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Abstract

Endoplasmic reticulum (ER)-localized enzymes synthesize the vast

majority of cellular lipids. The ER therefore has a major influence

on cellular lipid biomass and balances the production of different

lipid categories, classes, and species. Signals from outside and

inside the cell are directed to ER-localized enzymes, and lipid

enzyme activities are defined by the integration of internal, home-

ostatic, and external information. This allows ER-localized lipid

synthesis to provide the cell with membrane lipids for growth,

proliferation, and differentiation-based changes in morphology

and structure, and to maintain membrane homeostasis across the

cell. ER enzymes also respond to physiological signals to drive

carbohydrates and nutritionally derived lipids into energy-storing

triglycerides. In this review, we highlight some key regulatory

mechanisms that control ER-localized enzyme activities in animal

cells. We also discuss how they act in concert to maintain cellular

lipid homeostasis, as well as how their dysregulation contributes

to human disease.
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Introduction

The ER produces the membrane building-block lipids such as phos-

phatidylcholine (PtdCho) and phosphatidylethanolamine (PtdEtn),

as well as less abundant membrane lipids such as phosphatidylinos-

itol (PtdIns) and basic sphingolipid structures. The ER also houses

the enzymes that synthesize cholesterol, as well as triacylglycerides

(TAG) for energy storage (Box 1). These ER-synthesized lipids are

distributed to other cellular organelles via the secretory pathway

and/or ER contact sites, while TAG is transferred to lipid droplet

organelles that bud from the ER membrane. While some organelles

also have lipids that are absent from the ER (like cardiolipin in mito-

chondria), nearly all of these are derived from enzymatic

modification of ER-synthesized lipids, and thus, the ER is the central

regulator of lipid levels across the cell.

Since most lipids are embedded within cell membranes or lipid

droplet storage depots, there are few classic feedback inhibition

loops controlling lipid synthesis (where end products directly inhibit

the synthetic enzyme). Instead, complex regulatory mechanisms

have evolved to modify the activity of ER-localized enzymes. Here,

we review these mechanisms, focusing on animal cells that differ in

important aspects from yeast where pathways and control points

have been described in several comprehensive reviews [1–3]. Some

regulatory mechanisms act slowly via altered gene transcription,

while others can rapidly modify lipid levels via post-translational

modification of enzymes. In addition, depending on the enzyme

target, regulatory mechanisms can broadly affect flux into or

through a synthetic pathway or specifically affect levels of an indi-

vidual type of lipid. These regulatory mechanisms act in concert to

maintain cellular lipid homeostasis. In addition, they are also central

to how the cell modifies lipid synthesis in response to physiological

and developmental stimuli, and their dysregulation is implicated in

some important pathologies.

The organization of lipid synthesis within the ER network

The majority of lipid synthesis enzymes are transmembrane

proteins (Box 1; Fig 1A), and classic biochemical fractionations

established that most are in the ER (microsomal) membranes.

However, this does not explain where enzymes are spatially

located within the architecture of an animal cell ER. The ER is the

largest organelle and can account for more than 50% of total cell

membrane in some cell types [11]. It forms a continuous network

extending throughout the cell so that other organelles and cytosol

are at most 1–2 lm away from a piece of ER (Fig 1B). The organi-

zation of the ER is only now being defined in many cell types

[12], but overall there is a conserved subdivision into three

domains based on ultrastructural appearance: “rough ER”,

“smooth ER”, and the double-membrane “nuclear envelope” that

surrounds the nucleus. There are also functionally defined ER

domains such as organelle contact sites, ER exit sites of secretory

pathway vesicle budding, and sites where lipid droplets bud

(Fig 1B) [13].
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Information on where lipid enzymes are localized in the ER is

still surprisingly limited and/or comes from tagged enzymes that

may not fully recapitulate the localization of native enzymes. Lipid

synthesis was traditionally considered as a “smooth ER” function.

However, there is little evidence that lipid enzymes are excluded

from ribosome containing regions, and transmembrane ER

proteins, such as those mediating lipid synthesis, typically diffuse

through the continuous membrane system unless specifically

anchored in a particular domain. On the other hand, there are data

supporting the concept that some lipid enzymes concentrate in

functionally defined ER regions and that this may be dynamically

controlled. One example is that enzymes of the pathway leading to

TAG (GPAT, AGPAT, lipin, and DGAT enzymes; Fig 1A) relocalize

from the bulk ER to growing lipid droplets under conditions where

TAG synthesis is stimulated [14] (Fig 1B (I)). This clustering may

promote TAG production by shuttling lipid intermediates through

the pathway and preventing their metabolism by enzymes in

the GPL pathways that lead to membrane lipids (Fig 1A), as well

as promoting the efficient transfer of TAG into the growing lipid

droplet.

There is also evidence that some lipid synthesis reactions

concentrate at ER–organelle contact sites. These specialized ER

domains can traffic lipids out of the ER via lipid transfer proteins

(vesicle-independent transfer), for example, allowing newly synthe-

sized PtdCho to arrive at the plasma membrane 10 times faster than

the 20–30 min newly synthesized proteins take via the secretory

pathway (vesicle-dependent transfer) [15,16]. In yeast, contact sites

are indeed enriched in lipid-synthesizing capacity [17]. Further, the

PSS1 and PSS2 enzymes are particularly enriched in mitochondria-

associated membranes of animal cells (Fig 1B (II)), as is the PEMT

enzyme that methylates PtdEtn into PtdCho in some cell types. The

DGAT2 enzyme that produces TAG has also been reported to

concentrate in mitochondria-associated membranes under certain

conditions [18,19].

