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autophagy through its interaction with Beclin 1
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The inositol 1,4,5-trisphosphate receptor (IP3R) is a major regulator of apoptotic signaling. Through interactions with members of
the Bcl-2 family of proteins, it drives calcium (Ca2þ ) transients from the endoplasmic reticulum (ER) to mitochondria, thereby
establishing a functional and physical link between these organelles. Importantly, the IP3R also regulates autophagy, and in
particular, its inhibition/depletion strongly induces macroautophagy. Here, we show that the IP3R antagonist xestospongin B
induces autophagy by disrupting a molecular complex formed by the IP3R and Beclin 1, an interaction that is increased or
inhibited by overexpression or knockdown of Bcl-2, respectively. An effect of Beclin 1 on Ca2þ homeostasis was discarded as
siRNA-mediated knockdown of Beclin 1 did not affect cytosolic or luminal ER Ca2þ levels. Xestospongin B- or starvation-
induced autophagy was inhibited by overexpression of the IP3R ligand-binding domain, which coimmunoprecipitated with
Beclin 1. These results identify IP3R as a new regulator of the Beclin 1 complex that may bridge signals converging on the ER and
initial phagophore formation.
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Macroautophagy (herein referred to as autophagy) is the
major catabolic pathway for entire organelles, long-lived/
aberrant proteins and superfluous portions of the cytosol. It
consists of the stepwise engulfment of substrate elements into
distinctive multimembraned autophagosomes, which after
fusion with lysosomes form single-membraned autolyso-
somes. Within the lumen of autolysosomes, macromolecules
are enzymatically broken down into metabolites that cope with
the bioenergetic and biosynthetic demands of the cell.1,2

Themolecular activation of autophagy is a complex process
(reviewed in Yorimitsu and Klionsky3) that is regulated by the
mammalian target of rapamycin (mTOR), a protein kinase
essential for nutrient-sensing signal transduction.4 Down-
stream of mTOR, a series of chain reactions are executed by
several autophagy-related (Atg) proteins, allowing the pre-
autophagosomal membrane structure (phagophore) to engulf
a substrate material, to complete and close the sequestering
vacuole in physical association with the microtubular network,
and finally fuse autophagosomes with lysosomes to execute
degradation. The autophagic functions of the phylogenetically

conserved family of atg genes have extensively been studied
in yeast.5,6 One of the most important members of this family
is atg6, whose mammalian ortholog is represented by the
haploinsufficient tumor suppressor gene beclin 1.7,8 In
mammalian cells, Beclin 1 acts concertedly with Vps34,
Vps15, UVRAG, Bif1, Ambra1 and perhaps other proteins to
form a multiprotein complex with class III phosphatidylinositol
3-kinase (PI3K) activity that generates phosphatidylinositol-3-
phosphate (PI3P). PI3P determines the curvature of the
nascent phagophore and promotes the recruitment of other
Atg proteins (including Atg5, Atg12, Atg10, Atg4, Atg3, Atg7,
Atg8 and Atg16), which catalyze vesicle elongation and
phagophore nucleation.6,9

Although classically viewed as an essential mechanism of
adaptation to stress, in particular to that imposed by the lack of
nutrients, excessive or inefficient autophagy may be involved
in autophagic cell death (ACD).9–11 At a molecular level, the
cross-talk between apoptosis and autophagy is beginning to
be understood, and some factors have recently been
identified as common regulators of both pathways.9,12,13 For
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instance, the activity of Beclin 1 is inhibited by the
antiapoptotic proteins Bcl-2 and Bcl-XL due to the interaction
between the BH3 domain present in Beclin 1 and the BH3
receptor cleft of Bcl-2/XL. This binding is competitively
disrupted by proapoptotic BH3-only proteins, which therefore
can promote autophagy.14–16

Autophagy can also be induced through an mTOR-
independent pathway by loweringmyo-inositol 1,4,5-trisphos-
phate (IP3) levels.

