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The Initial Value Problem for the Equations of Motion

of Compressible Viscous and Heat.Conductive Fluids

By Akitaka MATSUMURA*) and Takaaki NISHIDA**)

(Communicated by K6saku YOSIDA, M. ft. A., Nov. 12, 1979)

1. Introduction and theorem. The motion of the general iso-
tropic Newtonian fluids are described by the five conservation laws"

p, + (puO,= 0

lui+uJu+lpx,=l{(ff(uj+u,))x+(#’u)x,}, i=1,2, 3
(1.1) j p

%=pc pc
where p" density, u= (u, u, u)" velocity, t?" absolute temperature,
p p(p, t?)" pressure, ff if(p, 0)" viscosity coefficient,//=//(p, 0)" second
viscosity coefficient, =(p, 0)" coefficient of heat conduction, c c(p, 0)"

heat capacity at constant volume and ff (u--, ,+uy) +ff (u) dissipa-

tion unction. We consider the initial value problem or (1.1) with
the initial data

(1.2) (p, u, t?)(0, x)= (p0, u0, t?0)(x), x e R3.
We seek the solutions in a neighbourhood of a constant state (p, u, 0)
=(, 0, t), where , t are any positive constants. Thus we assume a
natural condition on the system (1.1) of hyperbolic-parabolic type
throughout this paper that

(i) p, c, if, if’ and are smooth functions in (C)={(p,
lul,

(ii) @lap, apiarY>o, c, t, >0 and ff’+.--ff__.0 in O,

where <min {p, t}.
First rewrite the system (1.1) by the change of the unknown and

known variables as follows" pp+p, uu, 0+, p(p+p,+O)
----p(p, 0), if(p+ p, u, +O)--ff(p, u, O) and so on.

[L(p, u) =_ p, + (p+p)ug+ujpx 0
L -,(1 3) (u) ut- flu;m- (/2+ ff )u,,. G, i 1 2, 3
[L(O) ----0-ZO=G,
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where

[G=-,-oo,+g, G’=_ -u+g,
(1 4) g =--u u+{a(u+m,)+/2,(m)}/(p+ p)

Here we also use the abbreviations
P=z/(+), P’=’/(+), =p,/(+), ,=p,/(+),
=(+O)po/(+p)c and =/(+p)c.

Let H (/= 1, ..., 4) be the Sobolev space with the norm [l, of the L2-
functions having all the/-th derivaves of L-functions. Define, by
the Sobolev’s lemma so that for f ]]<, we have max flC f]<

initial data for (1.3) are given by
(1.5) (, u, O)(0)=(0, u0, 0) eHL for 1=3 or 4.

The solution is sought in the space of functions X(0, E) for some
E<,/:3 or 4, where for Ot<t

(1.6) x’(t, t; E)={(, u,0)(t) (t, x) e C(t, t; H’) C(, t
u’(,, x), 0(t, x) e C(t, t H’) C(t, t H’-O L(t, t H’+9, i 1, 2, 3,

Theorem. Consider the initial value problem (1.3) (1.5) and
the initial data have the norm for/=4

(1.7) E, (, u, a)(0)II, + (, u, a)(0) ,,<.
Then there exist positive constants 3o and Co< (C030,) such tha if
E<0, then the problem (1.3)(1.5) has the unique solution (p, u, O)(t)
in the large such

(, u, 0)(0 e X’(0, CoE,)
and it has the decay rate

(1.8) l](p, u, o)($)ilCoE/(l+$)’.
In particular,

(1.9) if Z, Z, and do not depend on p,
then the above assertion holds for/=3 also.

In [1] we obtain the same type of result in the more restricted
case of a pol#ropic gas. We also refer the reader to [1] for the biblio-
graphy of other known results on the initial (and boundary) value
problem of equations of motion for compressible viscous and heat-
conductive fluids.

One of the authors (T.N.) thanks Prof. Sergiu Klainerman for his
kind explanations on his thesis at the Courant Institute of Mathema-
tical Sciences, New York University in the fall of 1977.

2. Proof of theorem. Theorem is proved by a combination of
a local existence theorem and a priori estimates for the solution in X*.

Theorem 2.1 (local existence). Consider the initial value problem
(1.3) (1.5). Let the initial data
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(p, u, O)(t) e H for/=3 or 4.
Then there exist three constants 0, Coo (Cs) and r0 such
that if II(p,u, 0)(t)ll, then the problem (1.3) (1.5) has the unique
solution

where , C, r do not depend on t.
The proof for/=4 is the same as that for polytropic gas in [1]. We
need an approximation of the initial data in H and the L energy
estimate for the case/=3.

Theorem 2.2 (a priori estimates). Suppose that for the initial
data having the norm E< for/=4, there is a solution

(p, u, t)(t) e Xt(O, T E)
for some TO and some E. Then there exist positive constants
(D, and C (C) such that if Es and E, then the solu-

tion has the a priori estimates
(, u, )(t) e x(o, T; CE),

where ., 82, C2 do not depend on T. In particular in the case of (1.9)
the above estimates are true for/=3 also.

