< α < 3

2
, then

Hα
0 (R+) = {f ∈ Hα(R+) | f(0) = 0} and if f ∈ Hα(R+) with f(0) = 0, then

‖χ(0,+∞)f‖Hα
0 (R+) ≤ c‖f‖Hα(R+), where c = c(α).

The following Gronwall-type inequality can be obtained by applying the

Hölder inequality iteratively:

Lemma 4. If 1 ≤ q1 < q ≤ ∞ and ∀ t ≥ 0(∫ t

0

|g(s)|q ds
)1/q

≤ cδ + c

(∫ t

0

|f(s)|q1 ds

)1/q1

then with γ defined by 2cγ
1
q1
− 1

q = 1, we have ∀ t ≥ 0,(∫ t

0

|f(s)|q1 ds

)1/q1

≤ (γt)γtδ
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A version of the chain rule for fractional derivatives is

Lemma 5 (Prop. 3.1 in [8]). Let 0 < s < 1, u : R → R2 and F : R2 → R2,

F ∈ C1, so that F ′(u) is a 2× 2 matrix. Then

‖DsF (u)‖Lr ≤ c‖F ′(u)‖Lr1‖Dsu‖Lr2

for 1
r

= 1
r1

+ 1
r2

with 1 < r, r1, r2 <∞.

The product rule for fractional derivatives is

Lemma 6 (Prop. 3.3 in [8]). Let 0 < s < 1. If u, v : R → R, then

‖Ds(uv)‖Lr ≤ ‖Dsu‖Lr1‖v‖Lr2 + ‖u‖Lr3‖Dsv‖Lr4

for 1 < r, r1, r2, r3, r4 <∞ and 1
r

= 1
r1

+ 1
r2

, 1
r

= 1
r3

+ 1
r4

.

3 The Riemann-Liouville fractional integral

The tempered distribution
tα−1
+

Γ(α)
is defined as a locally integrable function for

Re α > 0, i.e. 〈
tα−1
+

Γ(α)
, f

〉
=

1

Γ(α)

∫ +∞

0

tα−1f(t) dt

Integration by parts gives, for Re α > 0, that

tα−1
+

Γ(α)
= ∂k

t

[
tα+k−1
+

Γ(α+ k)

]
for all k ∈ N. This formula can be used to extend the definition (in the sense of

distributions) of
tα−1
+

Γ(α)
to all α ∈ C. In particular, we obtain

tα−1
+

Γ(α)

∣∣∣∣
α=0

= δ0(t)

9



A change of contour calculation shows that[
tα−1
+

Γ(α)

]
(̂τ) = e−

1
2
πiα(τ − i0)−α

where (τ − i0)−α is the distributional limit. If f ∈ C∞
0 (R+), we define

Iαf =
tα−1
+

Γ(α)
∗ f

Thus, when Re α > 0,

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s) ds

and I0f = f , I1f(t) =
∫ t

0
f(s) ds, and I−1f = f ′. Also IαIβ = Iα+β, which fol-

lows from the Fourier transform formula. For further details on the distribution
tα−1
+

Γ(α)
, see [11].

Lemma 7. If h ∈ C∞
0 (R+), then Iαh ∈ C∞

0 (R+), for all α ∈ C.

Lemma 8 ([12]). If 0 ≤ α < +∞ and s ∈ R, then

‖I−αh‖Hs
0(R+) ≤ c‖h‖Hs+α

0 (R+)

Lemma 9 ([12]). If 0 ≤ α < +∞, s ∈ R, µ ∈ C∞
0 (R)

‖µIαh‖Hs
0(R+) ≤ c‖h‖Hs−α

0 (R+)

where c = c(µ).

4 Estimates for the group

Set

eit∂2
xφ(x) =

1

2π

∫
ξ

eixξe−itξ2

φ̂(ξ) dξ (4)
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so that  (i∂t + ∂2
x)e

it∂2
xφ = 0 for (x, t) ∈ R× R

eit∂2
xφ(x)

∣∣
t=0

= φ(x) for x ∈ R

Lemma 10. Let s ∈ R. If φ ∈ Hs(R), then

(a) Space traces: ‖eit∂2
xφ(x)‖C(Rt; Hs

x) ≤ c‖φ‖Hs.

(b) Time traces: ‖θT (t)eit∂2
xφ(x)‖

C(Rx; H
2s+1

4
t )

≤ c〈T 〉1/4‖φ‖Hs.

(c) Mixed-norm: If 2 ≤ q, r ≤ ∞ and 1
q

+ 1
2r

= 1
4
, then ‖eit∂2

xφ(x)‖Lq
t W s,r

x
≤

c‖φ‖Hs.

Proof. (a) is clear from (4). (b) was obtained in [15]. (c) was obtained by [19]

(see also [14]).