17 This effect can be achieved pharmaco-
logically with drugs such as lithium or L-690 330, which disrupt
inositol metabolism by inhibiting inositol monophosphatase
(IMP).18 As IP3 is a second messenger that mediates Ca2þ

release from the endoplasmic reticulum (ER), autophagy
might also be regulated by Ca2þ . This hypothesis has been
addressed by a pioneering study, which concluded that Ca2þ

fluxes are not necessary for autophagic stimulation and that
autophagy would rather depend on the presence of Ca2þ

within an intracellular storage compartment.19 Accordingly,
cytosolic Ca2þ may even inhibit autophagy in a cyclical
mTOR-independent pathway.18 Three recent studies have
also explored the contribution of Ca2þ to autophagy,20–22

establishing that Ca2þ is required for autophagic induction,
but showing some incongruities in whether increases in
cytosolic [Ca2þ ],21,22 or modifications of ER Ca2þ levels,20

are responsible for the induction of autophagy. Irrespective of
such discrepancies, all these studies showed that a Bcl-2
variant that is specifically targeted to the ER inhibits
autophagy.20,22

Ca2þ present in the ER lumen is released through specific
channels. Two types of ER-resident Ca2þ release channels
exist, namely the ryanodine receptors and the IP3 receptors
(IP3R).

23 Diverse physiological processes, including the
mitochondrial (or intrinsic) pathway of apoptosis, are con-
trolled by Ca2þ fluxes from the ER to mitochondria, which
occur in the context of specific microdomains allowing for the
functional and physical interaction between these orga-
nelles.24,25 The IP3R plays a critical role in this cross-talk
and is currently considered as a major regulator of apoptotic
signaling, which is also modulated by the members of the
Bcl-2 family of proteins.24,26–28 The IP3R has also been shown
to regulate autophagy. Indeed, its pharmacological inhibition
with xestospongins and its depletion by specific siRNAs,
represents a strong stimulus for the induction of autophagy,
an effect that can be reverted by ER-targeted Bcl-2 over-
expression.29,30 Moreover, it has been shown that the IP3R
gene is required for the induction of ACD in Dyctiostelium
discoideum.31,32

On the basis of these pieces of evidence, IP3R emerges as
a possible key integrator of the cross-talk between apoptosis
and autophagy. Here, we report that xestospongin B and
nutrient starvation disrupt a molecular complex formed by the
IP3R, Beclin 1 and Bcl-2, and present evidence that the IP3R
represses autophagy through Bcl-2-mediated sequestration
of Beclin 1.

Results and Discussion

Xestospongin B induces autophagy by binding to the
IP3R in a Bcl-2-inhibitable fashion. The natural compound
xestospongin B (purified from the marine sponge

Xestospongia exigua) is an IP3R antagonist that induces
autophagy when added to a variety of animal cell lines,
incuding human cervical adenocarcinoma HeLa cells
(Figure 1a–d and Supplementary videos), Rat-1 fibroblasts
(from Rattus norvegicus; data not shown) and DT40 B-cell
lymphoma cells (from Gallus gallus; Figure 1d). This was
assessed by determining the distribution of green fluorescent
protein-coupled microtubule-associated protein light chain 3
(GFP-LC3) to cytoplasmic puncta (Figure 1a and b) or the
lipidation of LC3, which leads to an increase in its
electrophoretic mobility (from LC3-I to LC3-II; Figure 1c
and d). Importantly, these effects were inhibited by
overexpression of Bcl-2 (Figure 1a–d) and were lost in
DT40 cells depleted for all three IP3R isoforms through
homologous recombination (Figure 1e and f). As a note,
DT40 triple knockout cells remained responsive to nutrient
starvation as their wild-type counterparts (Figure 1f),
suggesting that at least two independent signaling
pathways to autophagy – which are activated by distinct
triggers – coexist in these cells. As described earlier,29

xestospongin B caused the dissociation of the Beclin 1/Bcl-2
complex that normally inhibits autophagy. This effect could
be detected in coimmunoprecipitation experiments when
xestospongin B was added to control DT40 cells, yet was
undetectable in IP3R-deficient DT40 cells (Figure 1g and h).
The redistribution of GFP-LC3 to dots or the accumulation

of LC3-II may be a sign of an enhanced formation of
autophagosomes or a reduced removal of autophago-
somes.33,34 To discriminate between these two possibilities,
we blocked the fusion between autophagosomes and lyso-
somes (with bafilomycin A1) and/or inhibited lysosomal
proteases (with pepstatin A). As an internal control of its
efficacy, we ensured that bafilomycin A1 inhibited the
colocalization of GFP-LC3 with the lysosomal marker Lamp
2A, which is an indicator of the autophagosome–lysosome
fusion (Figure 2a and b). In these conditions, the addition of
xestospongin B continued to induce an increase in GFP-LC3
puncta (Figure 2a and c) and in the generation of LC3-II
(Figure 2d and e), which strengthens the notion that
xestospongin B stimulates the initiation, rather than the late
stages, of the autophagic flux.
Xestospongin B neither affected the basal levels nor the