This arrangement where lipids are synthesized close to their

target destinations may facilitate efficient lipid transfer and allow

feedback from target organelles to the activity of ER-localized lipid-

synthesizing enzymes. Another example is that the PtdIns synthase

enzyme (PIS; Fig 1A) concentrates in a rapidly moving ER-derived

subcompartment that potentially contacts a variety of organelles to

supply PtdIns to different membranes [20]. However, whether the

bulk of de novo lipid synthesis takes place in specialized ER

domains is less clear. Immunolabeling or expression of tagged lipid

synthetic enzymes typically finds these broadly distributed, particu-

larly under basal conditions [20–24]. In addition, new techniques

such as click-chemistry labeling show newly synthesized PtdCho

appearing across the ER system without signs of contact site “hot

spots” [25], although with the caveat that these experiments require

several minutes of exposure to labeled choline, during which time

newly synthesized lipids may diffuse in the bilayer and thus

preclude precise detection of where they are synthesized.

Surprisingly, there is considerable evidence pointing to the

inner nuclear membrane as a site where some lipid synthetic reac-

tions are concentrated. Lipin and CCTa are key soluble GPL/GL

enzymes (Fig 1A). They both contain nuclear localization signals

(NLS), traffic between the cytosol and nucleus through nuclear

pore complexes (NPC) (Fig 1B (III)), and both strongly concen-

trate in the nucleus under specific conditions [26–28]. These two

enzymes also translocate onto membranes to exert their activity.

From the cytosol, they access the membranes of the main ER.

However, they are restricted to the nucleoplasmic face of the

inner nuclear membrane once in the nucleus (Fig 1B (III)). Trans-

membrane lipid enzymes can also access the inner nuclear
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Box 1: Membrane lipid structures and synthesis
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membrane by diffusing in the ER membranes (via the NPC-

associated membrane) and will concentrate specifically in this

nuclear-associated ER membrane if they are retained by a binding

interaction [29]. It is likely that enzymes of TAG synthesis access the

inner nuclear membrane given that lipid droplets bud into the

nucleus under some circumstances [30]. The lamin B receptor (LBR)

sterol reductase specifically concentrates in the inner nuclear

membrane and is required in the pathway from lanosterol to choles-

terol (Box 1 Fig, panel F) [31]. Furthermore, some exogenously

expressed tagged AGPAT enzymes also appear to concentrate in

nuclear membranes compared to their levels in the bulk ER [32,33].

It is difficult to understand why the inner nuclear membrane

would be important for lipid synthesis. One possible explanation

comes from lower eukaryotes where there is evidence for a role of

nuclear lipid synthesis in expanding nuclear size during the cell cycle

[34,35]. An alternative hypothesis is that this is a site where specific

lipid enzymes and their reactions are isolated away from the bulk

ER, perhaps to localize changes in lipid levels and avoid that they

broadly influence ER membrane composition. Another possibility is

that enzymes active on the inner nuclear membrane couple lipid

synthesis with gene transcription regulation. Support for this comes

from the fact that lipin has a dual function as the PtdA-phosphatase

of de novo lipid synthesis and, through a different domain, as a coac-

tivator of PPAR (peroxisome proliferator-activated receptor) tran-

scription factors [36]. There is also strong competition in yeast

between the use of the methyl donor SAM (S-adenosylmethionine)

for lipid methylation versus histone methylation [37]. This may also

be relevant in mammalian cell types where PtdEtn methylation into

PtdCho occurs, although this does not necessarily need enzymes that

localize in the nuclear membranes since SAM is soluble. Whatever

the reason, it appears that enzyme targeting to the inner nuclear

membrane is regulated and several lipid biosynthesis reactions occur

on either the bulk ER or nuclear membranes depending on (currently

poorly defined) differences in cell physiology.

The composition of ER membranes as a central feedback

regulator of lipid synthesis

The ER membranes contain high levels of PtdCho and PtdEtn and

relatively little of the sphingolipids and cholesterol that promote

thicker membranes, lipid order, and tighter lipid packing (Fig 2A)

[38–40]. This is a unique composition and means that the ER

membranes are relatively thin and primarily exist in a liquid disor-

dered phase, which is synonymous with looser packing and greater

disorder [41,42]. Here, we describe four mechanisms by which the

unique lipid composition of the ER membrane controls the activity

of enzymes in GPL/GL and cholesterol synthesis (note that the regu-

lation of sphingolipid production remains less understood [7,43]). It

appears that these are core feedback mechanisms underlying how

the cell maintains ER membrane homeostasis and, since other orga-

nelles draw on ER lipids, they can also couple the broader needs of

the cell to ER-localized lipid-synthesizing enzymes. Furthermore, as

we discuss later, the same mechanisms are repeatedly involved with

how a cell reprograms lipid synthesis in response to internal or

externally derived signals.

The majority of animal cell lipid biomass comes from members of the structurally related glycerophospholipid (GPL) and glycerolipid (GL) categories.