5 Estimates for the Duhamel inhomogeneous

solution operator

Let

Dw(x, t) = −i
∫ t

0

ei(t−t′)∂2
xw(x, t′) dt′

Then  (i∂t + ∂2
x)Dw(x, t) = w(x, t) for (x, t) ∈ R× R

Dw(x, 0) = 0 for x ∈ R

Lemma 11. Suppose 2 ≤ q, r ≤ ∞ and 1
q

+ 1
2r

= 1
4
, then

(a) Space Traces: If s ∈ R, then ‖Dw‖C(Rt;Hs
x) ≤ c‖w‖

Lq′
t W s,r′

x
.

(b) Time Traces: If −3
2
< s < 1

2
, then ‖θT (t)Dw(x, t)‖

C(Rx; H
2s+1

4
t )

≤ c〈T 〉1/4‖w‖
Lq′

t W s,r′
x

.
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(c) Mixed-norm: If s ∈ R, then ‖Dw‖Lq
t W s,r

x
≤ c‖w‖

Lq′
t W s,r′

x
.

Proof. (a) and (c) are due to [19] (see also [14]). We now prove (b), following

the techniques of Theorem 2.3 in [16]. We use the representation

Dw(x, t) = − i

2

∫ +∞

−∞
(sgn t′)ei(t−t′)∂2

xw(x, t′) dt′

+
1

2πi

∫
τ

eitτ

[
lim

ε→0+

1

2π

∫
|τ+ξ2|>ε

eixξ ŵ(ξ, τ)

τ + ξ2
dξ

]
dτ

= I + II

and Term II can also be written

II =
1

2π

∫
τ

eitτ [m(·, τ) ∗ ŵt(·, τ)](x) dτ

where ŵt(·, τ) denotes the Fourier transform of w(x, t) in the t-variable alone

and

m(x, τ) = −1

2
χ(0,+∞)(τ)

exp(−|x||τ |1/2)

|τ |1/2
+

1

2
χ(−∞,0)(τ)

sin(|x||τ |1/2)

|τ |1/2

First we treat Term I for all s and all admissible pairs q, r. Pairing Term I with

f(x, t) such that ‖f‖
L1

xH
− 2s+1

4
t

≤ 1, we are left to show that

∥∥∥∥∫
t′
(sgn t′)e−it′∂2

xw(x, t′) dt′
∥∥∥∥

Hs
x

≤ c‖w‖
Lq′

t W s,r′
x

and ∥∥∥∥∫
t

θT (t)e−it∂2
xf(x, t) dt

∥∥∥∥
H−s

x

≤ c‖f‖
L1

xH
− 2s+1

4
t

The first of these follows from the proof of (a), while the second is obtained by

duality and Lemma 10(b). We address Term II separately for r′ = 2, q′ = 1,

and r′ = 1, q′ = 4
3
; the intermediate cases follow by interpolation. For the case
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r′ = 2, q′ = 1, we use the first representation of Term II with Lemma 1, the

change of variable η = −ξ2, and L2-boundedness of the Hilbert transform on

A2-weighted spaces, to obtain

‖θT (t)(Term II)‖
H

2s+1
4

t

≤ c

(∫
ξ

|ξ|s|ŵ(ξ, τ)|2 dξ
)1/2

≤ c

(∫
ξ

|ξ|s
(∫

t

|ŵx(ξ, t)| dt
)2

dξ

)1/2

where ŵx(ξ, t) denotes the Fourier transform in the x-variable alone. Complete

the bound by applying Minkowskii’s integral inequality and the Placherel theo-

rem. The validity of this step is restricted to −3
2
< s < 1

2
.

We shall only prove the r′ = 1, q′ = 4
3

case for s = 0. Note that by the

second representation for Term II, ‖(Term II)‖
L∞x H

1/4
t

is

∫
τ

∫
y

|τ |−1/2m(x− y, τ)ŵt(y, τ) dy

∫
z

|τ |−1/2m(x− z, τ)ŵt(z, τ) dz dτ

which is equivalent to∫
y,s,z,t

K(y, s, z, t)w(y, s)w(z, t) dy ds dz dt

where

K(y, s, z, t) =

∫
τ

|τ |1/2e−i(s−t)τm(x− y, τ)m(x− z, τ) dτ

From the definition of m, we see that |K(y, s, z, t)| ≤ c|s− t|−1/2. We conclude

by applying the theorem on fractional integration (see Theorem 1 of Chapter V

in [17]).
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6 Estimates for the Duhamel boundary forcing

operator

For f ∈ C∞
0 (R+), define the boundary forcing operator

Lf(x, t) = 2ei 1
4
π

∫ t

0

ei(t−t′)∂2
xδ0(x)I−1/2f(t′) dt′ (5)

=
1√
π

∫ t

0

(t− t′)−1/2 exp

(
ix2

4(t− t′)

)
I−1/2f(t′) dt′ (6)

The equivalence of the two definitions is evident from the formula[
e−i π

4
sgn t

2
√
π

1

|t|1/2
exp

(
ix2

4t

)]
(̂ξ) = e−itξ2

From these two definitions, we see that
(i∂t + ∂2

x)Lf(x, t) = 2ei 3
4
πδ0(x)I−1/2f(t) for (x, t) ∈ R× R

Lf(x, 0) = 0 for x ∈ R

Lf(0, t) = f(t) for t ∈ R

We now establish some continuity properties of Lf(x, t) when f is suitably nice.