histamine-induced increase of IP3 (Figure 3a). In conditions in
which the IMP inhibitor L-690 330 reduced IP3 levels, non-
toxic doses of myo-inositol (which lead to an increase in IP3

concentrations) inhibited L-690 330-induced autophagy, but
failed to suppress autophagy induced by xestospongin B
(Figure 3b). From these results, we conclude that xestospongin
B induces autophagosome formation through a Bcl-2-
inhibitable effect on IP3R that does not involve major
perturbations of inositol metabolism.

A molecular complex involving the IP3R and Beclin 1
regulates autophagy in response to xestospongin B or
starvation. Driven by the observation that Bcl-2
overexpression can inhibit xestospongin B-induced
autophagy, we monitored the molecular interaction between
the IP3R and Beclin 1, which so far has been indicated as the
main target for Bcl-2-mediated autophagy inhibition.14,15 In
unstimulated cells, IP3R could be immunoprecipitated with
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Beclin 1 and vice versa. Shortly after addition of
xestospongin B (usually within 3 h), this interaction was
reduced (Figure 4a and b). As described earlier by our
group, xestospongin B disrupted the interaction between
Beclin 1 and Bcl-2,29 whereas it did not affect the
co-immunoprecipitation between the IP3R and Bcl-2
(Figure 4c). This suggests that xestospongin B disrupts the
interaction between Beclin 1 and the IP3R/Bcl-2 complex.
Similar results were found when xestospongin B treatment
was replaced by the most physiological inducer of
autophagy, nutrient starvation (Figure 4d), and could also
be detected in different cell lines, including human colon
cancer HCT116 cells and Rat-1 fibroblasts (not shown). In
cells that overexpress Bcl-2, the capacity of xestospongin B
to disrupt the IP3R/Beclin 1 complex was reduced and
delayed (Figure 4e). Importantly, when Bcl-2 was depleted
by specific siRNAs (Figure 4f), the IP3R/Beclin 1 complex
was disrupted in resting conditions (Figure 4g), further
corroborating the notion that the interaction between IP3R
and Beclin 1 is mediated by Bcl-2. Although mTOR
phosphorylation and mTOR-mediated phosphorylation of
p70S6K were inhibited by rapamycin, xestospongin B did
not affect mTOR phosphorylation or p70S6K phosphorylation
(Figure 5a). Moreover, mTOR inhibition with rapamycin,
which induces autophagy, failed to disrupt the IP3R/Beclin 1
complex (Figure 5b). Altogether, these results strongly
suggest that the inhibition of mTOR and that of the IP3R
induce autophagy through mechanisms that can be fully
separated.
As several IP3R-interacting proteins, including Bcl-2, have

major effects on Ca2þ signaling,27 we tested whether Beclin 1
might also affect Ca2þ homeostasis, which reportedly has an
important impact on autophagy.18–22 However, we did not
detect any tangible effect of Beclin 1 depletion on IP3R
agonist-induced Ca2þ fluxes (Figure 6a and b), steady state
levels of Ca2þ in the ER lumen, thapsigargin-induced Ca2þ

depletion from the ER (Figure 6c), or increases in cytosolic
[Ca2þ ] upon inhibition of the sarco–ER Ca2þ ATPase
(SERCA) with 2,5-di(ter-butyl)-1,4 benzohydroquinone
(tBHQ; Figure 6d and e). This was assessed by using state-
of-the-art aequorin-based Ca2þ sensors (Figure 6a and b),
ERD1 cameleon Ca2þ sensor (Figure 6c) or a chemical Ca2þ

probe (Figure 6d and e). Collectively, these data indicate that
the IP3R can affect the autophagy-inducing function of Beclin
1, yet suggest that Beclin 1 itself does not play a major role in
regulating Ca2þ fluxes governed by the IP3R.