Phosphatidic acid (PtdA) is the simplest GPL and contains only a phosphate group as a hydrophilic moiety (Box 1 Fig, panel A; blue), while PtdCho,

PtdEtn, phosphatidylserine (PtdSer), and PtdIns are GPLs with choline, ethanolamine, serine, and inositol headgroups, respectively (Box 1 Fig, panel A;

orange). GLs differ from GPLs in that they lack the phosphate linker. Important GLs are diacylglycerol (DAG) that has a hydroxyl group attached to the

glycerol linker, and TAG that has a third fatty acyl chain.

GPL/GL synthesis begins with the transmembrane GPAT (glyceraldehyde-3-phosphate O-acyltransferase) and AGPAT (1-acylglycerol-3-phosphate O-acyl-

transferase; also known as LPAAT) enzymes sequentially combining soluble precursors into PtdA (Box 1 Fig, panel B; note that this figure does not depict

enzyme membrane topology). The majority of this de novo-synthesized PtdA is then dephosphorylated into DAG by the lipin PtdA-phosphatase (Box 1

Fig, panel B), including in the pathway leading to the abundant membrane lipids of PtdCho and PtdEtn (Fig 1A). PtdCho is generated when CDP–choline

is combined with DAG, and is catalyzed by the dual specificity CEPT (choline/ethanolamine phosphotransferase) that is responsible for most de novo

PtdCho and PtdEtn production in animal cells. The rate of PtdCho synthesis is typically limited by CDP–choline levels, which is generated by the CCTa

(CTP:phosphocholine cytidylyltransferase) enzyme that reversibly interacts with the ER membrane (Box 1 Fig, panel B). There are also enzymes catalyzing

the reverse reactions, including phospholipases that remove headgroups and return complex lipids to the simpler DAG or PtdA structures. Furthermore,

lipids in the ER membrane are also targeted by phospholipases (PLA2 type) and acyltransferases that remove and replace fatty acyl chains, respectively

(called the Lands cycle) [4]. The overall diversity of lipid acyl chains derives from both de novo synthesis via PtdA (the Kennedy pathway) and this Lands

cycle “remodeling”, with the relative contribution of each varying between cell types [5].

The sphingolipid category includes ceramide, sphingomyelin, and ganglioside lipids. Some membranes, including the plasma membrane, are particularly

enriched in sphingolipids where their inclusion reduces fluidity and deformability while increasing thickness [6,7]. Sphingolipids are built around a serine

backbone, with the different sphingolipid classes differentiated by their headgroup moieties (Box 1 Fig, panel C). Examples are choline on sphingomyelin,

a hydroxyl group on ceramide, and complex sugar residues on gangliosides.

The ER is central for sphingolipid synthesis because the rate-limiting step of producing a “long-chain base” (LCB; also known as a sphingosine) is

performed by ER transmembrane enzymes (serine palmitoyltransferase (SPT) in yeast, or SPTLC1-3 in mammals) [8,9] (Box 1 Fig, panel D). Ceramide

synthase (CerS) enzymes that add a second fatty acyl chain are also ER enzymes [6], and the ER houses the fatty acid elongase (ELOVL) enzymes that

produce the longer and more saturated fatty acyl chains that characterize sphingolipids (Box 1 Fig, panel D). Once the basic sphingolipid structures are

synthesized by the ER, they are exported and further processed into other classes, such as sphingomyelin.

Sterols are the third major membrane lipid (Box 1 Fig, panel E) and can account for 30% or more of total membrane mass. Sterols are highly insoluble

and pack between longer lipids to affect membrane flexibility and fluidity [10]. Cholesterol is the sole sterol of mammalian membranes and is synthe-

sized by a series of enzymes, many of which are ER membrane proteins including HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase) that is typically

rate-limiting for cholesterol production (Box 1 Fig, panel F). Cholesterol synthesis is not strongly conserved. Many animals, including the model organisms

of C. elegans and Drosophila melanogaster, lack the cholesterol synthesis pathway, acquire sterols through their diet, and have membranes that contain

relatively little sterol compared to many mammalian cells.
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Membrane composition and PtdCho synthesis

PtdCho is the most abundant lipid of mammalian membranes, and its

synthesis is central to membrane biogenesis. The CCTa enzyme

(human gene: PCYT1A) is typically rate-limiting for PtdCho produc-

tion in animal cells (Fig 1A). CCTa cycles between a soluble and

membrane-bound state (or onto the single lipid leaflet surrounding

lipid droplets [44]) and is subject to auto-inhibition mediated by a

carboxy-terminal region termed the M-domain [44,45]. When CCTa is

soluble, the M-domain inhibits the catalytic domain and prevents

CDP–choline synthesis. However, this inhibition is relieved when the
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Figure 1. The organization of ER-localized GPL/GL synthesis.

(A) The GPL/GL enzyme network where membrane lipids are in purple, storage lipids are in orange, and water-soluble intermediates are in blue. Only key nodes are shown. The

enzymes shown in gray are transmembrane ER proteins, while blue indicates a protein that reversibly associates with the ER membrane. Double arrow highlights the

feedback loop where PtdA activates CDP–choline synthesis, which is a key control point for PtdCho production. Dotted lines indicate multiple reactions, and “*” indicates that

PEMT has a restricted expression pattern in animals and its physiological importance is largely reported for hepatocytes. (B) Lipid synthesis organizationwithin the ER system.