Lemma 12. Let f ∈ C∞
0,c(R+).

(a) For fixed t, Lf(x, t) is continuous in x for all x ∈ R and ∂xLf(x, t) is

continuous in x for x 6= 0 with

lim
x↑0

∂xLf(x, t) = e−
1
4
πiI−1/2f(t) lim

x↓0
∂xLf(x, t) = −e−

1
4
πiI−1/2f(t)

(7)

(b) ∀ k = 0, 1, 2, . . . and for fixed x, ∂k
t Lf(x, t) is continuous in t for all t ∈ R.
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We also have the pointwise estimates, for k = 0, 1, 2, . . ., on [0, T ],

|∂k
t Lf(x, t)|+ |∂xLf(x, t)| ≤ c〈x〉−N

where c = c(f,N, k, T ).

Proof. Let us denote “integration by parts” by IBP. It is clear from (6) and

dominated convergence that, for fixed t, Lf(x, t) is continuous in x, and for

fixed x, Lf(x, t) is continuous in t. Let h = 2ei 1
4
πI−1/2f ∈ C∞

0 (R+) (by Lemma

7) and φ(ξ, t) =
∫ t

0
e−i(t−t′)ξh(t′) dt′. By IBP in t′, |∂k

ξφ(ξ, t)| ≤ c〈ξ〉−k−1, where

c = c(h, k, T ), and thus

|∂k
ξφ(ξ2, t)| ≤ c〈ξ〉−k−2 (8)

We have

Lf(x, t) =

∫
ξ

eixξφ(ξ2, t) dξ (9)

and by IBP in ξ and (8), we have |Lf(x, t)| ≤ c〈x〉−N . By ∂t[e
i(t−t′)∂2

xδ0(x)] =

−∂t′ [e
i(t−t′)∂2

xδ0(x)] and IBP in t′ in (5), ∂tLf = L∂tf , and thus, for fixed x,

∂k
t Lf(x, t) is continuous in t and |∂k

t Lf(x, t)| ≤ c〈x〉−N . By ∂2
x[e

i(t−t′)∂2
xδ0(x)] =

i∂t′ [e
i(t−t′)∂2

xδ0(x)] and IBP in t′ in (5), ∂2
xLf(x, t) = 2ei 3

4
πδ0(x)I−1/2f(t) −

iL(∂tf)(x, t). Hence

∂xLf(x, t) = ei 3
4
π(sgnx)I−1/2f(t)− i

∫ x

x′=0

L(∂tf)(x′, t) dx′ + c(t)

Since all terms except c(t) are odd in x, we must have c(t) = 0. From this

we obtain (7), and the bound |∂xLf(x, t)| ≤ c. From (9), IBP in ξ and (8), we

obtain that |∂xLf(x, t)| ≤ c|x|−N . Combining the two previous bounds, we have

|∂xLf(x, t)| ≤ c〈x〉−N .

Now we provide an alternate representation of Lf(x, t).
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Lemma 13. Suppose f ∈ C∞
0,c(R+). Then

Lf(x, t) =
1

2π

∫
τ

eitτe−|x|(τ−i0)1/2

f̂(τ) dτ (10)

where

(τ − i0)
1
2 = χ(0,+∞)(τ)|τ |1/2 − iχ(−∞,0)(τ)|τ |1/2

Proof. It suffices to verify that

(a) On [0, T ], |Lf(x, t)|+ |∂tLf(x, t)| ≤ c〈x〉−N , with c = c(f,N, T ).

(b) Lf(x, 0) = 0

(c) (i∂t + ∂2
x)Lf(x, t) = 2δ0(x)e

3
4
πiI−1/2f(t)

(a) is integration by parts in τ in (10) using −2(τ − i0)1/2|x|−1∂τ [e
−|x|(τ−i0)1/2

] =

e−|x|(τ−i0)1/2
. To show (b), note that since f ∈ C∞

0,c(R+), f̂(τ) extends to an

analytic function on Im τ < 0 satisfying |f̂(τ)| ≤ c〈τ〉−k with c = c(f, k), and

thus

Lf(x, 0) =
1

2π
lim
γ↑0

∫
Im τ=γ

e−|x|τ
1/2

f̂(τ) dτ (11)

Since |e−|x|τ1/2| ≤ 1 for Im τ < 0, by Cauchy’s theorem, (11) = 0. (c) is a direct

computation from (10).