The IP3R ligand-binding domain (IP3R-LBD) inhibits
autophagy through an effect on the Beclin 1/Bcl-2
complex. A target for xestospongin B is the IP3R-LBD

(aa 224–604), which is engaged in several protein–protein
interactions;35,36 and has a major effect on the regulation of
ER-mitochondrial microdomains that affect Ca2þ signaling
and the physical contact between ER and mitochondria.24

The transfection-enforced expression of the IP3R-LBD
coupled to red fluorescent protein (RFP) strongly inhibited
autophagy induced by xestospongin B or nutrient starvation
(Figure 7a and b). This held so for either ER-targeted, outer
mitochondrial membrane (OMM)-targeted and cytosolic
(Cyto) variants of the IP3R-LBD coupled to RFP, all of
which affect the ER–mitochondrial cross-talk.24 As negative
controls, equally targeted versions of RFP (namely Cyto-ER-
and OMM-RFP) failed to inhibit autophagy in this system, as
assessed by measuring GFP-LC3 puncta (Figure 7a and b)
or the accumulation of LC3-II (Figure 7e). Moreover, an
inactive IP3R-LBD mutant (IP3R-LBD-9aaER-RFP) in which
the insertion of a nonapeptide linker abolishes the interaction
with endogenous IP3R,

37 failed to affect xestospongin B-
induced autophagy (Figure 7b). All the functional variants of
the IP3R-LBD-RFP (Cyto-, OMM- and ER-targeted) but not
IP3R-LBD-9aaER-RFP, interacted with Beclin 1 (not shown),
and this interaction was reduced in the ER by depletion of
Bcl-2 (Figure 7c and d). Altogether, these results indicate that
IP3R-LBD is the moiety of the IP3R that mediates its
interaction with Beclin 1 (through Bcl-2), and accounts for
IP3R-mediated inhibition of autophagy.

Conclusions

The results from this and several earlier studies,17,18,29,30

indicate that IP3R agonists (such as IP3 itself) and IP3R
antagonists (such as xestospongins) act as inhibitors and
inducers of autophagy, respectively, through an effect on the
IP3R. Thus, xestospongin B, which reportedly competes with
IP3 for IP3R binding,38,39 induces autophagy through the IP3R
(in the sense that this effect is lost in IP3R knockout cells)
rather than through an off-target effect. Although acute
depletion of the IP3R by RNA interference is sufficient to
induce autophagy in HeLa cells,29 permanent IP3R knockout
by homologous recombination does not induce autophagy, at
least in DT40 cells, presumably because these cells have
adapted to the absence of the IP3R in a long-term selection
process and express a truncated version of IP3R.

40 Con-
versely, plasmid-driven overexpression of the IP3R-LBD
inhibits autophagic vacuolization induced by both xestospon-
gin and nutrient starvation, further confirming themajor impact
of the IP3R on the regulation of autophagy.
Although accumulating evidence point to the modulation of

autophagy by the IP3R, the underlying mechanisms are still

Figure 1 Induction of autophagy by xestospongin B is dependent on the IP3R and Bcl-2. Bcl-2 inhibits xestospongin B-induced autophagy (a–d). Wild-type (WT) or Bcl-2
overexpressing HeLa cells transfected with GFP-LC3 were treated with xestospongin B (2 mM) for 4 h. Autophagy was monitored by assessing the intracellular redistribution of
GFP-LC3 (a), and the percentage of vacuolizated cells was quantified (b). LC3 lipidation was compared between WT and Bcl-2 overexpressing HeLa cells by immunoblotting
(c), and quantified (d) at the times indicated. The IP3R was necessary for xestospongin B-(4 h), but not starvation-mediated (2 h) LC3 lipidation, as observed in WT DT40
chicken B lymphocytes versus a triple knockout (TKO) DT40 cell line deficient for all IP3R isoforms (e and f). Bcl-2 and Beclin 1 interaction was monitored after 6 h of
xestospongin B treatment in WT versus TKO DT40 cells (g), and the coimmunoprecipitated levels of Beclin 1 were normalized to input levels (h). Results are representative of
at least three independent experiments. *Po0.05 and **Po0.01 as indicated for WT compared with genetically modified cells. The colour reproduction of this figure is
available on the html full version of the manuscript
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unclear. IP3R controls the agonist-induced release of Ca2þ

from the ER lumen to the cytosol,35 and elevations of cytosolic
Ca2þ have been involved in pharmacologically induced
autophagy, as occurred in response to vitamin D analogs.22

