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Abstract Recently, a novel 4D Einstein–Gauss–Bonnet
gravity was formulated by Glavan and Lin (Phys Rev Lett
124(8):081301, 2020). Although whether the theory is well
defined is currently debatable, the spherically symmetric
black hole solution is still meaningful and worthy of study.
In this paper, we study the geodesic motions in the spacetime
of the spherically symmetric black hole solution. First of all,
we find that a negative GB coupling constant is allowable, as
in which case the singular behavior of the black hole can be
hidden inside the event horizon. Then we calculate the inner-
most stable circular orbits for massive particles, which turn
out to be monotonic decreasing functions of the GB coupling
constant. Furthermore, we study the unstable photon sphere
and shadow of the black hole. It is interesting to find that the
proposed universal bounds on black hole size in Lu and Lyu
(Phys Rev D 101(4):044059, 2020) recently can be broken
when the GB coupling constant takes a negative value.

1 Introduction

In classical general relativity, singularity is one of the most
fundamental questions. The first version of singularity theo-
rem is proposed by Penrose [1], which states that the forma-
tion of singularities in spacetime is inevitable assuming the
weak energy condition and global hyperbolicity. The singu-
larity theorem that people often refer to is the version pre-
sented and proved by Hawking and Penrose [2], which says
a spacetime M cannot satisfy causal geodesic completeness
provided that Einstein’s equations and some assumptions
hold. In contrast to the other singularity theorems, the condi-
tions required by the Hawking–Penrose singularity theorem
are the easiest to implement physically and cover a wide
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range of areas. Up to now, many attempts have been made
to eliminate the singularity, which includes and is not lim-
ited to considering quantum corrections [3–5] and alternative
gravities [6]. Recently, a novel 4D Einstein–Gauss–Bonnet
(EGB) gravity was formulated by D. Glavan and Lin [7]. By
focusing on the positive GB coupling constant, they discov-
ered a static and spherically symmetric black hole solution,
which is practically free from the singularity problem. It’s
interesting to note that the same solution was already found
before, initially in the gravity with a conformal anomaly [8]
and then in gravity with quantum corrections [3,4]. In con-
trast, in [7] the GB action should be considered as a classical
modified gravity theory, so the theory is on an equal footing
with general relativity.

However, since the publication of the paper [7], there have
appeared several works [9–15] debating that the procedure of
taking D → 4 limit in [7] may not be consistent. For exam-
ple, in [14] by studying tree-level graviton scattering ampli-
tudes it was shown that in four dimensions there are no new
scattering amplitudes than those of the general gravity. On the
other hand, some proposals have been raised to circumvent
the issues of the novel 4D EGB gravity. These proposals can
be divided into two classes. One is adding an extra degree of
freedom to the theory. For example, [16,17] considered using
the Kaluza–Klein approach of the D → 4 limit to obtain a
well-defined theory that belongs to the Horndeski class [18].
The same theory can also be deduced by introducing a counter
term into the action [19,20]. The other proposal is to keep
the two dynamical degrees of freedom unchanged at the price
of breaking the temporal diffeomorphism invariance [21]. In
summary, the novel 4D EGB gravity formulated in [7] may
run into trouble at the level of action or equations of motion.
Nevertheless, the spherically symmetric black hole solution
derived in [7] and in early literatures [3,4,8] can be suc-
cessfully reproduced in those consistent theories of 4D EGB
gravity, which is a little bit surprise. Therefore, the spheri-
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cally symmetric black hole solution itself is meaningful and
worthy of study.

It can be expected that due to the publication of [7], lots of
works concerning every aspect of the spherically symmetric
4D EGB black hole solution will emerge, including theoret-
ical study and the viability of the solution in the real world.
In astronomical survey, the singularities of black holes can-
not be directly observed, since they are always inside the
event horizons of the black holes. In fact, the event hori-
zon cannot be directly observed by astronomical telescopes.
However, the emergence of black hole photograph shows, the
black hole shadow and the orbit of the light emitter around
the black hole can be seen by the Event Horizon Telescope
(EHT), and thus the parameters of a black hole can be iden-
tified based on the black hole model [22,23]. On the other
hand, the first detection of gravitational waves from a binary
black hole merger by the LIGO/Virgo Collaborations [24]
opened a new window to probe gravity in the strong field
regime, which then enables us to test gravity theories alter-
native to general relativity [25]. The progress in both areas
may help us to distinguish Schwarzschild black hole from
other black hole models, including the 4D EGB black hole,
in the near future.