Denote the operator defined by (10) as L2f(x, t) and the one given by (5)-(6)

as L1f(x, t). Setting w = L1f − L2f , we have w(x, 0) = 0 and (i∂t + ∂2
x)w = 0.

Compute ∂t

∫
x
|w|2dx = 0, which yields w = 0, to complete the proof.

Lemma 14. Suppose q, r ≥ 2 and 1
q

+ 1
2r

= 1
4
.

(a) Space traces: If −1
2
< s < 3

2
, then ‖θT (t)Lf(x, t)‖C(Rt;Hs

x) ≤ c〈T 〉1/4‖f‖
H

2s+1
4

0 (R+)
.
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(b) Time traces: If s ∈ R, then ‖Lf‖
C(Rx;H

2s+1
4

0 (R+
t ))

≤ c‖f‖
H

2s+1
4

0 (R+)
.

(c) Mixed norm: If 0 ≤ s ≤ 1, r 6= ∞, we have ‖Lf‖Lq
t W s,r

x
≤ c‖f‖

H
2s+1

4
0 (R+)

.

Proof. By density, it suffices to establish these facts for f ∈ C∞
0,c(R+).

By pairing (a) with φ(x) such that ‖φ‖H−s ≤ 1, we see that it suffices to

show ∫ t

t′=0

f(t′)θT (t)ei(t−t′)∂2
xφ
∣∣
x=0

dt′ ≤ c〈T 〉1/4‖f‖
H

2s+1
4

But

LHS ≤ ‖χ(−∞,t)f(t′)‖
H

2s+1
4

t′
‖θT (t)ei(t−t′)∂2

xφ(x)‖
H
−2s−1

4
t′

≤ RHS

by Lemmas 10(b) and 2. To establish the continuity statement, write θT (t2)Lf(x, t2)−

θT (t1)Lf(x, t1) =
∫ t2

t1
∂t[θ(t)Lf(x, t)] dt. By ∂tL = L∂t and the bound just de-

rived, we have ‖θT (t2)Lf(x, t2)− θT (t1)Lf(x, t1)‖ ≤ c|t2 − t1|‖f‖
H

2s+5
4

0

.

(b) is immediate from Lemma 13, except that we should confirm that (under

the assumption f ∈ C∞
0,c(R+), that ∂k

t Lf(x, 0) = 0 for all k = 0, 1, 2, . . .. This,

however, follows from ∂tL = L∂t. The continuity statement follows by using

Lf(x2, t)− Lf(x1, t) =
∫ x2

x1
∂xLf(x, t) dx. From Lemma 13, we have

∂xLf(x, t) = e−
1
4
πi(sgnx)

1

2π

∫
τ

eitτe−|x|(τ−i0)1/2

[I−1/2f ]̂ (τ) dτ

and thus

‖Lf(x2, t)− Lf(x1, t)‖
H

2s+1
4

0 (R+)
≤ c|x2 − x1|‖f‖

H
2s+3

4
0

To prove (c), it suffices to establish

‖Lf(x, t)‖L4
t L∞x

≤ c‖f‖Ḣ1/4 (12)

and

‖∂xLf(x, t)‖L4
t L∞x

≤ c‖f‖Ḣ3/4 (13)
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Indeed, the proof of (a) in the case s = 1 shows

‖Lf(x, t)‖L∞t L2
x
≤ c‖f‖Ḣ1/4 ‖∂xLf(x, t)‖L∞t L2

x
≤ c‖f‖Ḣ3/4

Interpolate (12) with the first inequality and (13) with the second inequality to

obtain

‖Lf(x, t)‖Lq
t Lr

x
≤ c‖f‖Ḣ1/4 ‖∂xLf(x, t)‖Lq

t Lr
x
≤ c‖f‖Ḣ3/4

for admissible q, r. This implies

‖Lf(x, t)‖Lq
t W s,r

x
≤ c‖f‖

H
2s+1

4
, r 6= ∞

for s = 0 and s = 1. Now interpolate over s between these two endpoints to

obtain the result as stated.

By pairing LHS of (12) against w(x, t) ∈ L
4/3
t L1

x, we see that it suffices to

show ∥∥∥∥∫
x

∫
t

eitτe−|x|(τ−i0)1/2

w(x, t) dx dt

∥∥∥∥
Ḣ−1/4

Writing out the L2
τ norm, we see that it suffices to show∫

x,t,y,s

K(x, t, y, s)w(x, t)w(y, s) dx dt dy ds ≤ c‖w‖
L

4/3
t L1

x

where

K(x, t, y, s) =

∫
τ

|τ |−1/2ei(t−s)τe−|x|(τ−i0)1/2

e−|y|(τ+i0)1/2

dτ

By a change of contour calculation, it follows that |K(x, y, t, s)| ≤ c|t − s|−1/2,

and hence (12) follows by the theorem on fractional integration. For (13), the

kernel is instead

K(x, t, y, s) = (sgnx)(sgn y)