Schematic of ER organization in a simple animal cell. There are structurally and/or functionally distinct domains, such as the inner and outer nuclear membrane (INM and

ONM), and specialized contact sites between the ER and most organelles (not all shown). The localization of lipid enzymes within the ER system is still poorly defined, but

some new concepts are emerging including the following: (I) Enzymes of the TAG pathway can relocalize from a broad distribution to concentrate at sites of growing lipid

droplets. (II) Enzymes of PtdSer synthesis (PSS1 and PSS2) concentrate at mitochondria-associated membranes that are also the sites where newly synthesized PtdSer is

transferred to mitochondria. (III) The lipin and CCTa enzymes that reversibly bind membranes also carry NLS and shuttle between the cytosol and nucleus through nuclear

pore complexes. This affects whether these enzymes interact with the main-ER membrane or inner nuclear membrane. The LBR sterol reductase is also a well-characterized

INM resident. AGPAT, 1-acylglycerol-3-phosphate O-acyltransferase; CEPT, choline/ethanolamine phosphotransferase; CK, choline kinase; CDP, cytidine diphosphate;

Cho, choline; CDS, PtdA cytidylyltransferase; EPT, ethanolamine phosphotransferase; G-3-P, glycerol 3-phosphate; PtdGly, phosphatidylglycerol; PSS, phosphatidylserine

synthase; MAM, mitochondria-associated membrane.
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M-domain folds into an amphipathic helix and absorbs onto a lipid

surface (Fig 2C). Thus, CCTa membrane binding represents an on–off

switch regulating catalytic activity and therefore PtdCho production.

Whether domains such as the M-domain interact with

membranes to fold into a helix depends on the biophysical

properties of available membrane surfaces. One critical factor is that

membrane binding is typically promoted by looser lipid packing and

voids between lipid headgroups (Fig 2B). Such packing voids are

more frequent when membranes contain a higher percentage of

conical lipids compared with cylindrical lipids (Fig 2B) [38,44,46].
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Figure 2. Mechanisms of ER membrane homeostasis.

(A) Hepatocytemembrane compositions. The ERmembranes are enriched inGPL and contain little sphingolipid or cholesterol. PtdA is also detected in the ERmembrane, but not

the plasmamembrane. PtdIns includes phosphorylated and non-phosphorylated species. These data aremodified from [39] and are in linewith several other studies, although

not all lipid specieswere assessed in each report [120,133,134]. (B) Intrinsic properties of lipids effectmembraneproperties. PtdCho is a cylindrical lipidwhere the headgroup and

acyl chains occupy a similar lateral area, while PtdEtn is conical because it has a smaller headgroup. PtdCho spontaneously assembles into bilayers and stabilizes bilayers

in vivo, while PtdEtn promotes voids between lipid headgroups within a bilayer and forms curved “hexagonal” structures in isolation [135]. Note that the looser packing

associated with PtdEtn also exposes small lipid headgroups, such as that of PtdA, for protein interactions [136]. Acyl chain saturation also affects membrane properties such as

thickness and lipid packing density [137,138]. (C) CCTa is activated by membrane absorption of the M-domain that is regulated by lipid packing and PtdA. Activated CCTa

produces the CDP–choline that is typically rate-limiting for PtdCho production and therefore membrane biogenesis. (D) Immature, inactive SREBP is a transmembrane ER

protein. It is activated when altered membrane environment causes SCAP to change conformation and dissociate from Insig. This alters SREBP/SCAP trafficking (not shown)

and allows protease-dependent release of the mature SREBP transcription factor from the membrane. This then can enter the nucleus and activate gene transcription via

binding to SRE, including genes of lipid synthesis. (E) The IRE1/XBP1(S) branch of theUPR is activated by increased lipid saturation and packing density in the ERmembrane. This

causes IRE1 dimerization, self-phosphorylation of cytosolic residues, and activation of IRE1 RNA splicing activity that removes an intron from the XBP1mRNA. The XBP1

(S) protein is then translated and acts as a transcription factor. (F) Lipin PtdA-phosphatase activity requires that it integrates into a membrane. This is positively regulated by

PtdA and negatively regulated by lipin phosphorylation state. Lipin activity often promotes TAG production while reducing PtdCho. Pi, orthophosphate.
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While this can be a relatively non-specific activation mechanism, in

the case of the ER it tunes CCTa activity to PtdCho levels since these

are the main cylindrical, bilayer-stabilizing lipids of mammalian

membranes. Thus, CCTa membrane binding and activity increase

when PtdCho levels drop relative to the conically shaped PtdEtn.

Conversely, a high concentration of PtdCho reduces CCTa

membrane binding and activity.

Amphipathic helix integration into a membrane is also influenced

by the surface charge of a membrane, via interactions between the

protein and charged lipid headgroups. Typically, this involves nega-

tively charged lipids that further stabilize the membrane–protein

binding interaction. While phosphorylated PtdIns species are

centrally important for how such proteins associate with most

membranes, these lipids are rare in the ER where instead PtdA often

promotes protein–membrane binding, including that of CCTa [47]

(Fig 2C). This inherently matches CDP–choline production to the

amount of PtdA being produced at the beginning of the GPL/GL

network (Fig 1A). Interestingly, there are also several other mecha-

nisms by which PtdA sensitivity further tunes CCTa activity to detect

changes in ER membrane composition. One is that the small charged

headgroup of PtdA is typically more accessible for protein binding

interactions when membranes contain more conical lipids (e.g.,

PtdEtn) than cylindrical PtdCho (Fig 2B). This means again that the

membrane binding and activity of CCTa increase when PtdCho

levels drop. In addition, PtdA exists in mono- and divalent forms,

and proteins typically interact more strongly with the greater charge

of divalent PtdA. In turn, several factors regulate the relative abun-

dance of mono- and divalent PtdA that intriguingly includes that the

primary amine headgroup of PtdEtn promotes divalent PtdA through

hydrogen bonding interactions [48]. Thus, although unproven

in vivo, a membrane lipid imbalance with high PtdEtn levels relative

to PtdCho can potentially increase CCTa activity via elevating diva-

lently charged PtdA, and thus counteract the imbalance.