Based on these, we would like to investigate the geodesic
motions of both timelike and null particles in the background
of the 4D EGB black hole, by focusing on the innermost sta-
ble circular orbit (ISCO) of the timelike particle, the unstable
photon sphere and the associated shadow of the black hole.
The ISCO plays an important role in the study of realistic
astrophysics and gravitational wave physics. For example,
in the Novikov–Thorne accretion disk model [26], the inner
edge of the disk is at the ISCO. Moreover, according to the
Buonanno–Kidder–Lehner approach [27], one can estimate
the final black hole spin of a binary black hole coalescence
with arbitrary initial masses and spins. The key point is that
one may approximate the merger process as a test timelike
particle orbiting at the ISCO around a Kerr black hole. On
the other hand, for the motion of the null particles, besides
the observable black hole shadow, the photon sphere (or the
light ring) provides information on the quasinormal modes
of the final black hole in the ringdown phase of the black hole
merger [28] (see however [29]). From the theoretical point
of view, a sequence of inequalities were proposed recently in
[30], which involve the radii of the event horizon, the photon
sphere and the shadow. It would be interesting to verify the
conjecture for the 4D EGB black hole.

Before we get started, we note in [7] the black hole solution
is constrained to the positive GB coupling constant case, i.e.
α > 0 and leaves a gap for the negative GB coupling constant.
Thus, we firstly give a very careful analysis and show the
black hole can exist when α < 0. More precisely, we find
that when −8 < α ≤ 1 there always exists a black hole.
In this case the singular behavior of the solution is hidden

behind the horizon and outside the horizon the solution is
well defined. For the solution, according to the analysis of
[8], we would like to stress that the black hole entropy has the
logarithmic behavior. Then, for the first time, we calculate
the radius of the ISCO and give a numerical result for the
full range of α 1. Also, we obtain an approximate analytical
expression when α is very small around 0. We find the radius
of the ISCO in the novel solution can be bigger or smaller than
the one in Schwarzschild black hole depending on the value
of α. For the photon sphere and the shadow, we find the exact
expressions not only for 0 < α ≤ 1 but also for −8 < α < 0.
Comparing the result to that of the Schwarzschild black hole,
we find the 4D EGB black hole contains more features and
information which deserves further study.

The paper is organized as follows. In Sect. 2, we revisit
the spherically symmetric 4D EGB black hole solution and
determine the full range of α when the spacetime contains a
black hole. In Sect. 3, we move to the innermost stable circu-
lar orbit of the timelike particle. Next, we turn our attention
to the photon sphere and shadow in Sect. 4. Finally, in Sect.
5, we summarize the results. In this work, we have set the
fundamental constants c and G to unity, and we will work in
the convention (−,+,+,+).

2 Revisit the 4D EGB black hole solution

The Einstein-Hilbert action supplemented by a GB term in
D dimensions has the form

I = 1

16πG

∫ √−g dDx
[
R + α

(
RμνλδR

μνλδ

−4RμνR
μν + R2

)]
, (2.1)

where α is the GB coupling constant. The static and spheri-
cally symmetric black hole solution in this theory was already
found in D ≥ 5 [34]. But in D = 4, the GB term is a total
derivative, and hence does not contribute to the gravitational
dynamics, unless an extra scalar filed is introduced to be cou-
pled with the GB term, which is known as Einstein-dilaton–
Gauss–Bonnet theory [35,36]. However, recently Glavan and
Lin [7] found that by rescaling the coupling constant,

α → α

D − 4
, (2.2)