∫
τ

|τ |−1/2ei(t−s)τe−|x|(τ−i0)1/2

e−|y|(τ+i0)1/2

dτ

and hence the estimation of |K| is identical.
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7 Existence: Proof of Theorem 1

First we prove the subcritical assertion (a) in the case 0 ≤ s < 1
2
. Select an

extension φ̃ ∈ Hs of φ such that ‖φ̃‖Hs ≤ 2‖φ‖Hs(R+). Set r = α+1
1+(α−1)s

and

q = 4(α+1)
(α−1)(1−2s)

. This is an admissible pair with r ≥ 2 and q ≥ 2( 2
1−2s

+ 1). Set

Z = C(Rt; H
s
x) ∩ C(Rx;H

2s+1
4

t ) ∩ Lq
tW

s,r
x

Take w ∈ Z. By the chain rule (Lemma 5), for α ≥ 1 (see below for details)

‖Ds(|w|α−1w)‖
Lq′

4T Lr′
x
≤ cT σ‖w‖α

Lq
4T W r,s

x
(14)

for some σ > 0. Note that by Lemmas 10(b), 11(b), 2, if w ∈ Z, then

f(t) − θ2T (t)eit∂2
xφ̃
∣∣
x=0

∈ H
2s+1

4
0 (R+

t ) and θ2T (t)D(w|w|α−1)(0, t) ∈ H
2s+1

4
0 (R+

t ),

and the evaluation at x = 0 in these statements is understood in the sense of

C(Rx;H
2s+1

4
t ). Let

Λw(t) = θT (t)eit∂2
xφ̃+ θT (t)L(f − θ2T e

i·∂2
xφ̃
∣∣
x=0

)(t)

− λθT (t)D(w|w|α−1)(t) + λθT (t)L(θ2TD(w|w|α−1)
∣∣
x=0

)(t)

(15)

so that, on [0, T ], (i∂t + ∂2
x)Λw = −λw|w|α−1 for x 6= 0 in the sense of distribu-

tions. By Lemmas 10, 11, 14 and (14),

‖Λw‖Z ≤ c‖φ‖Hs(R+) + c‖f‖
H

2s+1
4 (R+)

+ cT σ‖w‖α
Z (16)

In the sense of C(Rt;H
s
x), we have Λw

(
x, 0) = φ(x) on R, and in the sense of

C(Rx;H
2s+1

4
t ), we have Λw(0, t) = f(t) on [0, T ]. We therefore look to solve

Λw = w for some selection of T . By the chain rule and product rule (see below

for details), for α ≥ 2,

‖Λw1 − Λw2‖Z ≤ cT σ(‖w1‖α−1
ZT

+ ‖w2‖α−1
Z )‖w1 − w2‖Z (17)
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Now choose T small in terms of ‖φ‖Hs(R+) and ‖f‖
H

2s+1
4 (R+)

, so that, by (16)

and (17), Λ is a contraction, which yields a unique fixed point u, which on [0, T ]

solves the integral equation

u(t) = eit∂2
xφ̃+ L(f − ei·∂2

xφ̃
∣∣
x=0

)

− λD(u|u|α−1) + λL(D(u|u|α−1)
∣∣
x=0

)

(18)

Let S be the set of all times T > 0 for which (1) ∃ u ∈ Z such that u solves

(18) on [0, T ] and (2) for each pair u1, u2 ∈ Z, such that u1 solves (18) on [0, T1]

with T1 ≤ T and u2 solves (18) on [0, T2] with T2 ≤ T , we have u1 = u2 on

[0,min(T1, T2)].

We claim that T as given in the above contraction argument is in S. We need

only show condition (2). But the integral equation (18) has a unique solution

by the contraction argument in the space Lq
Tm
W s,r

x , where Tm = min(T1, T2),

by Lemmas 10(c), 11(c), 14(c) and the fact that χ[0,Tm]Lg = χ[0,Tm]L(θTmg),

χ[0,Tm]Dw = χ[0,Tm]Dχ[0,Tm]w. Let T ∗ = supS. Define u∗ on [0, T ∗) by setting,

for t < T ∗, u∗(t) = u(t) for some u ∈ Z whose existence is given by condition

(1); this is well-defined by condition (2).

