No. 9] Proc. Japan Acad., 55, Ser. A (1979) 337

79. The Initial Value Problem for the Equations of Motion
of Compressible Viscous and Heat-Conductive Fluids

By Akitaka MATSUMURA*) and Takaaki NISHIDA**)

(Communicated by Késaku Yosipa, M. J. A., Nov. 12, 1979)

§1. Introduction and theorem. The motion of the general iso-
tropic Newtonian fluids are described by the five conservation laws:
(0 t + (Puj) zg = 0
1

il + L, = Lt ul ), + ()., i=1,2,3
1.1 PRE

0,+u0,,+ ‘01)0 uj,= —1—{("0w1)w+w}’
oc oc

where p: density, w=(u', u*, «°): velocity, 0:absolute temperature,

p=p(p, 0) : pressure, p=p(p, 6) : viscosity coefficient, '=y/(p, 6) : second

viscosity coefficient, x=«(p, 6) : coefficient of heat conduction, c=c(p, 6):

heat capacity at constant volume and ¥'= —g—(ug,ﬁuz 4/ (ug,)? : dissipa-

tion function. We consider the initial value problem for (1.1) with
the initial data

(102) (py u, 0)(0, x)=((70’ Uos 00)({17), x e R
We seek the solutions in a neighbourhood of a constant state (o, %, 6)
=(p, 0, 6), where p,  are any positive constants. Thus we assume a
natural condition on the system (1.1) of hyperbolic-parabolic type
throughout this paper that

@ o, ¢, p ¢ and £ are smooth functions in O={(p, %, 0):|o—p|,
|, 16—01<8).

(i) 9p/dp, 9p/30>0, ¢, x>0 and ,u'+_§_y20 in O,

where :¢<<min {p, 6}.

First rewrite the system (1.1) by the change of the unknown and
known variables as follows: p—p-+p, u—u, 6—6-+6, p(p+p,0+6)
—(p, 0), 1o+ p, u, G+6)—p(p, u, 6) and so on.

Lo, w)=p,+ @+ pui,+u'0,,=0
1.3) [L(w=ui— ik}, — G+ @i ., =G, 1=1,2,3
LY}0)=6,—#0,,,,=G*,
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where
GiE""ﬁmet_f)oﬁm'i'gt’ G4E_ﬁau£,+g4a
1.4 b= — I, A { o, (Ul A ud ) -+ 1, (ud )} (B )
9'=—wl,,+ (k0,4 ¥) [ (@+ p)e.
Here we also use the abbreviations
g=upl@+p), =4 |@+0), D,=0,/@+0), Ds=00/(G+0),
Dy=(0+0)p,/(p+pc and E=r/(g+p)e.
Let H* (I=1, - - -, 4) be the Sobolev space with the norm || |, of the L,-
functions having all the I-th derivatives of L,-functions. Define ¢ by
the Sobolev’s lemma so that for || f|,<<e we have max|f|<C| fl.<é&.
Denote D' f={3"f | dx;dxyoxs for all o, o, +a,+a,=1}, I=1, ---,4. The
initial data for (1.8) are given by
1.5) (o, u, )(0)="C(py, %y 0,) € H*' N L, for =3 or 4.
The solution is sought in the space of functions X*(0, oo ; F) for some
E<e, 1=38 or 4, where for 0<¢t,<t,<oo
1.6) X'(t,t,; E)={(p, u,0)(t): P(t’ z) e C'(ty, t,; HYNC'(Ey, 8,5 HY),
u'(t, x), 0(t, x) € C'@t, t, HYNC' (ty, ¢, H")NL,(t, ¢, H'Y), 1=1,2,3,

and sup (e, w OO+ [ 16(6) -+, XS s <.

Theorem. Consider the initial value problem (1.8) (1.5) and let
the initial data have the norm for l=4

A.D  E=|(o,u, 0O+ (o, % 0)(0)|, < oo
Then there exist positive constants &, and Cy< oo (Cy6,<e) such that if
E,<4,, then the problem (1.8) (1.5) has the unique solution (o, u, 6)(t)
in the large such that

(o, %, O)(t) € X¥(0, 00 3 C,y)
and it has the decay rate

(1-8) [|Co, 1, O)(B) o< CoBB, /(L + ).