Hence, the finding that IP3R inhibition with xestospongins

induces autophagy (although it should reduce39 cytosolic
Ca2þ ) suggests that the effects of the IP3R and/or IP3R
ligands on autophagy cannot be explained only by a
modulation of Ca2þ levels. Here, we show that the IP3R
coimmunoprecipitates with Beclin 1, suggesting another
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mechanism through which the IP3R might act as an
endogenous inhibitor of autophagy. Indeed, we found that
IP3R binding by its antagonist xestospongin B, as well as
physiological induction of autophagy by nutrient starvation,
disrupted the interaction between the IP3R and Beclin 1. As
this interaction was abolished by the knockdown of Bcl-2, it is
likely that the IP3R and Beclin 1 interact through an indirect
link established by Bcl-2.

In the triangular game among the IP3R, Beclin 1 and Bcl-2,
the IP3R-LBD (which is the site of interaction with IP3 and
xestospongins) appears as the most important domain for the
regulation of autophagy. Thus, the IP3R-LBD (which itself has
no function as a Ca2þ channel)41 can inhibit autophagy
irrespective of its precise subcellular localization or topology,
once more arguing against the idea that modified Ca2þ fluxes
account for the effects of IP3R on autophagy. We were unable
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evoked by histamine (a). HeLa cells transiently expressing GFP-LC3 were treated with xestospongin B in the presence or absence of myo-inositol. The percentage of
vacuolizated cells was determined at the indicated times (b). Data are presented as mean±S.E.M. of three independent triplicates. *Po0.05 and **Po0.01 versus
unstimulated control (a) or as indicated (b)
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Figure 4 A Bcl-2-dependent molecular complex comprising the IP3R and Beclin 1 regulates autophagy. Immunoprecipitation assays were carried out as indicated in Materials and Methods using wild-type (WT) (a–d) and Bcl-2
overexpressing HeLa cells (e), as well as HeLa cells in which Bcl-2 was depleted by specific siRNAs (g). Xestospongin B induces the dissociation of Beclin 1 from the IP3R (a) and vice versa (b), as well as the separation of Beclin-1
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to detect any effects of Beclin 1 knockdown on Ca2þ fluxes at
the ER membrane, which suggests that Beclin 1 affects
autophagy regulation mainly as an allosteric regulator of
Vps34 (and perhaps other yet-to-be-discovered enzymatic
activities and molecular motors), rather than through gross
effects on Ca2þ handling.
In synthesis, the results contained in this study identify the

IP3R as a new, unsuspected regulator of the Beclin 1 complex
that bridges signals converging on the ER and initial
phagophore formation. Although the molecular details of this
cross-talk require further exploration, our data point to the
presence of an intriguing regulatory network in which the
conformation of the IP3R, as influenced by agonists and/or
antagonists acting on its LBD, regulates the initiation of
autophagy through an effect on Beclin 1.

Materials and Methods
Cells and treatments. Wild-type, Bcl-2 overexpressing and GFP-LC3
overexpressing derivatives of the human cervix adenocarcinoma HeLa cell line,
as well as the rat fibroblast cell line Rat-1, were grown in Glutamax-containing
Dulbecco’s modified Eagle’s medium supplemented with 10% heat-inactivated fetal
bovine serum (FBS) and 10 mM HEPES buffer. Wild-type and IP3R-triple deficient
chicken lymphoma DT40 cells were maintained in Glutamax-containing RPMI 1640
medium supplemented with 10% FBS, 1% chicken serum, 10 mM HEPES buffer
and 10mM 2-mercaptoethanol. All cell lines were cultured in the presence of
100 U/ml penicillin G and 100mg/ml streptomycin, at 37 1C (5%) CO2. All media and
supplements for cell culture were purchased from Gibco-Invitrogen (Carlsbad,
USA). For serum and amino-acid starvation, cells were cultured in serum-free

Earle’s Balanced Salt Solution medium (Sigma-Aldrich, St. Louis, MO, USA),
a condition that we refer to as ‘nutrient starvation’. All cell lines were seeded in
6-, 12- or 24-well plates and grown for 24 h before treatments. Unless otherwise
indicated, chemicals were purchased from Sigma-Aldrich. Bafilomycin A1 (1 nM),
histamine (1–100mM), L-690 330 (100mM; Tocris, Bristol, UK), myo-inositol
(10mM; Calbiochem, Darmstadt, Germany), pepstatin A (10 mg/ml) and
xestospongin B (2 mM, extracted from the marine sponge Xestospongia exigua
as described earlier 38,42) were added for 0–8 h, as indicated.