1 More recently, the authors in [31] investigated the stability of the 4D
EGB black hole via the quasinormal mode. They found that to avoid
the eikonal instability [32] of the gravitational perturbations [33], the
absolute value of the GB coupling has to be relatively small and then
they calculated the radius of the shadow in this case. In our work, we
will not take this stability issue of the black hole into account for the
time being, and let the GB coupling constant be constrained only by the
regularity of the metric itself.
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Fig. 1 The graph of the metric function f (r) with respect to r for two typical values of α

of the GB term, and then consider the limit D → 4, the Love-
lock’ s theorem can be bypassed and there exists a spherically
symmetric black hole solution in this case. The solution is
found to be

ds2 = − f (r)dt2 + dr2

f (r)
+ r2d�2, (2.3)

with

f (r) = 1 + r2

2α

(
1 −

√
1 + 8αM

r3

)
, (2.4)

where M is the mass of the black hole. As we mentioned
in the introduction, the above limiting procedure has been
called into question by subsequent works [9–15]. Whereas
the above solution (2.3) can be exempted from being mean-
ingless, as which is reproduced from those consistent 4D
EGB gravity theories [16,17,19–21]. In the following all our
discussion will be based on the black hole solution (2.3),
which can be independent of the original gravity theory [7].

For the black hole solution, [7] argued that there is no
real solution at short radial distance r3 < −8αM if α < 0,
and so only the positive α case was considered. However,
we will discuss the range of α in detail and claim that the
solution always behaves well outside the (outer) event hori-
zon for −8 < α ≤ 1. In other words, the singular point
r = −2(αM)1/3 is always hidden inside the horizon, and
thus the metric function f (r) is always positive outside the
horizon. Despite that in this case there is no resolution for
the singularity problem occurring at r = 0.

For simplicity and without loss of generality, we set M =
1 in the rest of this paper. Let’s start with the property of the
function f (r). From f ′(r) = 0, we find f (r) only has one
extreme point at r = α1/3. In addition, for α > 0, we have

f (∞) = 1 = f (0+). (2.5)

Thus, f (α1/3) = 1−α−1/3 is the minimum of the function. In
order to ensure the existence of horizon we need the condition

f (α1/3) ≤ 0 hold which implies 0 < α ≤ 1, see an example
in Fig. 1, where we take α = 1/2 for 0 < α ≤ 1 and
α = −1/2 for α < 0. In this case, the radii of the horizons
read

r± = 1 ± √
1 − α. (2.6)

While for α < 0, since r = α1/3 < 0, we have to confine
f (−2(α)1/3) = 1 + 2α−1/3 < 0 to make sure the existence
of the only horizon, which gives us −8 < α < 0. For this
situation, we find the single horizon is at

r = 1 + √
1 − α. (2.7)

Hereto, we have shown the 4D EGB black hole exists when
−8 < α < 0 and 0 ≤ α ≤ 1. And we would like to stress
that one shouldn’t ignore the branch −8 < α < 0 when
discussing the whole property of the 4D EGB black hole.

Here we use a few words to talk about the thermodynamic
properties of the black hole solution. As we mentioned in the
introduction, the solution (2.3) was initially found in gravity
with conformal anomaly [8]. Therefore, as was studied in
that paper, there exists a logarithmic correction to the well-
known Bekenstein-Hawking area entropy. In this case the
Wald’s entropy formula [37] cannot be applied. Instead one
can turn to the first law of black hole thermodynamics for
help, i.e. dM = TdS, with the temperature being

T = r2
h − α

4πrh(r2
h + 2α)

, (2.8)

where rh denotes the radius of the event horizon. The positiv-
ity of the temperature requires that the GB coupling constant
satisfies the bound which is exactly the same as the one we
derived above, i.e. −8 < α ≤ 1. The entropy is then given
by

S = A

4
+ 2πα log

A

A0
, (2.9)
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where A = 4πr2
h is the horizon area and A0 is a constant

with dimension of area. For more details on the discussions
of the logarithmic behavior of the entropy one can refer to
[8]. More recently, it was demonstrated that if the black hole
solution (2.3) stems from the consistent theory of the 4D
EGB gravity which belongs to a class of Horndeski theory,
then the black hole entropy can be computed by applying the
Wald formula [16].