In particular,

1.9 if p, p, and £ do not depend on p,
then the above assertion holds for 1=38 also.

In [1] we obtain the same type of result in the more restricted
case of a polytropic gas. We also refer the reader to [1] for the biblio-
graphy of other known results on the initial (and boundary) value
problem of equations of motion for compressible viscous and heat-
conductive fluids.

One of the authors (T.N.) thanks Prof. Sergiu Klainerman for his
kind explanations on his thesis at the Courant Institute of Mathema-
tical Sciences, New York University in the fall of 1977.

§2. Proof of theorem. Theorem is proved by a combination of
a local existence theorem and a priori estimates for the solution in X°.

Theorem 2.1 (local existence). Consider the initial value problem
1.3) (1.5). Let the initial data
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(o, u, 6)(t) e H* for 1=3 or 4.

Then there exist three constants 6,>0, C,< oo (C,6,<e) and >0 such
that if ||(p, u, O)(tD|, <06, then the problem (1.3) (1.5) has the unique
solution

(p’ U, 0)(t) e Xl(tv ti+7; Cl “(P, U, 0)(t1) ”l),
where 8, C,, = do not depend on t,.
The proof for =4 is the same as that for polytropic gas in [1]. We
need an approximation of the initial data in H* and the L, energy
estimate for the case [=3.

Theorem 2.2 (a priori estimates). Suppose that for the initial
data having the norm E,< oo for l=4, there is a solution

(o, u, 0)(t) € X'(0, T; E)
for some T >0 and some E<e. Then there exist positive constants
&, (<o), 6, and C, (C,5,<c) such that if E<e, and E,<8,, then the solu-
tion has the a priori estimates
(o, u, 0)(t) € X0, T ; C,E)),
where ¢, d,, C, do not depend on T. In particular in the case of (1.9)
the above estimates are true for 1=3 also.

Proof of theorem. Take d,=min {3,, 6,, ¢,/ C;, 6,/ C,, &,/ (1 +CC,} and
C,=C,. We use the standard continuation argument of local solution
on [0, nr], n=1,2, --- to get the global solution. In fact by the local
existence theorem, the definition of §, and the assumption (F,<4d,) we
have a positive constant r and a local solution

(o, u, O)() € X0, z; C,E).
By C.E,<C4,<e, and E,<§,<0,, a priori estimates give
(o, u, 6)(t) € X'(0, = ; C,E)).
But by C,E,< C,5,<4, and the local existence theorem, we have again
(o, u, O)(t) € XUz, 2r; C,C,E)).
Now by (1+C)C,E,<C,C.p,<e, and E,<§,<0,, a prior: estimate shows
(o, u, 6)(t) € X'(0, 27 ; CLE)).
Thus we can continue the same arguments on [nz,(n+41)z] and
[0, (n+1)7] successively n=2,3, - - -.

§3. A priori estimates. We present here a general method to ob-
tain a priori estimates for small solutions of equations with dissipation,
which is a combination of the linear spectral theory and the L,-energy
method. First we rewrite the system (1.3) so that all the nonlinear
terms appear at the right hand side of equations:

o.+oul,=f°
(3'1) u§+f)1pxt+pzﬂxt—ﬂuitx/—(ﬂ+ﬂ/)ufm/=fi, i=1’ 2’ 3»
0, '+T)3uajc,_ﬁﬁxjx/=f49
where f={f* =0, ..,4} is at least quadratic functions of (o, u,6)
and their first and second derivatives, and p,=p,(0,0), D,=,(0, 0),
P,=1,(0,0), z=7(0,0,0), #’=7(0,0,0), £=#(0, 0, 0) are positive constants.
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Set U=45/D:p,u, ¥8/c(0,0,0)6) and write (3.1) in the form

3.2) U,+AU=F).
The Fourier transform A(¢) of the linear partial differential operator
A is the 5x 5 matrix

) 0 —iag, 0
(3.3) A($)=(—ia§, —po’* |EF—(a+ )86 —ibg, |,
0 —1b&, —F &P

where a=+p,(0,0), b=7,¥0/¢(0,0,0) and 7,k run from 1 to 8. The
eigenvalues 1, =1, ---,4 of A and their projections P,, j=1, ---,4,
on the eigenspaces are analyzed by

Lemma 3.1. (i) 4, depends on i|&| only and 2,=0 if |£|=0,
j=1,...,4.