Dynamic in vivo [Ca2þ ] measurements. Basal and 2,5-di(ter-butyl)-1,4
benzohydroquinone (tBHQ)- or histamine-induced cytosolic Ca2þ signals were
measured using either Fura-2 or the cytosolic version of the recombinant Ca2þ

sensor aequorin (cytAEQ). All measurements were carried out in Krebs–Ringer
modified buffer (KRB): 135 mM NaCl, 5 mM KCl, 1 mM MgSO4, 0.4 mM K2HPO4,
5.5 mM glucose, 20 mM HEPES (pH¼ 7.4), supplemented with 1 mM CaCl2. HeLa
cells were loaded with 3mM Fura-2/AM in KRB for 20 min at 37 1C and 10 min at RT.
Cells were then perfused with KRB followed by 100mM tBHQ, and dye calibration
was performed using ionomycin (1 mM, the highest peak value) and ionomycin/
EDTA (1mM/1 mM, the lowest peak value). Changes in emission at 520 nm after
sequential excitation at 340 and 380 nm were recorded and calibrated into [Ca2þ ]c
from the ratio of emitted fluorescence, on the basis of an earlier described
procedure that used a dissociation constant of 224 nM for Fura-2.43 HeLa cells
transiently expressing cytAEQ were administrated with coelenterazine and
transferred to a perfusion chamber. The light signal was collected in a purpose-
built luminometer and calibrated into [Ca2þ ]c values as described earlier.44 To
quantify the Ca2þ content of the ER, the fluorescence resonance energy transfer
(FRET)-based ER-targeted ERD1 probe45 was imaged using a Zeiss LSM 510 Meta
laser confocal system (Carl Zeiss AG, Oberkochen, Germany). The probe was
excited by a 405 nm laser diode, emission spectra were acquired at 420–600 nm
and the yellow fluorescent protein (YFP) and cyan fluorescent protein (CFP) signals
were obtained by unmixing the spectrum on the basis of previously registered
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spectra of separate CFP and YFP proteins, as well as the autofluorescence of non-
transfected cells. FRET efficiency, which is a function of ER luminal [Ca2þ ], was
quantified using the acceptor bleaching method.45 Briefly, after five acquisitions,
YFP was bleached (at both 488 and 514 nm excitation wavelengths, typically by
about 80–90%), followed by acquisition of further five image spectra. Reduction of
the YFP signal leads to an increase in the CFP signal, which is normalized to the
decrease of YFP intensity during bleaching. The normalized increase of CFP
intensity is presented as FRET efficiency.

Immunoblots and immunoprecipitation. All cell lines (4� 106 cells)
were washed with PBS and lysed as describe earlier.46 For immunoblotting, 50mg
of protein were separated onto NuPAGE gels (Invitrogen) and transferred to
Immobilion-PSQ PVDF membranes (Millipore Corporation, Billerica, MA, USA).
Membranes were incubated for 1 h in PBS-Tween 20 (0.05%) containing 5% BSA.
Primary antibodies specific for Bcl-2, Beclin 1 (Santa Cruz Biotechnology, Santa
Cruz, CA, USA), IP3R-I (Calbiochem), IP3R types I-II-III (Santa Cruz), LC3B, mTOR,
p70S6K, phospho-mTOR or phospho-p70S6K (Cell Signaling, Danvers, MA, USA)
were incubated overnight at 4 1C and revealed with the appropriate horseradish
peroxidase-labeled secondary antibodies (SouthernBiotech, Birmingham, AL, USA)
by means of the SuperSignal West Pico chemoluminiscent substrate (Pierce,

