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Abstract
This paper describes the financial planning model InnoALM developed by Innovest for Austrian
pension funds including their own managed for the Austrian employees of the electronics firm
Siemens. The model is one tool in the analysis of the growing worldwide problem of ageing and
the growing number of pensioners in an environment of increased demand for government
services such as national pensions. The model uses a multiperiod stochastic linear programming
framework with a flexible number of time periods of varying length. Uncertainty is modeled by
multiperiod discrete probability scenarios for random return and other model parameters. The
correlations across asset classes, of bonds, stocks, cash and other financial instruments, are state
dependent using multiple correlation matrices that correspond to differing market conditions.
This feature allows InnoALM to anticipate and react to severe as well as normal market
conditions. Austrian pension law and policy considerations are modeled as constraints in the
optimization. The concave risk averse preference function is to maximize the expected present
value of terminal wealth at the specified horizon net of expected convex (piecewise linear)
penalty costs for wealth and benchmark targets in each decision period. InnoALM has a user
interface that allows for visualization of key model outputs, the effect of input changes, growing
pension benefits from increased deterministic wealth target violations, stochastic benchmark
targets, security reserves, policy changes, etc. The solution process using the IBM OSL stochastic
programming code is fast enough to generate virtually online decisions and results and allows for
easy interaction of the user with the model to improve pension fund performance.

•                                                                 
* This research was supported by Innovest and the Natural Sciences and Engineering Research Council of Canada.
Thanks are due to Melania Paunescu for computer help and Johann Maurer for encouragement and support. This
paper was presented at the Hermes Centre of Excellence in Computational Finance and Economics, the Conference
on Asset and Liability Management: from Institutions to Households, Nicosia, Cyprus, May 2001; the International
Conference on Financial Engineering, E-Commerce and Supply Chain, Athens, Greece, May 2001; to the Chicago
Fed/DePaul University Finance Seminar, June 2001; at the 9th International Conference on Stochastic Programming,
Berlin, August 2001; at the IFIP/IIASA/GAMM Workshop on Dynamic Stochastic Optimization, IIASA,
Laxenburg, Austria, March 2002; at Southampton University and Imperial College, September 2002; and the Euro
Working Group on Financial Modeling, Cyprus, November 2002.



2

Introduction

Siemens AG Österreich, as part of the global Siemens Corporation, is the largest privately owned

industrial company in Austria. The turnover (Euro 2.4 Bn. in 1999) is generated in a wide range

of business lines including information and communication networks, information and

communication products, business services, energy and traveling technology, and medical

equipment. The Siemens Pension fund, established in 1998, is the largest corporate pension plan

in Austria and follows the defined contribution principle. More than 15,000 employees and 5,000

pensioners are members of the pension plan with Euro 510 million in assets under management

as of December 1999.

Innovest Finanzdienstleistungs AG founded in 1998 is the investment manager for Siemens

AG Österreich, the Siemens Pension Plan and other institutional investors in Austria. With Euro

2.2 billion in assets under management, Innovest focuses on asset management for institutional

money and pension funds. This pension plan was rated the best in Austria of seventeen analyzed

in the 1999/2000 period.

There are a number of factors that led Innovest to develop the pension fund asset-liability

management model InnoALM. Primary is the realization that the changing demographics in

Austria, Europe and the rest of the globe, is creating a much higher percentage of retirees to

workforce. This will add greatly to the financial burden on the government making it paramount

that their own private employee pension plan be managed in the best possible way using

systematic asset-liability management models as a tool in the decision making process. Various

uncertain aspects, possible future economic scenarios, stock, bond and other investments,

transactions costs, liquidity, currency aspects, liability commitments over time, Austrian pension

fund law and company policy suggest that a good way to approach this was via a multiperiod

stochastic linear programming model. Models of this general type evolve from Kusy and Ziemba

(1986), Cariño and Ziemba et al. (1994, 1998 ab) and Ziemba and Mulvey (1998). InnoALM is

one of the first implemented models to fully exploit the power of the multiperiod stochastic

programming approach in a European pension fund setting. While following to some extent the

work on the Russell-Yasuda insurance company planning models (Cariño and Ziemba et al.,

1994, 1998 ab) the application to pension funds is new and this model has new features such as

state dependent correlation matrices, fat tailed asset return distributions, simple computational

schemes and output not in previous models. Zenios (1999) surveys large-scale asset-liability

applications to bond and fixed income portfolio management. Gondzio and Kouwenberg (2001)
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solved Dutch Pension Fund asset-liability management problems with millions of scenarios,

constraints and variables. What is crucial is not that large models can be solved but that good

models can be developed that well represent the situation at hand and be user friendly and

provide the essential information required quickly to those who need to make sound pension fund

asset-liability decisions. InnoALM provides a good way to study the diversification and strategic

planning of asset holdings across the world, as suggested by Levy and Sarnat (1970), Solnik

(1974) and Jorion (1985). It considers various aspects relevant to the prudent operation of

company pension plans that intend to provide retired employees a supplement to their

government pensions. The multiperiod stochastic programming approach includes more of the

essential elements of the real problem than alternative approaches such as static mean-variance

analysis (see e.g. Sharpe and Tint, 1990), continuous time modeling (see e.g. Rudolf and Ziemba,

2000), shortfall risk minimization (see e.g. Leibowitz and Henriksson, 1988) and other

approaches (see e.g. Ziemba and Mulvey, 1998).

Ex-post evolution studies of pension fund performance over time such as Brinson et al.

(1986), Hensel et al. (1991) and Blake et al. (1999) focus on various possible sources of this

performance such as strategic asset allocation, market timing and security selection. These

studies indicate that strategic asset allocation is the crucial variable in successful pension fund

performance. While mutual funds and pension fund are not usually levered, they can have poor

results when not diversified. One notable example is Jeffrey Vinik who lost his job running the

equity mutual fund, Fidelity Magellan, because he took a large position in bonds assuming that

bonds would outperform stocks (Wall Street Journal, 1996). Unfortunately stocks outperformed

and he underperformed the benchmark. Later Vinik ran a very successful hedge fund.

InnoALM provides a good procedure for implementing crucial aspects of pension fund

management policies, constraints and goals to achieve superior long run performance while also

providing short-term risk management with downside risk control through diversification using

state dependent correlation across asset classes as asked for in discussions by Lo (1999) and

Merton (2000). This feature allows the model to react to extreme events and plan in advance to

do so. Models that assume constant correlation matrices make a conceptual error that is one of the

major factors appearing in most of the financial trading disasters of the 1990s such as Orange

County in 1994, Barrings in 1995, Long Term Capital Management in 1998, and the Tiger and

Soros Hedge Funds in 2000. The trouble is when funds are non-diversified, overleveraged and

then an extreme scenario leads to a financial disaster. Consideration of the state dependent
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correlations in advance usually leads to a more truly diversified less levered portfolio that can

react better to an extreme scenario and still produce good results when other more probable

scenarios occur.

InnoALM was produced in six months during 2000 with Geyer and Ziemba serving as

consultants with Herold and Kontriner being Innovest employees. InnoALM has features not

found in the previous literature and also demonstrates that a small team of researchers with a

limited budget can quickly produce a valuable modeling system that can easily be operated by

non-stochastic programming specialists on a single PC. The IBM OSL stochastic programming

software provides a good solver. The solver was interfaced with user friendly input and output

capabilities. Calculation times on the PC are such that different modeling situations can be easily

developed and the implications of policy, scenario, and other changes seen quickly; see §4.

The paper discusses the pension fund situation in Austria and Europe in §1. §2 develops the

stochastic programming model’s formulation. The mathematical aspects of such multiperiod

stochastic linear programming models applied to asset-liability management is documented in

Ziemba and Mulvey (1998) and Gondzio and Kouwenberg (2001). §3 discusses the scenario

generation and statistical inputs available for use in the model. Accounting for non-normal, fat

tailed distributions of asset returns and state dependent correlation matrices are novel aspects of

the model. §4 presents the results using a model formulation with five decision periods of length

one, one, two, two and four years with four asset classes of stocks and bonds in various

circumstances. The graphical output provides pension fund management with essential

information to aid in the making of informed investment decisions and understand the probable

outcomes and risk involved with these actions. The model can be used to explore possible

European, Austrian and Innovest policy alternatives. §5 provides conclusions and final remarks.