Suppose T ∗ <∞ and limt↑T ∗ ‖u(·, t)‖Hs(R+) 6= ∞. Then ∃ a and a sequence

tn → T ∗ such that ‖u∗(tn)‖Hs(R+) ≤ a. By the above existence argument applied

at time tn for n sufficiently large, we obtain a contradiction, as follows. We shall

select T = tn for n sufficiently large in a moment. We have, by assumption,

u1 ∈ Z solving the integral equation

u1(t) = eit∂2
xφ̃+ L(f − ei·∂2

xφ̃
∣∣
x=0

)

− λD(u1|u1|α−1) + λL(D(u1|u1|α−1)
∣∣
x=0

)

(19)

on [0, T ]. Apply the above existence argument to obtain u2 ∈ Z solving, on
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[T, T + δ], the integral equation

u2(t) = ei(t−T )∂2
xu(T ) + LT (f − ei(·−T )∂2

xu(T )
∣∣
x=0

)

− λDT (u2|u2|α−1) + λLT (DT (u2|u2|α−1)
∣∣
x=0

)

(20)

where

LTg(t) = (g(·+ T ))(t− T ) DTv(t) = D(v(·+ T ))(t− T )

Since δ = δ(a, ‖f‖
H

2s+1
4 (R+)

), we can select n sufficiently large so that T + δ =

tn +δ > T ∗. Now we show that we can concatenate these two integral equations.

Define u(t) = u1(t) for −∞ < t ≤ T and u(t) = u2(t) for T ≤ t < +∞. Then

clearly u ∈ Lq
tW

r,s
x ∩ C(Rt; H

s
x). Evaluate (19) at t = T , substitute into (20),

and apply the two identities

Lg(t) = ei(t−T )∂2
xLg(T )− LT (g − ei(·−T )∂2

xLg(T )
∣∣
x=0

)(t) for t ≥ T

Dv(t) = ei(t−T )∂2
xDv(T ) +DTv(t) for all t

(21)

with v(t) = −λu|u|α−1(t) and g(t) = f(t)−eit∂2
xφ̃
∣∣
x=0

−Dv(0, t) on 0 ≤ t ≤ T+δ.

This establishes that u solves, on [0, T + δ], the integral equation (18). Next,

we show that u ∈ C(Rx; H
2s+1

4 ). Let ψ ∈ C∞ such that ψ(t) = 0 for t ≤ 0,

ψ(t) = 1 for T
2
≤ t ≤ T + δ

2
, ψ(t) = 0 for t > T +δ. It is clear from the definition

of u that (1− ψ)u ∈ C(Rx; H
2s+1

4
t ). Since by (18)

ψ(t)u(t) = ψ(t)eit∂2
xφ̃+ ψ(t)L(f − θ2(T+δ)e

i·∂2
xφ̃
∣∣
x=0

)(t)

− λψ(t)D(u|u|α−1)(t) + λψ(t)L(θ2(T+δ)D(u|u|α−1)
∣∣
x=0

)

by Lemmas 10(b), 11(b), and 14(b) we have ψu ∈ C(Rx; H
2s+1

4
t ).

Next, we need to verify condition (2) in the definition of f . Now suppose

u is a solution on [0, Tu] with Tu ≤ T + δ, and v is a solution on [0, Tv] with
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Tv ≤ T + δ, and suppose min(Tu, Tv) ≥ T ∗. Then u(t) = v(t) for all t ≤ T

(since T ∈ S). Then, again by (21), u solves (20) with u2 replaced by u, and

v solves (20) with u2 replaced by v (u(T ) = v(T )). By uniqueness of the fixed

point to (20) in Lq
[T,T+δ]W

s,r
x , we get that u(t) = v(t) on [T, T + δ]. We have

thus established that supS ≥ T + δ > T ∗, which is a contradiction, so in fact

limt↑T ∗ ‖u(·, t)‖Hs(R+) = ∞ if T ∗ <∞.

Now we move on the continuity claim. Suppose (φ, f) gives a solution u of

(18) on [0, T ∗), and consider (φ1, f1) with ‖φ−φ1‖Hs(R+)+‖f−f1‖
H

2s+1
4 (R+)

< δ.

Fix T < T ∗. Let u1 be the solution corresponding to (φ1, f1) on [0, T1], where T1

is the first time t such that ‖u1‖Lq
[0,t]

W s,r
x

= 2‖u‖Lq
T W s,r

x
. We claim that T1 > T

provided we take δ sufficiently small. Indeed, taking the difference of the two

integral equations, we find, for t ≤ min(T1, T )

‖u− u1‖Lq
[0,t]

W s,r
x

≤ cδ + c(‖u‖Lq
T W s,r

x
+ ‖u1‖Lq

T1
W s,r

x
)‖u− u1‖L

q1
[0,t]

W s,r
x

where q1 < q, and c depends only upon operator norms. This gives, by Lemma

4,

‖u− u1‖Lq
[0,t]