(1) 2,2, IE, for all |&| except at most four points of |&|>0.

(iii) There exist positive constants r,<r, such that 2, has a Taylor
(Laurent) series expansion for |&|<r, (|&|>r,, respectively). Especially
the Taylor series has the form

— 2 2 A 2
21=«/aﬁ+b2i |$l+ (o +b2)((azz[-2++bﬁzl))+b /3 G [5])24‘ o
A= A¥ (complex conjugate)

(3.4)
_ @R ey COR(@HDICaA )~ ) ey
2 a2+b2(zl§|)+ @ s b @&+
A,=p( €]’

(v) rank(,—A)=38 for all|&|>0 except at most one point of |&]>0.
(v) The matrixz exponential has the spectral resolution

(3.5) D=3 HOP ()
7=1

for all |&| except at most four points of |& >0.
3.6) |P®]<C for |§|<r.
It has the estimate by the modification of the right hand side of (3.5)
near the points of multiple eigenvalue
B.7) ||e4®|<CA+t)e
for |&|>7, and a positive constant B.
Lemma 3.2. There is a constant C=C(e) such that
(3.8) IE(D) ||z, IFO)ILC U
| D*FMKC U || Ullg.e for E=1,2.
In particular in the case of (1.9)
B.9) | DPFO|<CULIUls+u, 61l
Proposition 3.3. There exist d;, ¢; and C, such that if E,<d; and
E <, then U(t) satisfying (3.2) has the estimates
1D <CEQ+1)-

¢10 { [ Iv@pas<c.m,
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where l=4 in general and 1=3 for the case (1.9).
The Proposition is a consequence of Lemmas 3.1 and 3.2. In fact we
have

U@ I<CE1+8)*+C J: A+t—8)"||U(s)|ds

ID*UE) | <CLE (L +8)+C j A4+t—8)" UG,

(UG [+11TBS)Dds,  k=1,2.
Therefore for M(t)=sup (1+s)**||U(s)|, we have M(t)<C.E,+CM(t)
0<s<t

CEM(t), where FE is the norm (1.6) assumed on the solution. Thus
we get the conclusion of Proposition 3.3 for |=4.

Next we have to obtain the estimates for the higher derivatives,
which are given by

Proposition 3.4. There exist ¢, and C, such that if E<e, and the
solution U(t) satisfies the estimates (8.10), then the following energy
estimates hold :

3.11) | D*u, 0)(t)]|2—|—j: |1 D+ (w, )(s) |Pds < C.E? for 2< k<1

(312) Do+ |1D"p(e) [Fds<C.B: for B<m<L.

Here we note that Theorem 2.2 is a direct consequence of Propositions
3.3 and 3.4. Using the estimates (3.10) for the lower order derivatives
of the solution, the proof of Proposition 3.4 is given successively with
respect to k and m in the same way as that for polytropic gases in [1].
In fact let us remind the operators L?, i=0, .- -, 4 in (1.3) and note the
estimates for the nonlinear terms ¢ in the right hand side of (1.3).

Lemma 3.5. We have the estimates for k=0,1, -.-,4

(3.13) ||D*g|<C |lp,u, 05| Do, u, 0) |-

The estimate (3.11) for k=2 is given by the integration on xe R?,
0<t<T of the equality

(8.14) D*(L¥(u)—G*)-D*u+D*(L*0)— G -D*0=0.

Integrate by parts, use (3.10) and Lemma 3.5. The estimate (3.12)
for m=3 is obtained by the integration on ze R? 0<t<T of the
equality

D™ {L(p, W}s,- D™ pg,

+ PO DL )+ 5,0,,— (9 +B,6,)} D™, =O0.
2p+p

Integrate by parts, use the equations (1.8) and (8.10), (3.11) for k=2
and Lemma 3.5. We can proceed to get (8.11) for k=3 by (8.14) and
so on. The detailed arguments using Friedrichs mollifier and the
estimates for composite functions are the same as that in [1]. We
omit them here.
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