1. The Pension Fund Situation in Austria and Europe

The world’s populations are ageing rapidly. By 2030 there will be roughly a doubling from about

20% to about 40% of those 65 and older, the retiree group, compared to those 15-64, the worker

group in most of the countries of the world. Better living conditions, more effective medical

systems, a decline in fertility rates and low immigration into the Western world all contribute to

this ageing phenomenon. Table 1 shows this for some European countries. By 2030 two workers

will have to support each pensioner compared with four now.
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Table 1: Projections of the Elderly Dependency Ratio, 1990-2030 (65+ as % of Population 15-
64) and Projections of Pension Costs

Elderly Dependency Ratio  Pension expenditure as a percentage of GDP
Country 1990 2010 2030 1995 2000 2010 2020 2030 2040
Austria 22.4 27.7 44  
Belgium 22.4 25.6 41.1 10.4 9.7 8.7 10.7 13.9 15
Denmark 22.7 24.9 37.7 6.8 6.4 7.6 9.3 10.9 11.6
Finland 19.7 24.3 41.1 10.1 9.5 10.7 15.2 17.8 18
France 20.8 24.6 39.1 10.6 9.8 9.7 11.6 13.5 14.3
Germany 21.7 30.3 49.2 11.1 11.5 11.8 12.3 16.5 18.4
Ireland 18.4 18 25.3 3.6 2.9 2.6 2.7 2.8 2.9
Italy 21.6 31.2 48.3 13.3 12.6 13.2 15.3 20.3 21.4
Netherlands 19.1 24.2 45.1 6 5.7 6.1 8.4 11.2 12.1
Portugal 19.5 22 33.5 7.1 6.9 8.1 9.6 13 15.2
Spain 19.8 25.9 41 10 9.8 10 11.3 14.1 16.8
Sweden 27.6 29.1 39.4 11.8 11.1 12.4 13.9 15 14.9
UK 24 25.8 38.7 4.5 4.5 5.2 5.1 5.5 5
EU average 21.4 25.9 40.3       
Source: Bos (1994), Rosevaere et al. (1996)

This demographic effect will have a major impact on public and private pension plans in

Europe. Without a change in the policy towards financing methods of pension expenditures,

especially in the public social security systems which are usually based on the pay-as-you-go

principle, future costs will increase significantly; see Table 1. References discussing European

pension plans and future problems include Davis (1997) and The Economist (2002). European

Union state pensions (pillar 1) account for about 88% of total pension costs. Without changes the

pension payouts will grow from 10% of GDP in 1997 to over 15% of GDP in 2030 for many EU

countries. Contribution rates must be raised significantly to enable the public social security

system to cope. However for some countries with well-established pension systems such as UK

and Ireland, pension costs will remain stable over the projection period.

Reforms of the public pension systems will be necessary along with an effective

environment for pillar 2 and 3 private pension systems. In 1997, according to Eurostat, only 7%

of total pension payments for the whole EU were from pillar 2 and less from pillar 3.  Effective

private pension plans will need to play a more major role given the countries’ demands for health

care and other social services in addition to pensions. Table 2 shows that except for the UK, the

Netherlands and to a lesser extent Ireland and Sweden, pension fund assets as a percent of GDP

are very low.  In Austria they are less than half of the EU average at barely 10% of GDP.
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Table 2: Pension Fund Assets as a Percentage of GDP in 1997, in bn. ECU and Asset Structure of
European Pension Funds, in Percent, 1997
Countries Assets GDP % GDP Equity Fixed

Income
Real

Estate
Cash &

STP
Other

Austria 20.9 181.8 11.5 4.1 82.4 1.8 1.6 10.0
Belgium 10.3 213.8 4.8 47.3 41.3 5.2 5.6 0.6
Denmark 29.3 143.7 20.4 23.2 58.6 5.3 1.8 11.1
Finland 8.9 103.6 8.6 13.8 55.0 13.0 18.2 0.0
France 84.4 1229.1 6.9 12.6 43.1 7.9 6.5 29.9
Germany 270.7 1865.4 14.5 9.0 75.0 13.0 3.0 0.0
Greece 4.6 105.0 4.4 7.0 62.9 8.3 21.8 0.0
Ireland 34.5 64.1 53.8 58.6 27.1 6.0 8.0 0.4
Italy 21.6 1010.7 2.1 4.8 76.4 16.7 2.0 0.0
Luxembourg 0.0 13.7 0.2 23.7 59.0 0.0 6.4 11.0
Netherlands 361.7 320.0 113.0 36.8 51.3 5.2 1.5 5.2
Portugal 9.4 86.0 10.9 28.1 55.8 4.6 8.8 2.7
Spain 18.7 470.4 4.0 11.3 60.0 3.7 11.5 13.5
Sweden 96.2 202.4 47.5 40.3 53.5 5.4 0.8 0.1
U.K. 891.2 1127.3 79.1 72.9 15.1 5.0 7.0 0.0
Total Europe 1862.4 7137.0 26.1 53.6 32.8 5.8 5.2 2.7

US 52.0 36.0 4.0 8.0 n.a.
Japan  29.0 63.0 3.0 5.0 n.a.

Source: European Federation for Retirement Provision (EFRP) (1996)

This paper describes a model for the effective operation of second pillar private pension

funds in Austria. These funds usually work on a funded basis where the pension benefits depend

on an employment contract or the pursuit of a particular profession. Schemes are administered by

private institutions and benefits are not guaranteed by the state. These occupational pension

schemes are diverse throughout Europe. Normally contributions to such systems are made by the

employer and, on an optional basis for additional benefits, by employees. The contribution level

may depend on the wage level or the position within a company. Defined contribution plans

(DCP), have fixed contributions and the payout depends on the capital accumulation of the plan.

Defined benefit plans (DBP) have payouts guaranteed by the company and the contribution is

variable depending on the capital accumulation over time.

An important difference between these two plans is the risk bearer position. In DBP’s, the

employer guarantees the pension payment which is usually tied to some wage at or near
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retirement. Hence the company would have to inject money into the pension plan if asset returns

do not cover pension liabilities. However, the company would gain, or equivalently reduce future

contributions if the asset returns of the plan are higher than required to fund the liabilities. For

DCPs, which have become more popular, the employees and pensioners bear the risk of low asset

returns. Their pensions are not fixed and depend on the asset returns. High returns will increase

pensions and vice versa. There is no direct financial risk for the employer although with poor

returns the employer would suffer negative image effects. For example, if there would be a

headline “pensions for the Siemens’ pensioners must be reduced by 3% in the next year” there

would be reputation risk for Siemens. The Siemens pension plan for Austria is a DCP but

InnoALM is designed to handle either pension system.

The liability side of the Siemens Pension Plan consists of employees, for whom Siemens is

contributing payments based upon the DCP outline, and retired employees who receive pension

payments. Contributions are computed on an individual level as a fixed fraction of salaries, which

varies across employees. Active employees are assumed to be in steady state; that is, staff is

replaced by a new employee with the same qualification and sex which gives rise to the constant

number of employees. Newly employed staff starts with less salary than retired staff, which

implies that total contributions grow less rapidly than individual salaries. Figure 1 shows the

expected index of total contributions by active employees until 2030.

The set of retired employees is treated according to Austrian mortality and marital tables.