W s,r
x

≤ cδ (22)

where now c depends on f , φ, and T . Now if T1 < T , then take t = T1 in

(22) and δ sufficiently small to obtain a contradiction. The inequality (22) plus

estimates on the difference of the integral equations for u and u1 also shows

‖u− u1‖C([0,T ]; Hs
x) + ‖u− u1‖

C(Rx; H
2s+1

4 (0,T ))
≤ cδ

Now we remark on the proof in the subcritical case (a) for 1
2
< s < 3

2
. Let

Z = C(Rt; H
s
x) ∩ C(Rx;H

2s+1
4

t )
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Set r = 2, q = ∞ in the remainder of the argument above. Do note, how-

ever, that to show f(t) − θ2T (t)eit∂2
xφ̃
∣∣
x=0

∈ H
2s+1

4 (R+
t ), we need to appeal to

the compatibility condition f(0) = φ(0) and Lemma 3. Also, by Lemma 3,

θ2T (t)D(w|w|α−1)(0, t) ∈ H
2s+1

4
0 (R+

t )

Now we discuss the critical case (b). Let Z = Lq
tW

s,r
x with r = α+1

1+(α−1)s
and

q = 4(α+1)
(α−1)(1−2s)

. The integral equation is

Λw(t) = θT (t)eit∂2
xφ̃+ θT (t)L(f − θ2T e

i·∂2
xφ̃
∣∣
x=0

)(t)

− λθT (t)D(w|w|α−1)(t) + λθT (t)L(θ2TD(w|w|α−1)
∣∣
x=0

)(t)

(23)

Now, because q 6= ∞, ‖θT (t)eit∂2
xφ̃‖Lq

t W s,r
x

→ 0 as T ↓ 0 and ‖θT (t)L(f −

θ2T e
i·∂2

xφ̃
∣∣
x=0

)(t)‖Lq
t W r,s

x
→ 0 as T ↓ 0. Therefore, ∃ T > 0 such that

‖θT (t)eit∂2
xφ̃‖Lq

t W s,r
x

+ ‖θT (t)L(f − θ2T e
i·∂2

xφ̃
∣∣
x=0

)(t)‖Lq
t W s,r

x
< δ

which gives

‖Λw‖Z ≤ δ + c‖w‖α
Z (24)

For δ sufficiently small, there will be a fixed point in the space {w ∈ Z | ‖w‖Z <

2δ }. From Λu = u, (23) and Lemmas 10(a), 11(a), 14(a), we can recover the

bounds in C(Rt; H
s
x), and by Lemmas 10(b), 11(b), 14(b), we can recover the

bounds in C(Rx; H
2s+1

4
t ). Let T ∗ be the supremum of all existence times with a

uniqueness stipulation, as before. We are not able to show the blowup statement

in this case. Moreover, we also can only establish the continuity assertion for

some T < T ∗.

23



7.1 Notes on applying the chain and product rule

We shall apply the chain rule (Lemma 5) with w : R → C and F : C → C given

by F (w) = |w|α−1w, for α ≥ 1. Then

F ′(w) =

(α− 1)|w|α−3(Rew)2 + |w|α−1 (α− 1)|w|α−3(Rew)(Imw)

(α− 1)|w|α−3(Rew)(Imw) (α− 1)|w|α−3(Imw)2 + |w|α−1


and consequently each component of F ′(w) is bounded by |w|α−1. Thus

‖Ds|w|α−1w‖Lr′
x
≤ cα‖|w|α−1‖Lr′′

x
‖Dsw‖Lr

x

where 1
r′′

= 1
r′
− 1

r
= 1− 2

r
and 1

q′′
= 1

q′
− 1

q
= 1− 2

q
. Since r, q have been selected

so that 1
(α−1)r′′

= 1
r
− s and 1

(α−1)q′′
> 1

q
, we have

‖Ds|w|α−1w‖Lr′
x
≤ c‖Dsw‖α

Lr
x

To handle differences, for w0, w1 : R → C, set wθ = θw1 + (1− θ)w0. Then

|w1|α−1w1−|w0|α−1w0 =

∫ 1

θ=0

(α−1)|wθ|α−3wθ(wθ ◦(w1−w0))+ |wθ|α−1(w1−w0)

where z1 ◦ z2 = (Re z1)(Re z2) + (Im z1)(Im z2). To this, apply Ds, and invoke

the product rule (Lemma 6) and the chain rule (Lemma 5).

8 Uniqueness: Proof of Prop. 1

We shall begin by establishing uniqueness of a distributional solution with weak

traces for the linear problem for s ≥ 0. Given two solutions u1, u2, consider the

difference v = u1 − u2. We are thus assuming

v ∈ C([0, T ∗); L2(R+)) with v(x, 0) = 0 (25)
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and

lim
x→0+

‖v(x, ·)‖L2
(0,T )

= 0 (26)

Take T < T ∗. Let θ(t) be a nonnegative smooth function supported on [−2,−1]

with
∫
θ = 1. Let θδ(t) = δ−1θ(δ−1t). For δ, ε > 0, let

vδ,ε(x, t) =

∫∫
v(y, s)θδ(x− y)θε(t− s) dy ds (27)

which defines, in the sense of distributions, vδ,ε(x, t) a smooth function on −δ <

x < +∞, −ε < t < T − 2ε. Owing to the assumption (25) we can write

vδ,ε(x, t) =

∫
s

θε(t− s)

[∫
y

v(y, s)θδ(x− y) dy

]
ds

where the integrals are defined in the usual sense. From this it follows that

‖vδ,ε(·, t)‖L2(R+
x ) ≤ sup

t+ε≤s≤t+2ε
‖v(·, s)‖L2(R+

x )

Owing to the assumption (26), ∃ L > 0 such that sup0<x≤2L ‖v(x, ·)‖L2
(0,T )

≤ 1.