Through these mechanisms, the CCTa M-domain represents an

elegant means by which a water-soluble step of lipid synthesis is

regulated by the end product lipid, even though this is packed

within a lipid bilayer. The membrane binding of CCTa also shows

how a lipid-synthesizing activity is “tuned” to the composition of

the ER membranes, and thus inherently corrects against membrane

disequilibrium. Furthermore, once bound into the membrane, the

amphipathic helix of CCTa is exposed to the surrounding lipid envi-

ronment and may undergo further conformational adaptation—such

as shown for the lipid packaging sensor Mga2 and inositol-requiring

enzyme (IRE1) [49,50]—to further influence CCTa activity and

PtdCho production.

Sterol regulatory element-binding proteins (SREBPs)

The SREBP system also allows lipid species in the ER membrane to

feedback on their own biosynthesis. SREBPs are transmembrane ER

proteins that were first identified as players in mammalian choles-

terol synthesis. Mammals have three SREBP gene products: SREBP-

1A, SREBP-1C, and SREBP-2 (Fig 2D). All three have a cytosolic N-

terminal domain that is a transcription factor of the basic helix-loop-

helix leucine zipper family. This domain activates gene transcription

when it binds to sterol response elements (SREs) in promoters.

However, the domain is held inactive and unable to bind DNA while

attached to the transmembrane C-terminus of SREBP. The proteases

responsible for SREBP cleavage are localized in the Golgi, while

under basal conditions SREBP is retained in the ER via interactions

with SCAP (SREBP cleavage-activating protein) and the ER-resident

protein, Insig (insulin-induced gene) (Fig 2D) [13]. The system is

sensitive to the membrane lipid environment as it influences SCAP

conformation [51,52]. In the classic cholesterol feedback model, low

cholesterol in the ER membrane causes SCAP to alter its conforma-

tion and release from Insig. SREBP/SCAP then escape the ER in

secretory pathway vesicles, arrive in the Golgi, and undergo prote-

olytic processing that releases the active N-terminus of SREBP into

the cytosol from where it can traffic to the nucleus and access SREs

(Fig 2D) [53]. The importance of this mechanism for cholesterol

synthesis is supported by experiments showing that forced expres-

sion of the mature isolated N-terminal domain of mammalian

SREBP-2 causes a 75-fold increase in the levels of HMGCR mRNA

that encodes the rate-limiting enzyme of cholesterol synthesis. This

led to a ~30-fold increase in cholesterol synthesis [54]. Additionally,

ER membranes contain particularly low amounts of cholesterol

(Fig 2A). This means that even small molar changes in cholesterol

levels represent a relatively large percentage change, and thus can

trigger SCAP/Insig dissociation [55]. This mechanism of SREBP acti-

vation is therefore another example where ER membrane composi-

tion is a central regulator of cellular lipid synthesis.

Although it was first described in cholesterol regulation, the

SREBP system is not specific to cholesterol synthesis; 1,003 dif-

ferent genes show statistically significant expression changes in

the liver of mice with forced expression of the N-terminus of

SREBP-1A, while 505 are affected by SREBP-2 [56]. Not all genes

are directly affected, however, and the overall picture from many

studies of SREBP-1 and SREBP-2 signaling is that SREBP-2 has

the classic, originally described role in cholesterol synthesis,

while SREBP-1 isoforms predominantly upregulate genes of fatty

acid and GPL/GL metabolism, particularly TAG synthesis. This

includes that SREBP-1 isoforms elevate the expression of fatty

acid synthase, fatty acid elongase, and GPAT enzymes to upregu-

late flux into the GPL/GL network. The general importance of

SREBP signaling is also clear when considering non-mammalian

organisms. Caenorhabditis elegans and Drosophila do not synthe-

size cholesterol, but still have SREBP signaling. In these organ-

isms, SREBP activation specifically affects GPL/GL synthesis.

Indeed, C. elegans SBP-1 is activated by low PtdCho, as well as

by abnormal ratios of PtdA and DAG [57,58], while Drosophila

SREBP is activated by low PtdEtn [59]. In both organisms, SREBP

is an essential positive regulator of membrane lipid biogenesis

[59–61]. Thus, although SREBP was named for its role in

mammalian cholesterol homeostasis, this may be a relatively

recent evolutionary adaptation of a general membrane regulator.

The next steps will be to better understand the disturbances in

membrane composition that activate the different SREBPs. In

addition, as we explain below, it is important to fully catalog the

molecular mechanisms of activation given that SREBP-1, in

particular, contributes to cellular programs such as cell growth

and TAG lipogenesis, and has been implicated in the proliferative

capacity of cancer cells [62].