Widows are entitled to 60% of the pension payments. Retired employees receive pension

payments after reaching age 65 for men and 60 for women in accordance with the legal Pension

Plan. Payments to retired employees are based upon the individually accumulated contribution

and the fund performance during active employment (see Figure 1 for the index of expected

payments until 2030). The annual pension payments are based on a discount rate of 6% and the

remaining life expectancy at the time of retirement. These annuities grow by 1.5% annually to

compensate for inflation. Hence, the wealth of the pension fund must grow by 7.5% per year to

match liability commitments. Another output of the computations is the expected annual net cash

flow of plan contributions minus payments. Since the number of pensioners is rising faster than

plan contributions, these cash flows are negative. Hence the plan is declining in size.
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Figure 1: Index of Expected Payments for Active and Retired Employees, 2000-2030.

Some European Member States rely on quantitative restrictions to ensure proper pension

fund investments. They believe, incorrectly, that such rules do not affect returns or that they

protect the pensioners. Others favour the “prudent man” concept, because this allows managers

maximum flexibility for investing assets to meet liabilities best. Pragma Consulting (1999) stated

that quantitative restrictions, in general, should not be established. However, on an individual

basis each pension fund should be allowed to define its own restrictions. Table 3 shows national

restrictions in various countries. Pension plans for private organizations typically have additional

restrictions. European pension funds have a very strong preference for bond holdings as shown in

Table 2. In Austria in 1997 this averaged over 80% of fixed income assets with an equity

weighting of only 4.1%.

More “mature” pillar 2 countries such as the UK and Ireland, which have managed

portfolios for outside investors for a long time, have a higher equity exposure, which may better

reflect the long term aspect of pension obligations. In Austria, Germany, Italy, Spain and France

equity markets were not developed until recently and their pension plans are heavily invested in

local government bonds. Such asset structures also reflect the attitude towards equities in various

countries. With the introduction of the Euro in 1999, a first important step towards a more

integrated capital market, especially for equities, was made. In Austria, pension funds are now

starting to increase their equity positions, but it will take some time to reach a structure similar to

those in well established US, UK and Irish pension industries. Strict regulations, unavailability of
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investment product, fear of foreign investment, a short-term outlook, and tradition led to this

policy in the past. The regulations, especially the perception of them, are still not very flexible to

allow pension managers to diversify their portfolios across asset classes, currencies and

worldwide markets.

Table 3: National Investment Restrictions on Pension Plans.
Germany Max. 30% equities, max. 5% foreign bonds
Austria Max. 40% equities, max. 45% foreign securities, min. 40% Eurobonds,

max. 5% total premiums in non-currency hedged option short and long
positions

France Min. 50% Eurobonds
Portugal Max. 35% equities
Sweden Max. 25% equities
UK, US Prudent man rule
Source: European Commission (1997)

However, some change from the European Commission is on the horizon. The new

proposals would allow European pensions more freedom to invest in equities and in foreign

assets and currencies.  The limit for worldwide equities would rise to 70% versus the current

average of about 35% in EU countries.

Siegel (1998), Goetzmann and Jorion (1999), Keim and Ziemba (2000), and Dimson et al.

(2002) have shown that over long periods equity returns have outperformed bond returns in risk

adjusted terms using measures such as the Sharpe ratio or the capital asset pricing model.

Moreover, the historical evidence since 1802 for the US and 1700 for the UK indicates that the

longer the period the more likely is this dominance to occur. Siegel (1998) shows that over all

twenty year periods from 1926 to 1997 US equities outperformed bonds risk adjusted and that

over 30-year horizons, it is optimal (with a mean-variance model) to be more than 100% in stocks

and short bonds. Hensel and Ziemba (2000) show how slow but steady outperformance of assets

can lead to dramatically higher total wealth levels over long periods. For example, for the US

during 1942-1997, a strategy that was 100% in US small cap stocks with Democratic

administrations and 100% in large cap stocks in Republican administrations had, in 1997, over 24

times as much wealth as the typical 60-40 stock and bond mix used in most US pension funds.

A mean advantage of 1.5% per (14.1% versus 12.6%) over the 56 years led to the dramatic

outperformance. How much to invest in cash, stocks and bonds over time and what is the true risk

involved is a deep and complex issue. For a theoretical analysis where the predictability of asset
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mean returns is taken into account, see Barberis (2000). Equities have had a significant advantage

over cash and bonds during most past periods in most countries so that the optimal blend is much

more than Austria’s 4.1%.

Table 4: Average Real Annualized Pension Fund Net Returns, in Percent, 1984-1993 for some
EU Countries and US.

Subset of EU countries with
restrictive investment styles

More advanced aggressive
investment styles

Belgium 8.8 Ireland 10.3
Denmark 6.3 UK 10.2
Germany 7.1 US 9.7
The 7.7
Spain 7.0
Average 7.4 Average 10.1
Source: European Commission (1997), Table 6

The high percentage of bond allocations in European pension funds has had a substantial

effect on actual performance. Table 4 shows annualized real pension fund returns in five EU

countries versus that in the US, UK and Ireland. The more advanced, more aggressive investment

styles in the US, UK and Ireland had mean returns of about 3% higher per year. In the US,

notable examples of institutions close to pension funds that have had very high risk adjusted

returns from a variety of private placement hedge fund and other investments without high equity

exposures are the endowments of Harvard and Yale universities. This means that higher equity

proportions or other ways to increase real returns would have resulted in better funded pension

plans, in higher pensions payments or lower contribution rates for companies. This

outperformance is predicated on a continuing high equity risk premium and is volatility

dependent. Between 1982 and 1999 the return of equities over bonds was over 10% per year in

EU countries. However, these high equity returns of the distant past and the 1982-2000 bull

market led to valuations of price-earnings and other measures that in 1999-2002 were are at

historically high levels in Europe, the US and elsewhere.  Studies of Campbell and Shiller (1998),

Siegel (1999), Shiller (2000), and Berge and Ziemba (2001) suggest that this level of

outperformance is unsustainable and the weak equity returns in 2000-2 are consistent with this

view. However, the long run results indicate equity outperformance and in the future, this

historical result may well be continued.
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The pension fund manager who has been mostly invested in bonds has a dilemma. Should

the fund manager move more into assets that have historically had higher mean returns along

with higher variance or stick with what has worked satisfactorily if not spectacularly in the past?

Of course, what other pension funds do is a factor in evaluation of fund performance especially

the use of specified benchmark performance evaluation levels. The specification of the type of

benchmark (a linear combination of assets) around which the fund is to be evaluated greatly

influences pension investment behavior. InnoALM is designed to help pension fund managers

prudently make these choices taking basically all aspects of the problem into account. For

example, Austrian pension fund managers had considerably more flexibility in their asset

allocation decisions than the above investment rules in Table 3 would indicate. For example, if an

investment vehicle is more than 50% invested in bonds then that vehicle is considered to be a

bond fund. So investment in 45% equities and 55% in bond funds (whose average bond and stock

weightings are 60-40) gives a fund’s average equity of 67%, which is similar to that of the higher

performing UK managers. Moreover, currency hedged assets are considered to be Euro

denominated. Hence the minimum of 40% in Eurobonds is effectively a 40% limit on worldwide

bonds but because of the above rules on weighting of assets, this limit is not really binding either.

In addition, the 5% rule on option premium means that managers had effectively full freedom for

worldwide asset allocations. However, such use of the rules was not typical by actual pension

fund managers. In some scenarios such allocations away from typical pension fund asset

allocation in other Austrian pension funds could have led to disaster.  So without being armed

with a model such as InnoALM that would calculate the possible consequences of asset weight

decisions it was safest for managers to go with the crowd.

The European Commission (1999) stressed the importance of a relaxation of restrictive

quantitative rules on pension fund investing. The diversification of investments is more important

than rules on different investments. They recommend the use of modern asset and liability

management techniques although the problem of high costs of such models is of concern.

InnoALM is a model that responds to that recommendation but can also be used by small pension

plans.

2. Formulating the InnoALM as a multistage stochastic linear programming model

The model determines the optimal purchases and sales for each of N assets in each of T planning

periods. Typical asset classes used at Innovest are US, Pacific, European, and Emerging Market
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equities and US, UK, Japanese and European bonds. The objective is to maximize expected

terminal wealth less convex penalty costs subject to various constraints. Hence the stochastic

program has a concave risk averse utility function subject to linear constraints. As the convex risk

measure is approximated by a piecewise linear function, the model is a multiperiod stochastic

linear program.