Proof of theorem. Take 80 min {81, 82, ./C1, 81/C2, 2/(1+ C1)C2} and
C0= C.. We use the standard continuation argument of local solution
on [0, nr], n=l, 2, to get the global solution. In fact by the local
existence theorem, the definition of/0 and the assumption (E/0) we
have a positive constant r and a local solution

(, u, )(t) e X(O, CE).
By CE Co<_ and E o<_, a priori estimates give

(, u, )(t) e X(O, CE).
But by CE Co<_ nd the local existence theorem, we have again

(, u, t)(t) e X(, 2; CCE).
Now by (I+C,)CE<C,Co<_e and E<0<_, a priori estimate shows

(p, u, t)(t) e X(0, 2r C.E).
Thus we can continue the same arguments on [nr, (n+l)r] and
[0, (n+ 1)r] successively n 2, 3, ..

:}. A priori estimates. We present here a general method to ob-
Cai a priori estimates or small solutions o equations with dissipation,
which is. a combination of the linear spectral theory and the L.-energy
method. First we rewrite the system (1.3) so that all the nonlinear
terms appear at the right hand side of equations"

/p+u/ f0, _, f(3.) u+p,p,+p.O,-Zu;,-(Z+Z)u,= i=,2,3,
[O,.-pu-O=f,

where f={f*, i=0, ..., 4} is at least quadratic functions of (p,u,O)
and their first and second derivatives, and =l,(0, 0), .=i(0, 0),

i(0, 0), p(0, 0, 0), #’ fi’(0, 0, 0), z =z(0, 0, 0) are positive constants.
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Set U= (/-pi,p, u, //c(0, 0, 0)) and write (3.1) in the form

(3.2) U+AU--F(U).
The Fourier transform () of the linear partial differential operator
A is the 5 X 5 matrix

( 0 ia 0 t(3.3) A()= --ia --p {]--(fi+p’) --ib
0 -ib

where a=WP(O, 0), b=/c(O, 0, 0) and ],k run rom 1 to 3. The
eigenva]ues ], ]= I, ., 4 o and their projections P, ]= I, ., 4,
on the eigenspaces are analyzed by

Lemma .I. (i) depends on i II only and =0 if ]=0,
]=I, ...,4.

(ii) , ], for all II except at mos four points of [I>0.
(iii) There exis positive constantsrr such that has Taylor

(Laurent) series expansion for II<r (I]>r, respectively). Especially
he Taylor series has $he form

biII (b)(2 ’) b (i Il)’2(a+ b )

(3 4) = (complex conjugate)

= a+b (a+ b)
(i lI)’+’’

=p(i I I)
<iv) n<-A)fo/Il0 ece$ mo onvoinV o II0,
(v) The matrix exponential has the spectral resolution

(3.5) e=e()
j=l

for ll II exce mos our oin8 o II 0,
(,6) IIP()IIColI,

I has the estimate by the modification of the right hand side of (3.5)
near the points of multiple eigenvalue

(3,7) e>IIC()e-or II nd osiie constn .
Lemma 3.2. There is a constant C=C(D such that

(3.8) F(U>I, F(U)IIC U I
IIDF<U)IIC UIl UII+ or 1, 2.

In particular in the case of (1.9)
(3,9) DF(U)II C u II(II u II u, m
Proposition 3.3. There eist , ng C such that if E( ng

Ee, then U(t) satisfying (3.2) has the estimates

[],(t) ]CE(1+ t)
(3.10)

.// U(t)ldsCE,
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where/=4 in general and/=3 for the case (1.9).
The Proposition is a consequence of Lemmas 3.1 and 3.2.
have

In fact we

U(t) l]_CoE(l+ t)-3/4 + C t (l + t- s) -3/

(ll U(s)II+ V(s)II)ds, k= 1, 2.
Therefore or M(t) sup (1 + s)/ U(s)II we have M(t) CoE+ CM(t)

OKsKt

CEM(t), where E is the norm (1.6) assumed on the solution. Thus
we get the conclusion o Proposition 3.3 or/=4.

Next we have to obtain the estimates 2or the higher derivatives,
which are given by

Proposition 3.4. There exist and C such that if E<% and he
solution U(t) satisfies the estimates (3.10), then the following energy
estimates hold"

(3.11) ]lD(u, 0)(t)l+.[to ]]D+(u, O)(s)ldsCE for 2kl

(3.12) ]]Dp(t)ll+.[to l]Dp(s) ldsCE for 3ml.
Here we note that Theorem 2.2 is a direct consequence o Propositions
3.3 and 3.4. Using the estimates (3.10) 2or the lower order deriwtives
of the solution, he proof o Proposition 3.4 is given successively with
respect to k ad m in the same way as that or polytropic gases in [1].
In act let us remind the operators L, i=0, ..., 4 in (1.3) and note the
estimates or the nonlinear terms g in the right hand side o (1.3).

Lemma .5. We have the estimates for k=0, 1,...,4
(3.13) llDgllC IlP, u, Oll liD(p, u, o)ll.

The estimate (3.11) or k=2 is given by the integration on x e R,
0 t T o the equality

(3.14) D(L(u)--Gg.Du+D(Lt(O)-Gg.DO=O.
Integrate by parts, use (3.10) and Lemma 3.5. The estimate (3.12)

for m=3 is obtained by the integration on x eR, OtT of the
equality

D-{L(p, u)}.D-p

+ P+P {D-{L(u)+$,p_(g+$8)}.D-p=O.
2p+fi’

Integrate by parts, use the equations (1.3) and (3.10), (3.11) for k=2
and Lemma 3.5. We can proceed to get (3.11) for k=3 by (3.14) and
so on. The detailed arguments using Friedrichs mollifier and the
estimates or composite unctoas are the same as that in [1]. We
omit them here.
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