3 The innermost stable circular orbit of the 4D EGB
black hole

In this section, we will calculate the radius of the innermost
stable circular orbit for a time particle in the background of
the 4D EGB black hole. The geodesic motion of a particle is
governed by the Hamiltonian

H = 1

2
gμν p

μ pν = −1

2
m2, (3.1)

where m is the mass of the particle. m = 0 describes the null
particle and non-zero m corresponds to the timelike parti-
cle. Since the 4D EGB black hole is a static and spherically
symmetric solution, one can always restrict the particle in
the equatorial plane, thus the 4-velocity of a timelike particle
takes in this form

ẋμ = (ṫ, ṙ , 0, φ̇), (3.2)

where · represents the derivation of the function with respect
to the proper time. Combined with the two conserved quan-
tities for such geodesic, i.e.

E = −pt , L = pφ, (3.3)

then we obtain the orbit equation,
(
dr

dφ

)2

= Vef f , (3.4)

with the effective potential given by

Vef f = r4
(
E2

L2 − f (r)

r2 − f (r)m2

L2

)
. (3.5)

Circular orbits correspond to Vef f = 0 and V ′
e f f (r) = 0,

where ′ denotes the derivative with respect to the radius r .
Using these two equations, we have

e2 = 2 f (r)2

2 f (r) − r f ′(r)

=

(
r2 + 2α − r2

√
r3+8α
r3

) (
−r3 − 8α + r3

√
r3+8α
r3 + 2rα

√
r3+8α
r3

)

4α2R ,

(3.6)

j2 = r3 f ′(r)
2 f (r) − r f ′(r)

=
r2

(
−r3 − 2α + r3

√
r3+8α
r3

)

2αR , (3.7)

where

R(r) =
⎛
⎝−3 + r

√
r3 + 8α

r3

⎞
⎠ , (3.8)

and we have defined

e ≡ E

m
, j ≡ L

m
, (3.9)

to represent the energy per unit mass and angular momentum
per unit mass, respectively.

Circular orbits do not exist for all values of r , as the right
hand of Eqs. (3.6) and (3.7) must be non-negative. Since
these expressions are very complex, we prefer to leave it
to check in the following discussions. Besides, we observe
that the function R(r) appears in the denominator of Eqs.
(3.6) and (3.7), then the limiting case of the equality of the
two equations gives an orbit with vanishing rest mass, i.e., a
photon orbit. As we will see in the next section, the photon
sphere is the innermost boundary of the circular orbits for
null particles and it occurs at the root of R(r) = 0. In this
section, our attention is focused on the ISCO for massive
particles, so we leave the discussion of photon sphere and
black hole shadow to the next section.

The circular orbits are not all stable. Stability requires
that V ′′

e f f ≤ 0 and the equality gives us the location of ISCO.
Formally, rI SCO can be calculated from

rI SCO = − 3 f (rI SCO) f ′(rI SCO)

f (rI SCO) f ′′(rI SCO) − 2 f ′(rI SCO)2 , (3.10)

which works for the general spherically symmetric metric of
the form (2.3). Since the exact expression is not very illumi-
nating, we only give the numerical result of the radius of the
ISCO, see the upper left panel of Fig. 2. To keep our result
self-consistent, we substitute the radius of the ISCO in the
right hand of Eqs. (3.6) and (3.7), after some non-trivial alge-
braic manipulations, it can be shown that when r ≥ rI SCO ,
e2 and j2 are always positive.