The decision variables are wealth (after transactions) itW , and purchases itP  and sales itS  for

each asset (i=1,...,N). Purchases and sales take place in periods t=0,...,T–1. Except for t=0,

purchases and sales are scenario dependent. All decision variables are non-negative.

Wealth accumulates over time for a T period model according to

000 ii
init
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~~~~~
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iW  is the prespecified initial value of asset i. There is no uncertainty in the initialization period

t=0. Tildas denote scenario-dependent random parameters or decision variables. Returns are

associated with time intervals. itR
~

 (t=1,...,T) are the (random) gross returns for asset i between t–

1 and t. The scenario generation and statistical properties of returns are discussed in §3.

The budget constraints are
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t=1,...,T–1,

where itcp  and itcs  denote asset-specific linear transaction-costs for purchases and sales, and tC

is the fixed (non-random) net cashflow (inflow if positive).

Since short sales are not allowed, the following constraints are included

init
ii WS ≤0 i=1,...,N; t=0, and

1,

~~~
−≤ titit WRS i=1,...,N; t=1,...,T–1.
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Portfolio weights can be constrained over linear combinations (subsets) of assets or individual

assets via

0
~~
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∈ =lUi
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where Uθ  is the maximum percentage and Lθ  is the minimum percentage of the subsets Uj and Ll

of assets i=1,…,N included in the restrictions j and l, respectively. The Uθ ’s, Lθ ’s, Uj’s and Ll’s

may be time dependent. Austria, Germany and other European Union countries have restrictions

that vary from country to country but not across time. Austria has the limits in Table 3.

The model assigns convex penalty risk function costs if prespecified goals in each period

are not satisfied.  In a typical application, the wealth target tW  is assumed to grow by 7.5% in

each period. This is a deterministic target goal for the increase in the pension fund’s assets as

discussed above. The wealth targets are modeled via
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where W
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~
 are wealth-target shortfall variables. The shortfall (or embarrassment) is penalized

using a piecewise linear convex risk measure based on the variables and constraints
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where W
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~
 is the wealth target shortfall associated with segment j of the cost-function, jb  is the j-

th breakpoint of the risk measure function ( 0b =0), and m is the number of segments of the

function. A piecewise linear approximation to the convex quadratic risk measure is used so that

the model remains linear. A quadratic function works well but other functions may be linearized

as well. Convexity guarantees that if 0
~

>W
jtM  then W

tjM ,1

~
−  is at its maximum and if W

jtM
~

 is not at

its maximum then .0
~

,1 =+
W

tjM
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In addition stochastic benchmark goals can be set by the user and are similarly penalized for

underachievement. The benchmark target tB
~

 is scenario dependent. It is based on stochastic asset

returns and fixed asset weights iα defining the benchmark portfolio

∑∑
==

=
N

i
iti

t

j
t RWB

11
0

~~ α .

The corresponding shortfall constraints are

∑
=

≥+
N

i
t

B
tit BMW

1

~~~ t=1,...,T,

where B
tM

~
 is the benchmark-target shortfall. These shortfalls are also penalized with a piecewise

linear convex risk measure.

If the total wealth implied by the allocation is above the target a percentage γ , typically

10%, of the exceeding amount is allocated to the reserve account. Then the wealth targets for

future stages are increased. For that purpose additional non-negative decision variables tD
~

 are

introduced and the wealth target constraints are reformulated as
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( γ , t=1,...,T–1, where 0~
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Since pension payments are based on wealth levels, increasing these levels increases pension

payments. The reserves provide security for the pension plan’s increase of pension payments at

each future stage. The fund had accumulated such a surplus by 2000.

The pension plan’s objective function is to maximize the expected discounted value of

terminal wealth in period T net of the expected discounted penalty costs over the horizon from

the convex risk measures )(⋅kc  for the wealth- and benchmark-targets, respectively,
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Expectation is over T period scenarios ST (see below). The kv  are weights for the wealth- and

benchmark-shortfalls and the tw  are weights for the weighted sum of shortfalls at each stage. The

weights are normalized via

1
},{

=∑
∈ BWk

kv and Tw
T

t
t =∑

=1

.

The discount factors td  are defined on the basis of an interest rate r: t
t rd −+= )1( . Usually r is

taken to be the three or six month Treasury-bill rate. However, Campbell and Viceira (2001)

argue that, in a multiperiod world, the proper risk-free asset is an inflation-indexed annuity rather

than the short dated T-bill. Their analysis is based on a model where agents desire to hedge

against unanticipated changes in the real rate of interest. Ten-year inflation-index bonds are then

suggested for r as their duration closely approximates the indexed annuity.

The shortfall cost coefficients are based on the least cost way to make up the shortfall-

embarrassments, which may be the product of an optimized combination of borrowing, equity,

short and long term debt and other financial instruments. Cariño and Ziemba et al. (1994,

1998ab) and Consiglio et al. (2001) discuss this.

Kallberg and Ziemba (1983) show that for normally (and symmetrically) distributed asset

returns that varying λ which equals RA/2, with RA being the average Arrow-Pratt absolute risk

aversion index, traces out the whole spectrum of risk attitudes of concave utility functions. That

is each such function can be represented by a particular value of RA. The most aggressive

behavior is log utility which has RA = 1/wealth which is essentially zero.  Typical 60-40 stock-

bond pension funds have RA = 4.  Negative power utility functions ββ )1( −w  for β<0 (β→0

yields log) can represent this behavior through an infinite range of RA from zero to plus infinity.

For each β, the optimal portfolio is )1(1 β−  percent in the log optimal portfolio and )1( −ββ

in cash, see MacLean et al. (2000) and MacLean and Ziemba (1999). While negative power is an

ideal theoretical utility function, the Kallberg-Ziemba (1983) results indicate that for

computational purposes a quadratic utility function of the form u(w)=w– AR /2w2 will suffice and

is much easier to use in the optimization. The error in this approximation is close to zero and well

below the accuracy of the data.
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The objective function of the InnoALM model only penalizes wealth target shortfalls. If the

target growth is roughly equal to the average return of the portfolio this implies that only about

half of the variance is accounted for. Therefore, to obtain results that are in agreement with a

quadratic utility function we use AR=λ  rather than AR /2, in the objective function. To obtain a

solution to the allocation problem for general levels of total initial wealth 0w  we use the rescaled

parameter 0/ wRA=λ  in the objective function.

Using a quadratic function, the penalty function )( k
k Mc  is

∑
=

− +=
m

j
jj

k
jt

k
k bbMMc

1
1 )(

~
)( , 1

~
−−≤ jj

k
jt bbM ,  with .00 =b

Suppose the breakpoints are 0.5, 1, 2 and 5 )4,1,( K=jb j and the embarrassment to be penalized

equals 4. The slopes of the quadratic approximation are given by 0.5, 1.5, 3 and 7 ).( 1 jj bb +−  The

values of the decision variables k
jtM

~
 associated with the segments are 0.5, 0.5, 1 and 2 ( 1−− jj bb

and 34 b−  for the final segment). The linearized penalty assigned to the embarrassment 4 is

therefore given by .1872315.15.05.05.0 =⋅+⋅+⋅+⋅

Uncertainty is introduced by generating multiperiod discrete scenarios using statistical

properties of the assets’ returns. A scenario tree is defined by the number of stages and the

number of arcs leaving a particular node. Figure 2 shows a tree with a 2-2-3 node structure for a

three-period problem with four stages and introduces some definitions and terminology. The tree

always starts with a single node which corresponds to the present state (t=0). Decisions are made

at each node of the tree and depend on the current state which reflects previous decisions and

uncertain future paths. A single scenario st is a trajectory that corresponds to a unique path

leading from the single node at stage 1 (t=0) to a single node at t. Two scenarios ts′  and ts ′′  are

identical until t–1 (i.e. 1−′ts = 1−′′ts ) and differ in subsequent periods t,...,T. The scenario assigns

specific values to all uncertain parameters along the trajectory, i.e. asset returns and benchmark

targets for all periods. Given all T period scenarios ST and their respective probabilities one has a

complete description of the uncertainty of the model.
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Figure 2: Scenario Tree with a 2-2-3 Node Structure (12 Scenarios)

Allocations are based on optimizing the stochastic linear program with IBM’s optimization

solutions library using the stochastic extension library (OSLE version 3;

http://www6.software.ibm.com/sos/features/stoch.htm). The library uses the Stochastic

Mathematical Programming System (SMPS) input format for multistage stochastic programs (see

Birge et al., 1987). The OSLE routines require three input files: the core-, stoch- and time-file.