The unfolded protein response (UPR); lipids as well as unfolded proteins

The UPR maintains ER protein homeostasis in response to the accu-

mulation of misfolded proteins in the ER lumen [63–68]. Higher

eukaryotes have three UPR branches mediated by different
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transmembrane sensors: (i) IRE1 which signals through XBP1

(Fig 2E), (ii) ATF6, and (iii) PERK that acts via elF-2a. All three

branches are activated by misfolded proteins in the ER lumen and

classically signal to slow translation, upregulate chaperone expres-

sion, and/or induce apoptosis [69]. Additionally, as we describe

here, they also strongly affect lipid metabolism.

A major link between the UPR, proteopathic defects, and lipid

synthesis is the importance of ER volume for resolving ER dysfunc-

tion. In fact, increasing ER volume helps rescue luminal protein

misfolding independent of factors such as chaperone levels [70]. In

turn, increased ER volume is synonymous with increased

membrane, and thus increased membrane lipid production. The

IRE1/XBP1(S) branch, in particular, is a well-characterized positive

regulator of membrane lipid synthesis. Forced XBP1(S) expression

is sufficient to increase the size of the ER [71,72], while genetic dele-

tion of the Xbp1 gene reduces ER size [73]. The ER membrane

expansion induced by XBP1(S) is concomitant with elevated PtdCho

and PtdEtn biosynthesis [71], and increased expression of lipid

synthesis genes including several of fatty acid synthesis, LIPIN and

AGPAT isoforms [71,74]. The specific mediator between IRE1/XBP1

(S) and PtdCho and PtdEtn synthesis has been difficult to pin down.

It appears to involve increased CCTa activity but, surprisingly, given

that IRE1/XBP1(S) is primarily a transcriptional mechanism,

PCYT1A/CCTa mRNA and protein are relatively unaltered [71,74].

There is however evidence that CCTa might be activated via

changes to the ER membrane environment [74], such as increased

PtdA levels that elevate CCTa membrane binding.

ATF6 and PERK also affect lipid biogenesis. Some of their

reported effects may be indirect given that, at least in some condi-

tions, ATF6 promotes IRE1 and XBP1 expression alongside increas-

ing membrane production [75,76]. On the other hand, forced ATF6

signaling can drive de novo membrane lipid synthesis to the same

extent as XBP1(S), and independent of XBP1(S) [77]. In addition,

ATF6 signaling (rather than XBP1(S)) underlies the lipid synthesis

and ER proliferation that occurs when the ER is overloaded with

membrane proteins [78]. The lipid enzymes targeted by ATF6 also

differ from those of XBP1(S), further supporting that this UPR

branch has its own (currently less defined) role in promoting

membrane lipid production.

The UPR has been primarily considered as a protein homeostatic

mechanism. However, there are now substantial data challenging

the concept that UPR control of lipid biosynthesis is a corollary to

its role in protein homeostasis. Indeed, not only does the UPR

control cellular lipid levels, but UPR sensors are activated by abnor-

mal ER membrane composition including abnormal lipid saturation

and altered sterols [79–82]. Furthermore, it is clear that this indeed

occurs because UPR sensors are directly influenced by their

surrounding membrane, and not just by the presence of luminal

unfolded proteins. Excess saturated lipids activate IRE1 or PERK

even when these sensors lack the luminal regions that detect

misfolded proteins [82]. Similarly, mutant yeast IRE1 that cannot

detect misfolded proteins nevertheless mediates UPR activation in

cells with abnormal lipid metabolism [83]. Further, IRE1 in

C. elegans is activated by disturbed lipid metabolism even when this

fails to induce protein misfolding, and in a manner that is insensi-

tive to chemical chaperones that rescue protein misfolding [79].

Yeast studies also provided further insight into the molecular

basis of how UPR proteins sense membrane composition [49]. Just

as for unfolded proteins, IRE1 activation in response to abnormal

ER membrane composition occurs via the formation of higher

order IRE1 oligomers that splice an mRNA (XBP1 or Hac1 in yeast)

to allow translation of a full-length soluble transcription factor

(XBP1(S)/HAC1) that mediates many downstream events of the

UPR (Fig 2E). Uniquely, however, lipid-driven UPR activation

requires an amphipathic helix in IRE1 that is embedded in the

luminal face of the ER membrane and lies adjacent to the trans-

membrane section of the sensor. This juxtamembrane amphipathic

helix is also evolutionarily conserved in animal IRE1 proteins, as

well as in the PERK sensor. Molecular dynamic simulations point

to this helix driving IRE1 clustering if ER membrane thickness

and/or lipid packing density increase; notably, the ER membrane

is particularly thin and loosely packed under normal conditions.

This means that IRE1 activation is sensitized to imbalances in the

levels of different GPL classes, as well as GPL saturation, given

how these both impact membrane packing (Fig 2B). Additionally,

it likely means that the UPR is sensitized to changes in the

normally low levels of ER membrane sphingolipids and cholesterol

given that these also promote thicker and more densely packed

membranes.

It is therefore now clear that the UPR detects and solves defects

in the lipid composition of ER membranes, just as it does detect

proteomic defects within the ER lumen. Additionally, the two dif-

ferent insults can act additively since they drive IRE1 dimerization

through distinct molecular mechanisms—thus establishing a new

model where abnormal ER membrane composition increases the

likelihood that unfolded proteins in the ER lumen activate the UPR,

and vice versa [49].