We find that the radius of the ISCO is a decreasing function
of α, and so when 0 < α ≤ 1, the ISCO is smaller than
the one of the Schwarzschild black hole, i.e. rI SCO < 6,
while rI SCO > 6 for −8 ≤ α < 0. The corresponding
angular momentum per unit mass j and energy per unit mass
e decrease with α as well. In addition, we introduce a new
parameter

ε = rI SCO − rh
rh

, (3.11)

to characterize the extent to which the ISCO radius devi-
ates from the radius of the event horizon. We find that ε is
increasing with α, as shown in the top right panel of Fig.
2. Moreover, when α is very small around 0, we obtain an
approximate analytic result of the ISCO, that is
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Fig. 2 The upper left panel shows the dependence of the ISCO radius
on the GB coupling constant α. The upper right panel shows the devia-
tion of ISCO from the event horizon with respect to α. The lower panel

is the comparison of numerical result of ISCO radius with the approxi-
mate one (3.12), where the orange line denotes the approximate result
and the blue one denotes the numerical result

rI SCO = 6 − 11

18
α + O(α2), (3.12)

with e = 2
√

2
3 − α

162
√

2
+ O (

α2
)

and j = 2
√

3 − α

6
√

3
+

O (
α2

)
. In Fig. 2, we also show the comparison between the

numerical result with our approximate result. As expected,
we find they match very well for a small α. This approximate
analytical result may be helpful if an astronomical black hole
has a very small deviation from the Schwarzschild black hole.
Another notable case is α = 1, which corresponds to the
extremal EGB black hole. In this case, we find e = 0.94,
j = 3.35 and rI SCO = 5.24.

The effects of the GB coupling constant on the ISCO
radius may be reflected in some astronomical phenomena.
For example, since a positive α leads to a smaller ISCO and
smaller event horizon, which means the merger time of the
coalescence of the black hole binary is later than that of the
Schwarzschild black holes. As a consequence, the chirp mass
and the total mass of the system might be underestimated
when matching with the gravitational wave template based
on general relativity. Similar situation occurs for the coales-
cence of two charged black holes when their charges are of
the same kind [38,39].

4 Photon sphere and shadow of the 4D EGB black hole

In this section, we will discuss the photon sphere and shadow
of the 4D EGB black hole. In the geometric optics limit,
the motion of a photon is treated as a null geodesic. In the
background of the 4D EGB black hole, the orbit equation for
the null geodesics is just Eq.(3.4) with m = 0. By evaluating
the equations Vef f = 0 and V ′

e f f = 0, we obtain the circular
null geodesic occurring at

rph = 2
√

3 cos

[
1

3
cos−1

(
− 4α

3
√

3

)]
. (4.1)

Due to the spherical symmetry, the photons will fill all the
circular orbits to form a so-called photon sphere. One can eas-
ily show that the radius of the photon sphere is a decreasing
function of the GB coupling constant α. The corresponding
constant of motion L2/E2 for this photon sphere is given by

b2
c = r2

ph

f (rph)
=

(
1

r2
ph

−

√
8α

r3
ph

+ 1 − 1

2α

)−1

, (4.2)

where bc is sometimes called the critical impact parameter.
One can show that this is a monotonic increasing function of
α and when α is small one obtains bc = 3

√
3− 2α

3
√

3
+O (

α2
)
.
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Fig. 3 the dependence of
rph

3rh/2 and
rph
3M on the GB coupling constant α

Moreover, one can check that for arbitrary values taken in
the interval 1 ≥ α > −8, one always has V ′′

e f f > 0 with
r = rph and L/E = bc, which means the photon sphere in
the background of the 4D EGB black hole is unstable.

One interesting property of the 4D EGB black hole is that
the bounds on the photon sphere proposed by [30] can be
broken when α is allowed to be negative. In [30] 2, the authors
made a conjecture for a sequence of inequalities involving
several parameters characterizing the black hole size, viz.,

3

2
rh ≤ rph ≤ rsh√

3
≤ 3M, (4.3)

where rsh denotes the radius of the shadow. In what follows
we will show that these relations can be violated for the 4D
EGB black hole. We first focus on the photon sphere and
later on turn to the shadow. From Fig. 3, we can see that
when α ≥ 0 the above inequalities works, but when α < 0,
rph can be less than 3rh/2 and rph can be larger than 3M .
Therefore, in the case α ≤ 0 the inequalities involving rph
modifies as

3

2
rh ≥ rph ≥ 3M. (4.4)

The existence of unstable photon sphere means the appear-
ance of the observable of the black hole, the black hole
shadow. We consider all null geodesics that go from the posi-
tion of the static observer at (tO , rO , θ = π/2, φO = 0) into
the past. Those critical null geodesics that orbit around the
black hole on the photon sphere will leave the observer at an
angle θ with respect to the radial line that satisfies

tan θ = rdφ

grrdr

∣∣∣
r=rO

. (4.5)

2 During the subsequent developments, the study was generalized to
the rotating black holes [40] and charged EGB black hole in D ≥ 5
dimensions [41], and the conjecture for static black holes in Einstein
gravity was proven in [42].