The core-file contains information about the decisions variables, constraints, right-hand-sides and

bounds. It contains all fixed coefficients and dummy entries for random elements. The stoch-file

reflects the node structure of the scenario tree and contains all random elements, i.e. asset and

benchmark returns, and probabilities. Non-anticipatory constraints are imposed to guarantee that

a decision made at a specific node is identical for all scenarios leaving that node so the future

cannot be anticipated. This is implemented by specifying an appropriate scenario structure in the

stoch input file. The time-file assigns decision variables and constraints to stages. The required

statements in the input files are automatically generated by the InnoALM system (see §4).

3. Scenario Generation and Statistical Inputs

The uncertainty of the random return and other parameters in InnoALM is modeled using discrete

probability scenarios. These scenarios are approximations of the true underlying probability

distributions. The accuracy of the set of scenarios chosen and the probabilities of these scenarios
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in relation to reality contribute greatly to model success. However, the scenario approach

generally leads to superior investment performance even if there are errors in the estimations of

both the actual scenario values and their probabilities. It is not possible to include all scenarios.

What the modeling effort attempts to do is to cover well the range of possible future evolution of

the economic environment. Then decisions can be made that take into account all of these

possible outcomes weighted by their likelihood. This generally leads to superior performance of

multiperiod stochastic programming models compared with other approaches such as mean-

variance analysis, fixed mix, stochastic control, stochastic programming with decision rules, etc.

Studies showing this superiority both in and out of sample include Kusy and Ziemba (1986),

Cariño and Turner (1998), Cariño et al. (1998), and Fleten et al. (2002).

Procedures for estimating the joint distribution of future bond and stock returns have been

discussed by Chen et al. (1986), Keim and Stambaugh (1986), Ferson and Harvey (1993),

Karolyi and Stultz (1996), Bossaerts and Hillion (1999), and Tobler (2000). Procedures for

estimating discrete scenarios from joint multivariate bond and stock forecasting models have

been discussed by Dupacova (1995), Mulvey (1996), Cariño et al. (1998), Jamshidian and Zhu

(1997), and Zenios (1999).

The scenarios in InnoALM are defined in terms of the distribution of asset returns and their

first and second order moments. The latter can be prespecified by the user or estimated from the

built-in database of historical returns. James-Stein estimates, which have frequently been

suggested as the preferred approach, can be used to estimate mean returns, see e.g. Jorion (1985),

Hensel and Turner (1998) and Grauer and Hakansson (1998). For each asset one can choose from

the normal, the t- or the historical (empirical) distribution.

Empirical asset returns over short horizons (up to one month) are typically not normally

distributed but have fat tails and are skewed. Jackwerth and Rubinstein (1997) show how much

fatter the implied probability left tails of the S&P500 have become since the 1987 world wide

stock market crash because of investor fear of large declines. t-distributions model fat tails well.

The degrees of freedom parameter has to be set to a small value (e.g. 5). However, both the

normal and the t-distribution are symmetric distributions and may therefore underestimate the

downside risk of an asset or portfolio.

Pension fund planning has a long-term perspective, however. Therefore long-horizon

returns are more relevant in the present case. Empirical studies have frequently found that long-

term returns have distinctly different distributional properties than short-term returns (see e.g.
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Berge and Ziemba, 2001). Given the difficulty associated with choosing an appropriate

parametric distribution we also use a nonparametric approach to generate random samples

reflecting the shape of the historical return distribution.

To simulate the historical distribution we compute standardized annual returns ty . A single

element of the simulated historical return distribution is computed as follows. First a random

number u is drawn from a uniform distribution. This random number is treated as a probability

and the corresponding quantile z is computed from the standardized returns. The quantile is a

random draw from the historical, standardized distribution with the property uzyP t =< ][ .

Multiplying z by a prespecified standard deviation and adding a prespecified mean yields the

random return used at a particular node in the scenario tree (see below). Sampling from

standardized rather than observed returns allows us to simulate historical distributions with mean

and standard deviation that may differ from the historically observed sample statistics.

This approach yields a random sample that matches the shape of the historical (fat tailed

and/or skewed) distribution. The size of the random sample that can be generated by this

approach is not limited by the number of available historical observations since any desired

number of quantiles may be computed from historical returns. The approach cannot produce

values that are more extreme than historically observed returns. However, it is possible to allow

for even more extreme returns by augmenting the historical data set with appropriate extreme

returns, possibly based on different but similar historical series. The approach taken in Ziemba

(2000) is followed in InnoALM: whether the extreme event is predictable or not is not the key

issue. If the event can occur then a scenario to represent it must be included because the model

must be able to react to such an event.

State dependent correlation matrices of InnoALM are a new feature, which have not yet

been used in pension planning or asset allocation models. InnoALM uses three different

correlation matrices and corresponding sets of standard deviations. The choice of a specific

correlation matrix depends on the level of stock return volatility. We distinguish 'extreme' (or

'crash') periods, 'highly volatile' periods and 'normal' periods. Each of the three periods or regimes

is assigned a probability of occurrence jp (j=1,2,3). Brasker and Koch (1999), Das and Uppal

(1999), Harvey (1991), Karolyi and Stulz (1996), and Solnik et al. (1996) study changing

correlation structures over time. To estimate correlations and standard deviations for the three

regimes, we use the regression approach suggested by Solnik et al. (1996). We compute moving
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average estimates of correlations among all assets and standard deviations of US equity returns.

Correlations are regressed on US stock return volatilities. The estimated regression equations are

used to predict correlations for the three regimes (see §4).

Correlated random returns are simulated using the following procedure. For each asset i we

generate tn  standard random numbers tiz , where tn  is the number of nodes in period t (see

Figure 2). tiz  may have a normal-, t-, or historical distribution, depending on the asset and the

choice of the user. The tn -dimensional vectors tiz  are used to compile the tn ×N matrix Z~ . The

correlation among assets is modeled by multiplying the matrix Z~  with the Cholesky

decomposition of the correlation matrix C: )(~~ CcholZY ⋅= . Simulated gross returns for each

asset are obtained by multiplying each column of Y~ with the standard deviation iσ  of asset i and

adding the asset’s mean iµ  where both are adjusted for the length tτ  of planning period t via

titiiti YR t τσµ τ ~
)1(

~
++= .

Mixing of correlations is obtained by generating three sets of simulated returns as

described, but using a different correlation matrix in each set yielding three sets of returns j
tiR

~

(j=1,2,3). At any particular period the set of all nodes tn  is partitioned into three subsets

corresponding to the three volatility regimes. The simulated returns j
tiR

~
 are randomly distributed

within each of the three subsets and the subsets are randomly distributed across all nodes in that

period. The number of elements j
tn  in each set is determined by the prespecified probability jp

of the three regimes via j
tn = j

t pn  where j
tn  is rounded up to the nearest integer. At least one

node is used to represent a particular regime. The number of nodes in the 'normal' (j=3) regime

are treated as residuals and are determined from 3
tn = tn − 2

tn − 1
tn . For example, if 2n =10 and the

probabilities for the three volatility regimes are 1p =.02, 2p =.18 and 3p =.8, the number of nodes

representing each regime is 1
2n =1, 2

2n =2 and 3
2n =7. If these are the terminal nodes of the tree the

probabilities assigned to each of the ten scenarios are given by j
t

j np /  (e.g., .02, .09 and .114).