It follows that, for x+ 2δ < 2L, (27) can be written

vδ,ε(x, t) =

∫
y

θδ(x− y)

[∫
s

v(y, s)θε(t− s) ds

]
dy

where the integrals are understood in the usual sense, and we also have

‖vδ,ε(x, ·)‖L2(0,T ) ≤ sup
x+δ<y<x+2δ

‖v(y, ·)‖L2(ε,T+2ε) (28)

Let

vε(x, t) =

∫
s

θε(t− s)v(x, s) ds

which is initially understood as defining, for each t, a distribution in x on

(0,+∞). It follows from (25) that it is also, for each t, a square integrable

function in x with ‖vε(·, t)‖L2(R+) ≤ supt+ε<s<t+2ε ‖v(·, s)‖L2(R+) and

lim
ε→0+

‖vε(·, t)− v(·, t)‖L2(R+) = 0 (29)
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Now we proceed to the calculation. The identity is∫ +∞

0

|vδ,ε(x, T )|2 dx =

∫ +∞

x=0

|vδ,ε(x, 0)|2 + 2Im

∫ T

t=0

∂xvδ,ε(0, t)vδ,ε(0, t) dt (30)

Now ∃ x1 with 0 < x1 < L such that ∂xvδ,ε(x1, t) = L−1(vδ,ε(L, t) − vδ,ε(0, t)),

by the mean-value theorem. Again by the mean-value theorem, ∃ x2 with 0 <

x2 < x1 such that ∂xvδ,ε(x1, t)− ∂xvδ,ε(0, t) = x1∂
2
xvδ,ε(x2, t). Subtracting,

‖∂xvδ,ε(0, ·)‖L2(0,T ) ≤ L sup
0≤y≤L

‖∂2
xvδ,ε(y, ·)‖L2(0,T ) + L−1 sup

0≤y≤L
‖vδ,ε(y, ·)‖L2(0,T )

(31)

Bounding the terms on the right of this equation, we have

sup
0<x<L

‖vδ,ε(x, ·)‖L2(0,T ) ≤ sup
δ<x<L+2δ

‖v(x, ·)‖L2
(ε,T+2ε)

≤ 1

We also have

∂2
xvδ,ε(x, t) = −i∂tvδ,ε(x, t) = iε−1

∫∫
θδ(x− y)(θ′)ε(t− s)v(y, s) dy ds

and thus

sup
0<x<L

‖∂2
xvδ,ε(x, ·)‖L2(0,T ) ≤ ε−1 sup

δ<x<L+2δ
‖v(x, ·)‖L2(ε,T+2ε) ≤ ε−1

Hence, for fixed ε > 0 by Cauchy-Schwarz, bounding by (31) and (28), we have∫ T

0

vδ,ε(0, t)∂xvδ,ε(0, t) dt→ 0 as δ → 0

Send δ → 0 in (30) to get∫ +∞

x=0

|vε(x, T )|2 =

∫ +∞

x=0

|vε(x, 0)|2 dx

and then send ε→ 0 and use (29).

Now we prove Prop. 1
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Proof. Suppose u1, u2 are given as in the statement of the proposition, and

additionally are smooth and have adequate decay. Let v = u2 − u1 so that

i∂tv + ∂2
xv + λ(|u2|α−1u2 − |u1|α−1u1)

and v(x, 0) = 0, v(0, t) = 0. Then

∂t

∫ +∞

0

|v|2 dx = 2Re iλ

∫ +∞

x=0

(u2|u2|α−1 − u1|u1|α−1)v̄ dx (32)

and thus, for any t > 0,

‖v(t)‖2
L2

x(R+) ≤ 2|λ|(‖u1‖α−1
L∞

[0,t]
L∞x (R+) + ‖u1‖α−1

L∞
[0,t]

L∞x (R+))

∫ t

0

‖v(s)‖2
L2

x
ds

By the Sobolev imbedding Hs(R+) ⊂ L∞(R+) and Gronwall’s inequality, v(t) =

0. To handle rough u1, u2, mollify v as was done above in the linear case to

obtain vδ,ε so that

∂tvδ,ε = i∂2
xvδ,ε + iλ(u2|u2|α−1 − u1|u1|α−1)δ,ε

Now prove an identity analogous to (30), estimate as in (32), and pass to the

limit to conclude v = 0.
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