This angle describes the angular size of the shadow of the
black hole. From the orbit equation (3.4) we then find

tan2 θ = f (rO)

r2
O

(
f (rph)

r2
ph

− f (rO )

r2
O

) . (4.6)

For a static observer at large distance, i.e., rO 	 rh , this
expression can be further simplified as

tan θ 
 rph
rO

√
f (rph)

. (4.7)

Therefore the linear radius of the shadow is simply given by

rsh = rO sin θ 
 rph√
f (rph)

, (4.8)

where rph is obtained in (4.1). Clearly, the radius of the
shadow is equal to the critical impact parameter bc (4.2).
In fact, one can find that this is a universal result as long as
the metric has the form (2.3) and the spacetime is asymptot-
ically flat. Since the explicit expression is not very illumi-
nating, so we will not present it here. The same as bc, rsh
is a decreasing function of α and up to linear order in α,
rsh = 3

√
3 − 2α/3

√
3 + O(α2). 3 Therefore, if the shadow

size is measured larger or smaller than the prediction from
Schwarzschild black hole, this may be attributed to the result
of EGB black hole with a negative GB coupling or positive
GB coupling. However, the observational result in the real
world in general depends on many parameters describing the
environment. So one cannot simply connect the result with
the EGB black hole.

So far, we find that all the four parameters that character-
izing the size of a black hole, including the event horizon,
ISCO, photon and shadow, are decreasing functions of the
GB coupling constant α. Let’s now return to the inequalities
involving the shadow radius. As is shown in Fig. 4, the rela-
tions involving rsh obey the inequalities (4.3) for a positive

3 Note that this looks different from the result in [31], as in their con-
vention the event horizon is set to unity.
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Fig. 4 the dependence of rsh√
3rph

and rsh√
3M

on the GB coupling constant α

α, however, for a negative α, the relations are reversed, that
is,

rph ≥ rsh√
3

≥ 3M. (4.9)

Combined above inequalities with (4.4), we find that for
α ≤ 0, the inequalities (4.3) should be totally reversed. Actu-
ally, one can check that for higher dimensional EGB black
holes [41], the negative GB coupling constant will lead to
the broken of the higher dimensional version of the bounds
(4.3) as well. The physics behind the broken of the inequali-
ties (4.3) is as follows. According to the analysis in [42] and
[41], a necessary condition for the validity of the inequali-
ties (4.3) is that the weak energy condition has to be obeyed.
From the view of Einstein gravity, if the GB term is regarded
as matter field, the weak energy condition holds for a positive
GB coupling but is violated for a negative one.

5 Summary

In this paper, we studied the geodesic motions of timelike
and null particles in the spacetime of the spherically sym-
metric 4D EGB black hole. We carefully analyzed the metric
and found that the GB coupling constant could be negative,
because even in this case the singular behavior of the black
hole only occurs behind the event horizon. With this exten-
sion, we calculated the radius of the innermost stable circu-
lar orbit (ISCO) for the timelike particle and found that this
radius is a deceasing function of the GB coupling constant.
In addition, we calculated the radius of the photon sphere
and the angular radius of the shadow of the 4D EGB black
hole. Besides the ISCO radius, all the other three parameters
characterizing the size of the black hole, namely the event
horizon, the photon sphere and the shadow, are decreasing
functions of the GB coupling constant, when the mass of the
black hole is fixed as unity. As a consequence, the univer-
sal bounds on the size of a spherically symmetric black hole

proposed in [30] can be broken for a negative GB coupling
constant.
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