Suppose there are 10 nodes in t=2 and 10 arcs leaving each of the original 10 nodes, resulting in a

total of 100 nodes in t=3. We do not require that each group of the 10 additional nodes contains
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one 'extreme', two 'high' and seven 'normal' scenarios. We only require that the 100 nodes in t=3

represent the three regimes according to their given probabilities, i.e. 1
3n =2, 2

3n =18 and 3
3n =80.

Without mixing correlations the probability assigned to a single scenario is 1/nT. Using

three different regimes requires an adjustment of probabilities as follows. The number of possible

sequences of three regimes in T periods is given by T3 . The probability for a specific sequence of

regimes is given by ∏
=

T

t

j
tp

1

, where j
tp  is the probability used if regime j occurs in period t (e.g.

the probability for five consecutive 'normal' periods with 3p =.8 is given by .85=.32768). Because

regimes are assigned randomly to nodes and because of the rounding effects described not all

possible sequences are generated and a specific sequence is not generated exactly ∏
=

T

t

j
tT pn

1

times. For instance, if T=5, Tn =10000 and 1p =.02 for a 'extreme' regime it is very unlikely that

the tree contains a scenario with five consecutive 'extreme' regimes, and the procedure does not

force such a sequence to be present. Similarly the tree does not contain exactly 10000×.85

scenarios with five consecutive 'normal' regimes. Therefore we adjust the scenario probabilities

by taking into account how often a particular sequence is actually found in the scenario tree. For

example, if the tree contains 3250 scenarios with five consecutive 'normal' regimes, the

probability assigned to each of those scenarios is .32768 / 3250.

4. Implementation and sample results

This section describes the implementation of InnoALM and provides an illustrative example. Out

of a large number of calculations and tests we present examples that show interesting features of

InnoALM but do not disclose any important proprietary aspects of InnoALM.  Figure 3 depicts

the model’s elements. An Excel spreadsheet provides the user interface. The spreadsheet is used

to select assets, to define the number of stages and the scenario node-structure. The user can

specify the wealth targets, cash in- and outflows and the asset weights that define the benchmark

portfolio (if any). The input-file also contains a sheet with historical data and sheets to specify

mean returns, standard deviations, correlation matrices and some other parameters (risk aversion,

risk free interest rate, weights for shortfalls, constraints on asset weights, weights that define the

benchmark target, etc.).
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Historical data on the asset classes considered is embedded into the model. This includes a

monthly data set ranging from 1970 to January 2002 for equities (MSCI index) and 1986 to

January 2002 for bonds (JP Morgan index). The period October 2000 to January 2002 is used for

out-of-sample tests (see §4). Statistical properties of returns may be computed from the historical

database or specified by the user. Calculations are easy to make using various assumptions such

as those from the past 101 years in Dimson et al. (2002). Different parameters can be specified

for each stage of the planning period.

Statistical analysis and simulation uses the GAUSS programming language. This language

is also used to automatically generate the SMPS input files (core-, stoch- and time-files). This

greatly facilitates experimenting with the model because there is no need to do any recoding or

manipulating SMPS files if different assets are considered, a different node structure is assumed,

or other modifications are made. The problem is solved with IBM’s optimization solutions library

using the stochastic extension library (OSLE version 3). The solution is written to an output-file

that is used to generate summary tables and graphs.

A typical application as described below with 10000 scenarios takes about 7-8 minutes for

simulation, generating SMPS files, solving and producing output on a 1.2 GHz Pentium III

notebook with 376 MB RAM, although for some problems execution times can be 15-20

minutes.
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Figure 3: Elements of InnoALM

Front-end user interface (Excel)
• Periods (targets, node structure, fixed cash-flows, ...)
• Assets (selection, distribution, initial values, transaction costs, ... )
• Liability data
• Statistics (mean, standard deviation, correlation)
• Bounds
• Weights
• Historical data
• Options (plot, print, save, ... )
• Controls (breakpoints of cost function, random seed, ... )

GAUSS
• read input
• compute statistics
• simulate returns and generate scenarios
• generate SMPS files (core, stoch and time)

IBMOSL solver

• read SMPS input files
• solve the problem
• generate output file (optimal solutions for all nodes and variables)

Rear-end user interface (GAUSS)
• read optimal solutions
• generate tables and graphs
• retain key variables in memory to allow for further analyses

4.1 Sample problem – Assumptions

To illustrate some of the model’s features we present results for a problem with four asset classes

(Stocks Europe, Stocks US, Bonds Europe, and Bonds US) with five periods (six stages). The
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periods are twice 1 year, twice 2 years and 4 years (10 years in total). We assume discrete

compounding which implies that the mean return for asset i ( iµ ) used in simulations is

1)exp( −= ii yµ  where iy  is the mean based on log-returns. We generate 10000 scenarios using

a 100-5-5-2-2 node structure. Initial wealth equals 100 units and the wealth target grows at an

annual rate of 7.5%. No benchmark target and no cash in- and outflows are considered in this

sample application to make its results more generally valid. We use RA = 4 and the discount factor

equals 5%. RA = 4 corresponds roughly with a simple static mean-variance model to a standard

60-40 stock-bond pension fund mix; see Kallberg and Ziemba (1983). Hence it is appropriate for

this application.

Assumptions about the statistical properties of returns are based on a sample of monthly

data from January 1970 for stocks and 1986 for bonds to September 2000. All asset returns are

measured in nominal Euros. Summary statistics for monthly and annual log returns are in Table

5. The US and European equity means for the longer period 1970-2000 are much lower than for

1986-2000 and slightly less volatile. Table 5 shows that monthly stock returns are non-normal

and negatively skewed. Monthly stock returns are fat tailed whereas monthly bond returns are

close to normal (the critical value of the Jarque-Bera test for α=.01 is 9.2).

Table 5: Statistical Properties of Asset Returns.

monthly returns
Stocks Eur
1/70-9/00

Stocks Eur
1/86-9/00

Stocks US
1/70-9/00

Stocks US
1/86-9/00

Bonds Eur
1/86-9/00

Bonds US
1/86-9/00

mean (% p.a.) 10.6 13.3 10.7 14.8 6.5 7.2
std.dev (% p.a.) 16.1 17.4 19.0 20.2 3.7 11.3
skewness −0.90 −1.43 −0.72 −1.04 −0.50 0.52
kurtosis 7.05 8.43 5.79 7.09 3.25 3.30
Jarque-Bera test 302.6 277.3 151.9 155.6 7.7 8.5
annual returns
mean (%) 11.1 13.3 11.0 15.2 6.5 6.9
std.dev (%) 17.2 16.2 20.1 18.4 4.8 12.1
skewness −0.53 −0.10 −0.23 −0.28 −0.20 −0.42
kurtosis 3.23 2.28 2.56 2.45 2.25 2.26
Jarque-Bera test 17.4 3.9 6.2 4.2 5.0 8.7

However, for long term planning models such as InnoALM with its one year review period,

properties of monthly returns are less relevant. The second panel of Table 5 contains statistics for

annual returns. While average returns and volatilities remain about the same (we loose one year

of data, when we compute annual returns), the distributional properties change dramatically.
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While we still find negative skewness, there is no evidence for fat tails in annual returns except

for European stocks (1970-2000) and US bonds.

The mean returns from this sample are comparable to the 1900-2000 mean returns

estimated by Dimson et al. (2002). Their estimate of the nominal mean equity return for the US is

12.0% and that for Germany and UK is 13.6% (the simple average of the two country’s means).

The mean of bond returns is 5.1% for US and 5.4% for Germany and UK.

Assumptions about means, standard deviations and correlations for the applications of

InnoALM appear in Table 7 and are based on the sample statistics presented in Table 6.

Projecting future rates of returns from past data is difficult. We use the equity means from the

period 1970−2000 since the period 1986−2000 is considered to have shown exceptionally good

performance of stocks that is not assumed to prevail in the long run. Thus, the InnoALM results

presented below may be considered to be based on conservative assumptions.