Lipin PtdA-phosphatase activity at the center of GPL/GL biosynthesis

PtdA is the basic lipid structure from which other GPL/GL derive. It

lies at the branch point between the pathways that produce PtdIns

versus PtdCho/PtdEtn. PtdA conversion to DAG further leads to

TAG production (Fig 1A). PtdA is also a signaling lipid that is

detected by many peripheral membrane proteins, and, for example,

helps to activate CCTa to drive membrane production, as described

above. Consequently, enzymes that control PtdA levels exert multi-

ple layers of control over the GPL/GL synthesis network.

In eukaryotes from yeast to plants to animals, the lipin PtdA-

phosphatases influence ER-localized PtdA levels [84] (note that a

distinct set of lipid phosphatases (LPP enzymes) hydrolyze PtdA in

other organelles [85]). Lipins hydrolyze the phosphate headgroup of

PtdA to produce DAG (Box 1 Fig, panel A) with high specificity for

PtdA above other phosphorylated lipids [86,87]. As mentioned

above, animal lipins also directly influence lipogenic transcriptional

programs through their C-terminal domain that interacts with tran-

scriptional regulators and in a PtdA-phosphatase-independent

manner [88]. However, how this role integrates with lipin’s role in

de novo lipid synthesis remains poorly understood and is not further

considered here.

Despite having a substrate and product in the lipid bilayer, lipins

are not integral membrane proteins and must associate with

membranes to access their substrate (Fig 2F). Just as for CCTa, the

regulation of lipin membrane binding has evolved as a central regu-

lator of its catalytic activity. Lipin associates with the ER membrane

through an amino-terminal amphipathic helix, and this event is

especially sensitive to PtdA levels [89]. The addition of PtdA
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increases yeast lipin (pah-1) binding to micelles by five- to sixfold

[90]. Inclusion of PtdA also strongly promotes the otherwise weak

binding of lipin1 to synthetic liposomes even when these have a

mix of PtdCho/PtdEtn that mimics the ER membrane composition

[91]. PtdA sensing is mediated through a series of basic amino acids

that are downstream of the membrane binding domain of lipin

[26,91], and it will be interesting to know how these two domains

interact, as well as their relationship to the C-terminal catalytic

region—information that will be gained when the structure of the

lipin enzyme is solved.

Lipin is heavily phosphorylated under many conditions, and this

regulates its PtdA-phosphatase activity (Fig 2F). There are more

than 17 distinct serine/threonine phosphorylations recorded for

mammalian lipin1, 15 in lipin2, and a similar number for yeast pah-

1/lipin [27,92–94]. The roles of individual phosphorylation sites

have been difficult to pin down, even in yeast where these are fewer

and there is more advanced understanding of lipin biochemistry.

However, phosphorylation is uniformly associated with reduced

PtdA-phosphatase activity, leading to an experimentally well-

supported model that dephosphorylated lipin proteins are active

PtdA-phosphatases, while highly phosphorylated lipin is inactive. It

is also clear that phosphorylation inhibits PtdA-phosphatase activity

(at least in part) because it reduces membrane binding and/or PtdA

detection (Fig 2F) [91,93].

Lipin phosphorylation and dephosphorylation also control

whether lipin localizes in the nucleus or cytosol (Fig 1B (III)).

Indeed, all lipins carry a NLS, and there is a consistent relationship

between dephosphorylated lipin, nuclear localization, increased

membrane binding, and elevated PtdA-phosphatase activity. Highly

phosphorylated lipin is cytosolic, not membrane-bound, and has

less activity. It is difficult to understand why nuclear localization

correlates with membrane binding and more PtdA-phosphatase

activity, although we note that nuclear-localized lipins can access

PtdA within the nucleoplasmic face of the inner nuclear membrane.

One interesting possibility is that the inner nuclear membrane local-

ization relates to PtdA-dependent crosstalk between lipin and CCTa.

This negative feedback between lipin metabolism of PtdA and

reduced CCTa activity has been demonstrated in yeast, plant, and

fly. Both lipin and CCTa carry an NLS and both often concentrate in

the nucleus, and thus will cycle to and from the inner nuclear

membrane (Fig 1B (III)). Perhaps concentrating both enzymes to

the inner nuclear membrane amplifies how efficiently lipin regulates

CCTa, and data from fly indeed show lipin regulating whether or

not CCT1 interacts with the inner nuclear membrane [28]. Further-

more, segregating the lipin/CCTa crosstalk may prevent altered

PtdA levels from impacting the many other proteins that bind and/

or are regulated by PtdA [95,96].

There are still many unknowns about how lipin is regulated. The

interplay between multiple phosphorylations, sensitivity to

membrane composition, and partitioning between the nucleus and

cytosol have made it difficult to dissect the roles of each event. The

conserved CTDNEP1/NEP1R1 phosphatase complex (Nem1 and

Spo7 in yeast) is a centrally important lipin activator in yeast and

animals that often specifically localizes in the inner nuclear

membrane [97–99]. As we discuss below, lipin phosphorylation is

also a target of insulin and mTOR signaling. In addition, torsin

ATPases, which reside inside the ER lumen, were recently identified

as lipin inhibitors, and are also implicated as sensors of the ER

redox state [28,100,101]. Thus, lipin is positioned to integrate multi-

ple types of information and couple these to lipid flux through the

GPL/GL metabolic network.