Rockford, IL, USA). An antibody recognizing GAPDH (Chemicon) was used to
control equal loading of lanes. For immunoprecipitation, extracts from HeLa cells
(8� 106 cells) were lysed and 400 mg of protein were precleared for 1 h with 15ml of
Protein G Sepharose 4 Fast Flow (GE Healthcare, Piscataway, NJ, USA), and
subsequently incubated for 3 h in the presence of anti-Beclin 1 antibody, anti-IP3R-I,
anti-RFP (Abcam, Cambridge, UK) and anti-Bcl-2 or immunoglobulin control.
Immunoprecipitation immunoblotting was carried out using TrueBlot-HRP
(eBioscience, San Diego, CA, USA) secondary antibodies. Quantitative analysis
of immunoblots was carried out by using the open source ImageJ software (freely
available at http://rsbweb.nih.gov/ij/index.html). Results are presented as
mean±S.E.M. Three independent experiments were carried out in triplicate, and
statistical significance was evaluated by Student’s t-test.

Immunofluorescence microscopy. For immunofluorescence staining,
cells were fixed with paraformaldehyde (4% w/v, 20 min), permeabilized with Triton
X-100 (0.3% in PBS, 30 min), blocked with 3% BSA and incubated overnight at 41C
with a specific antibody against Lamp 2a (200 ng/ml; Santa Cruz). Nuclei were
counterstained with 10mg/ml Hoechst 33342 (Molecular Probes-Invitrogen,
Carlsbad, CA, USA). Conventional fluorescence microscopy was performed with
a Leica IRE2 microscope equipped with a DC300F camera (Leica Microsystems,
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Wetzlar, Germany). Confocal microscopy was carried out with a Leica TSC-SPE
microscope equipped with a 63� /1.15 Olympus objective by using LAS software
(Leica Microsystems). Cells presenting a diffuse distribution of GFP-LC3 in the
cytoplasm and nucleus were considered as non-autophagic, whereas cells
exhibiting both several intense punctuate GFP-LC3 aggregates and nuclear GFP-
LC3 exclusion were classified as autophagic (GFP-LC3vac). Each GFP-LC3 staining
was independently quantified by two investigators (JMV and CO).

Measurement of intracellular IP3 levels. HeLa cells (4� 106) were
seeded in 100 mm culture dishes and were incubated after 24 h with L-690 330
(100mM), myo-inositol (10mM) and/or xestospongin B (2mM) for 0–100 min.
Immediately afterwards, they were stimulated with histamine (100mM) for 0–3 min
and lysed with 0.2 M ice-cold trichloroacetic acid. Cell extracts were then subjected
to a radioreceptor assay (Perkin Elmer no. NEK064, Waltham, MA, USA). IP3 levels
were quantified in a liquid scintillation counter (Packard Tri-carb 2100TR, Packard
Instrument, Meriden, CT, USA) and normalized to the amount of protein contained
in each sample. Results are presented as mean±S.E.M. Three independent
experiments were carried out in triplicate and statistical significance was evaluated
by Student’s t-test.

Plasmids, transfection and RNA interference. Cells were cultured in
6-well plates and transfected at 80% confluence by using Oligofectamine
reagent (Invitrogen), with small interfering RNAs (siRNAs) specifically targeting
human Beclin 1 (sense 50-GAUUGAAGACACAGGAGGC-3),47,48 Bcl-2 (sense
50-GCUGCACCUGACGCCCUUCTT-30)47,49 or the unrelated protein emerin
(sense 50-TATGTCCTCCTCATCATCTTCCT-30).50 All siRNAs were purchased
from Sigma-Proligo. Transient transfections with plasmids were carried out with
Lipofectamine 2000 reagent (Invitrogen) and cells were used 24 h after transfection.
Cells were transfected with an empty control vector or with a plasmid encoding for
GFP-LC3.51 Cotransfection was carried out using a mixture of the GFP-LC3-
encoding plasmid and plasmids encoding for variants of the IP3R-LBD coupled to
RFP targeted to different subcellular compartments, namely the cytosol (IP3R-LBD-
RFP-Cyto), the OMM (IP3R-LBD-RFP-OMM) and the ER (IP3R-LBD-RFP-ER). As
controls, a plasmid coding for an ER-targeted IP3R-LBD that is rendered inactive by
the incorporation of a nonapeptide linker sequence (IP3R-9aa-LBD-RFP-ER), as
well as plasmids encoding RFP alone targeted to the cytosol (RFP-Cyto), the OMM
(RFP-OMM) or the ER (RFP-ER) were used.24,37,52
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