Table 6: Regression Equations Relating Asset Correlations and US Stock Return Volatility
(monthly returns; Jan 1989–Sep 2000; 141 observations).

correlation between constant

slope w.r.t.
US stock
volatility

t-statistic
of slope R²

Stocks Europe − Stocks US 0.62 2.7 6.5 0.23
Stocks Europe − Bonds Europe 1.05 −14.4 −16.9 0.67
Stocks Europe − Bonds US 0.86 −7.0 −9.7 0.40
Stocks US − Bonds Europe 1.11 −16.5 −25.2 0.82
Stocks US − Bonds US 1.07 −5.7 −11.2 0.48
Bonds Europe − Bonds US 1.10 −15.4 −12.8 0.54

The correlation matrices in Table 7 for the three different regimes are based on the

regression approach described above. Results for the estimated regression equations appear in

Table 6. We consider three different regimes and assume that 10% of the time, equity markets are

extremely volatile, 20% of the time markets are characterized by high volatility and 70% of the

time, markets are normal. The 35% quantile of US equity return volatility defines 'normal'

periods. 'Highly volatile' periods are based on the 80% volatility quantile and 'extreme' periods on

the 95% quantile. The associated correlations reflect the return relationships that typically

prevailed during those market conditions. The correlations in Table 7 show a distinct pattern

across the three regimes. Correlations among stocks tend to increase as stock return volatility

rises, whereas the correlations between stocks and bonds tend to decrease. European Bonds may
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serve as a hedge for equities during extremely volatile periods since bonds and stocks returns,

which are usually positively correlated, are then negatively correlated.

Table 7: Means, Standard Deviations and Correlations Assumptions.
Stocks Europe Stocks US Bonds Europe Bonds US

Stocks US .755
Bonds Europe .334 .286
Bonds US .514 .780 .333

normal periods
(70% of the
time)

Standard deviation 14.6 17.3 3.3 10.9
Stocks US .786
Bonds Europe .171 .100
Bonds US .435 .715 .159

high volatility
(20% of the
time)

Standard deviation 19.2 21.1 4.1 12.4
Stocks US .832
Bonds Europe −.075 −.182
Bonds US .315 .618 −.104

extreme
periods
(10% of the
time) Standard deviation 21.7 27.1 4.4 12.9

Stocks US .769
Bonds Europe .261 .202
Bonds US .478 .751 .255

average period

Standard deviation 16.4 19.3 3.6 11.4
all periods Mean 10.6 10.7 6.5 7.2

We calculate optimal portfolios for seven cases. We distinguish cases with and without

mixing of correlations and consider normal, t- and historical distributions. Cases NM, HM and

TM use mixing correlations. Case NM assumes normal distributions for all assets. Case HM uses

the historical distributions of each asset. Case TM assumes t-distributions with five degrees of

freedom for stock returns, whereas bond returns are assumed to have normal distributions. The

cases NA, HA and TA are based on the same distribution assumptions with no mixing of

correlations matrices. Instead the correlations and standard deviations used in these cases

correspond to an 'average' period where 10%, 20% and 70% weights are used to compute

averages of correlations and standard deviations used in the three different regimes. Comparisons

of the average (A) cases and mixing (M) cases are mainly intended to investigate the effect of

mixing correlations. Finally, in the case TMC, we maintain all assumptions of case TM but use

Austria’s constraints on asset weights (see Table 3). Eurobonds must be at least 40% and equity

at most 40%, and these constraints are binding.
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4.2 Sample problem – Results

Table 8 shows the optimal initial asset weights at stage 1 for the various cases. Table 9 shows

results for the final stage (expected weights, expected terminal wealth, expected reserves and

shortfall probabilities). Tables 8 and 9 show a distinct pattern: the mixing correlation cases

initially assign a much lower weight to European bonds than the 'average' period cases. Single-

period, mean-variance optimization and the 'average' period cases (NA, HA and TA) suggest an

approximate 45-55 mix between equities and bonds.  The mixing correlation cases (NM,HM and

TM) imply a 65-35 mix. Investing in US Bonds is not optimal at stage 1 in none of the cases

which seems due to the relatively high volatility of US bonds.

Table 8: Optimal Initial Asset Weights at Stage 1 by Case (percentage).
Stocks Europe Stocks US Bonds Europe Bonds US

single-period, mean-variance
optimal weights (average
periods)

34.8 9.6 55.6 0.0

case NA: no mixing (average
periods) normal distributions

27.2 10.5 62.3 0.0

case HA: no mixing (average
periods) historical
distributions

40.0 4.1 55.9 0.0

case TA: no mixing (average
periods) t-distributions for
stocks

44.2 1.1 54.7 0.0

case NM: mixing correlations
normal distributions 47.0 27.6 25.4 0.0

case HM: mixing correlations
historical distributions 37.9 25.2 36.8 0.0

case TM: mixing correlations
t-distributions for stocks

53.4 11.1 35.5 0.0

case TMC: mixing
correlations historical
distributions;
constraints on asset weights

35.1 4.9 60.0 0.0
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Table 9: Expected Portfolio Weights at the Final Stage by Case (percentage), Expected Terminal
Wealth, Expected Reserves, and the Probability for Wealth Target Shortfalls (percentage) at the
Final Stage.

Stocks
Europe

Stocks
US

Bonds
Europe

Bonds
US

Expected
Terminal
Wealth

Expected
Reserves at

Stage 6

Probability
of Target
Shortfall

NA 34.3 49.6 11.7 4.4 328.9 202.8 11.2
HA 33.5 48.1 13.6 4.8 328.9 205.2 13.7
TA 35.5 50.2 11.4 2.9 327.9 202.2 10.9
NM 38.0 49.7 8.3 4.0 349.8 240.1 9.3
HM 39.3 46.9 10.1 3.7 349.1 235.2 10.0
TM 38.1 51.5 7.4 2.9 342.8 226.6 8.3
TMC 20.4 20.8 46.3 12.4 253.1 86.9 16.1

Table 9 shows that the distinction between 'A' and 'M' cases becomes less pronounced over

time. However, European equities still have a consistently higher weight in the mixing cases than

in no-mixing cases. This higher weight is mainly at the expense of Eurobonds. In general the

proportion of equities at the final stage is much higher than in the first stage. This may be

explained by the fact that the expected portfolio wealth at later stages is far above the target

wealth level (206.1 at stage 6) and the higher risk associated with stocks is less important (see

§4.3). The constraints in case TMC lead to lower expected portfolio wealth throughout the

horizon and to a higher shortfall probability than any other case. Calculations show that initial

wealth would have to be 35% higher to compensate for the loss in terminal expected wealth due

to those constraints. In all cases the optimal weight of equities is much higher than the historical

4.1% in Austria.

The expected terminal wealth levels and the shortfall probabilities at the final stage make

the difference between mixing and no-mixing cases even clearer (see Table 9). Mixing

correlations implies higher levels of terminal wealth and lower shortfall probabilities.

If the level of portfolio wealth exceeds the target, the surplus jD
~

 is allocated to a reserve

account; see §2. The reserves in t are computed from ∑
=

t

j
jD

1

~
 and are shown in Table 9 for the

final stage. These values are in monetary units given an initial wealth level of 100. They can be

put into context by comparing them to the wealth target (206.1 at stage 6). Expected reserves

exceed the target level at the final stage by up to 16%. Depending on the scenario the reserves

can be as high as 1800. Their standard deviation (across scenarios) ranges from 5 at the first stage
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to 200 at the final stage. The constraints in case TMC lead to a much lower level of reserves

compared to the other cases which implies, in fact, less security against future increases of

pension payments.

Summarizing we find that optimal allocations, expected wealth and shortfall probabilities

are mainly affected by considering mixing correlations while the type of distribution chosen has a

smaller impact. This distinction is mainly due to the higher proportion allocated to equities if

different market conditions are taken into account by mixing correlations.

The results of any asset allocation strategy crucially depend upon the choice of the mean

returns. We now investigate the effect associated with changing the forecasted future means of

equity returns. Assume that an econometric model forecasts that the future mean return for US

equities is at some value. This parameterized mean is assumed to be 5 to 15%. The mean of

European equities is adjusted accordingly so that the ratio of equity means in Table 7 is

maintained. The mean bond returns are the same as in Table 7. We retain all other assumptions of

case NM (normal distribution and mixing correlations). Figure 4 summarizes the effects of these

mean changes in terms of the optimal initial weights. As expected, see Chopra and Ziemba

(1993), the results are very sensitive to the choice of the mean return. If the mean return for US

stocks is assumed to equal the long run mean of 12% as estimated by Dimson et al. (2002), the

model yields an optimal weight for equities of 100%. However, a mean return for US stocks of

9% implies less than 30% optimal weight for equities.

Figure 4: Optimal Asset Weights at Stage 1 for Varying Levels of US Equity Means.
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4.3 Model Tests

Since state dependent correlations have a significant impact on allocation decisions it is worth-

while to further investigate it’s nature and it’s implications. This will be done from the

perspective of testing the model. Positive effects on the pension fund performance induced by the

stochastic, multiperiod planning approach will only be realized if the portfolio is dynamically

rebalanced as implied by the optimal scenario tree. We test the performance of the model

considering this aspect. As a starting point it is instructive to break down the rebalancing

decisions at later stages into groups of achieved wealth levels. This reveals the 'decision rule'

implied by the model depending on the current state. Consider case TM. Quintiles of wealth are

formed at stage 2 and the average optimal weights assigned to each quintile are computed. The

same is done using quintiles of wealth at stage 5.

Figure 5: Optimal Weights Conditional on Quintiles of Portfolio Wealth at Stage 2 and 5.

Figure 5 shows the distribution of weights for each of the five average levels of wealth at

the two stages. While the average allocation at stage 5 is essentially independent of the wealth

level achieved (the target wealth at stage 5 is 154.3), the distribution at stage 2 depends on the

wealth level in a specific way. If average attained wealth is 103.4, which is slightly below the

target, a very cautious strategy is chosen. Bonds have the highest weight in this case (almost

50%). In this situation the model implies that the risk of even stronger underachievement of the

target is to be minimized. The model relies on the low but more certain expected returns of bonds

to move back to the target level. If attained wealth is far below the target (97.1) the model

implies more than 70% equities and a high share (10.9%) of relatively risky US bonds. With such

strong underachievement there is no room for a cautious strategy to attain the target level again.
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If average attained wealth equals 107.9, which is close to the target wealth of 107.5, the highest

proportion is invested into US assets with 49.6% invested in equities and 22.8% in bonds. The

US assets are more risky than the corresponding European assets which is acceptable because

portfolio wealth is very close to the target and risk does not play a big role. For wealth levels

above the target most of the portfolio is switched to European assets which are safer than US

assets. This 'decision' may be interpreted as an attempt to preserve the high levels of attained

wealth.

The decision rules implied by the optimal solution can be used to perform a test of the

model using the following rebalancing strategy. Consider the ten year period from January 1992

to January 2002. In the first month of this period we assume that wealth is allocated according to

the optimal solution for stage 1 (see Table 8). In each of the subsequent months the portfolio is

rebalanced as follows: we identify the current volatility regime (extreme, highly volatile, or

normal) based on the observed US stock return volatility. Then we search the scenario tree to find

a node that corresponds to the current volatility regime and has the same or a similar level of

wealth. The optimal weights from that node determine the rebalancing decision. For the no-

mixing cases NA, TA and HA the information about the current volatility regime cannot be used

to identify optimal weights. In those cases we use the weights from a node with a level of wealth

as close as possible to the current level of wealth. Table 10 presents summary statistics for the

complete sample and the out-of-sample period October 2000 to January 2002. The mixing

correlation solutions assuming normal and t-distributions (cases NM and TM) provide a higher

average return with lower standard deviation than the corresponding non-mixing cases (NA and

TA). The advantage may be substantial as indicated by the 14.9% average return of TM

compared to 10.0% for TA. The t-statistic for this difference is 1.7 and is significant at the 5%

level (one-sided test). Using the historical distribution and mixing correlations (HM) yields a

lower average return than no-mixing (HA). In the constrained case TMC the average return for

the complete sample is in the same range as for the unconstrained cases. This is mainly due to

relatively high weights assigned to US bonds which performed very well during the test period.

The standard deviation of returns is much lower because the constraints imply a lower degree of

rebalancing.
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Table 10: Results of Asset Allocation Strategies Using the 'Decision Rule' Implied by the
Optimal Scenario Tree.

complete sample
01/92–01/02

out-of-sample
10/00–01/02

mean std.dev. mean std.dev.
NA 11.6 16.1 –17.1 18.6
NM 13.1 15.5 –9.6 16.9
HA 12.6 16.5 –15.7 21.1
HM 11.8 16.5 –15.8 19.3
TA 10.0 16.0 –14.6 18.9
TM 14.9 15.9 –10.8 17.6
TMC 12.4 8.5 0.6 9.9

To emphasize the difference between the cases TM and TA Figure 6 compares the

cumulated monthly returns obtained from the rebalancing strategy for the two cases as well as a

buy and hold strategy which assumes that the portfolio weights on January 1992 are fixed at the

optimal TM weights throughout the test period. Rebalancing on the basis of the optimal TM

scenario tree provides a substantial gain when compared to the buy and hold strategy or the

performance using TA results, where rebalancing does not account for different correlation and

volatility regimes.

Figure 6: Cumulative Monthly Returns for Different Strategies.
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Such in- and out-of-sample comparisons depend on the asset returns and test period. To

isolate the potential benefits from considering state dependent correlations we performed the

following controlled simulation experiment. Consider 1000 ten-year periods where simulated

annual returns of the four assets are assumed to have the statistical properties summarized in

Table 7. One of the ten years is assumed to be a 'extreme' year, two years correspond to 'highly

volatile' markets and seven years are 'normal' years. We compare the average annual return of

two strategies: (a) a buy and hold strategy using the optimal TM weights from Table 8 throughout

the ten-year period, and (b) a rebalancing strategy that uses the implied decision rules of the

optimal scenario tree as explained in the in- and out-of-sample tests above. For simplicity we

assume that the current volatility regime is known in each period. The average annual returns

over 1000 repetitions of the two strategies are 9.8% (rebalancing) and 9.2% (buy and hold). The

t-statistic for the mean difference is 5.4 and indicates a highly significant advantage of the

rebalancing strategy which exploits the information about state dependent correlations. For

comparison we repeat the same experiment using optimal weights from the constrained case

TMC. We obtain the same average mean of 8.1% for both strategies. This indicates that the

constraints imply insufficient rebalancing capacity. Therefore knowledge about the volatility

regime cannot be sufficiently exploited to achieve superior performance relative to buy and hold.

This result also shows that the relatively good performance of the TMC rebalancing strategy in

the sample period 1992-2002 is positively biased by the favourable conditions during that time.

5. Conclusions and final remarks

The model InnoALM provides an easy to use tool to help Austrian pension funds’ investment

allocation committees evaluate the effect of various policy choices in light of changing economic

conditions and various goals, constraints, and liability commitments. The model includes features

that reflect real investment practices. These include multiple scenarios, non-normal distributions

and different volatility and correlation regimes. The model provides a systematic way to estimate

in advance, the likely results of particular policy changes and asset return realizations. This

provides more confidence and justification to policy changes that may be controversial such as a

higher weight in equity and less in bonds than has traditionally been the case in Austria.
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The model is an advance on previous models and includes new features such as state dependent

correlation matrices. Crucial to the success of the results are the scenario inputs and especially

the mean return assumptions. The model has a number of ways to estimate such scenarios. Given

good inputs, the policy recommendations tend to significantly improve current investment

practice and provide greater confidence to the asset allocation process.
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