Adaption of lipid synthesis to environment, differentiation,

and disease

There are also many circumstances where the cell adjusts the levels

of lipid synthesis or flux of intermediates moving through different

synthetic pathways. This includes external and internal pro-growth

signals and many cell differentiation programs. Here, we describe

some key examples and discuss the evidence that these programs

act by modifying the same molecular mechanisms described above

for maintaining membrane homeostasis (Fig 3A). In addition, it is

also becoming clear that dysregulation of these same mechanisms

has pathological consequences for human health.

Cell growth, growth factors, and mTORC1

Cell growth is controlled by external information such as

hormones and nutrients, integrated with internal states relating to

cellular energy and stress. Cell growth is an essential element for

many aspects of animal development and physiology, while the

dysregulation of cell growth is pathogenic in the context of

cancer. Cell growth inherently requires increased cellular biomass,

which includes membrane and thus increased membrane lipid

production. Consistently, lipid production is a target of cell

growth signaling pathways under normal as well as pathological

conditions.

The evolutionarily conserved mTOR serine/threonine kinase is a

master integrator of growth information and coordinates the down-

stream processes that increase cellular biomass. This includes

signaling for the increased production of lipids [102]. There are two

distinct mTOR kinase-active complexes, mTORC1 and mTORC2.

mTORC1 is inhibited by rapamycin, activated by pro-growth PI3K

and Akt pathways, and is the complex that most often couples pro-

growth signaling to lipid biogenesis [102]. Indeed, the majority of

events where nutrients alter lipid production are either blocked by

rapamycin and/or stimulated by genetic knockout of the TSC1/2

upstream inhibitors of mTORC1. This means that mTORC1 is central

to how pro-growth signals increase the synthesis of PtdCho and

PtdEtn membrane lipids [103,104].

Pro-growth signaling/mTORC1 regulates lipid production

through several mechanisms, of which SREBP-1 activation is the

most consistently important (Fig 3A). Indeed, this fundamental

conserved mechanism has been described driving cell growth in

invertebrate and vertebrate species [103]. The mechanism of how

mTORC1/pro-growth affects SREBP-1 has been most studied in liver

cells, a cell type under particular scrutiny due to its central role in

nutrient responses [102] and which has recently been discussed in

detail [105]. In brief, coupling to SREBP-1 typically requires that

mTORC1 activates its classic ribosomal S-6-kinase substrate, and

impacts SREBP-1 at multiple levels including elevating SREBP-1

cleavage, increasing the half-life of cleaved mature SREBP-1, and

upregulating SREBP-1 mRNA expression at least in part because the

SREBP-1 promoter contains a SRE and thus responds to mature

SREBP-1 protein [106]. How pro-growth signals promote SREBP

cleavage from the membrane remains relatively poorly understood,
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including whether/how ER membrane composition plays a role.

One interesting newer discovery is that increased SCAP glycosyla-

tion decreases its binding to Insig-1, and increases SREBP traffic to

the Golgi for cleavage (Fig 2D). This SCAP glycosylation is sensitive

to cellular glucose levels, which, in turn, are regulated by pro-

growth signals [62]. This provides a mechanism whereby SREBP

cleavage is upregulated by a signaling cascade, although this partic-

ular mechanism appears to be mTORC1-independent. Overall, there

is much to uncover about the coupling of pro-growth pathways to

SREBP-1, including how this is adapted in different cell types, how

abnormal activation of SREBP-1 helps fuel oncogenic cell growth,

and whether SREBP-1 may represent a useful chemotherapy target

[62,107].

Pro-growth signaling/mTORC1 also controls lipid production via

lipin phosphorylation that reduces its PtdA-phosphatase activity

[91,108]. Again, this is a conserved mechanism with similar events

described in yeast, fly, plant, and mammalian cells. A highly

conserved serine residue (position 106 in mammalian lipin1) is

targeted by insulin and mTOR [93], although mTORC1 activation

goes beyond this and 17 distinct mTOR-sensitive serine/threonine

phosphorylations have been described in mammalian lipin1 [27].

How lipin inhibition contributes to mTOR-driven cell growth is not

yet fully explained. It may relate to the feedback between PtdA and

CCTa [28,47], whereby lower lipin PtdA-phosphatase activity allows

PtdA levels to increase, thus activating CCTa and driving membrane

GPL production (Fig 3B). In addition, PtdA is itself an mTORC1 acti-

vator via a PtdA-binding motif in the same mTORC1 domain that

rapamycin binds [95,109,110], possibly meaning that lipin inhibi-

tion amplifies mTORC1 activation.

There is an additional interaction between lipin and the SREBP

branch of the cell growth response. mTOR-driven lipin phospho-

rylation causes lipin to localize in the cytosol. Conversely, mTOR

inhibition promotes a nuclear localization and thus lipin access to

the inner nuclear membrane (Figs 1B (III) and 3B). When mTOR

is off, the PtdA-phosphatase activity of lipin modulates nuclear

morphology and sequesters cleaved SREBP at the nuclear periph-

ery to prevent SREBP from activating gene transcription. Conver-

sely, mTOR-dependent lipin phosphorylation overcomes this

inhibitory control over SREBP (Fig 3B) [27]. The in vivo relevance

of this inhibitory interaction between lipin and SREBP is shown

by genetic knockout of an ubiquitin ligase that targets phosphory-

lated lipin for degradation. Its loss elevates lipin levels in parallel

with reducing SREBP target gene expression and lipid synthesis in

liver cells [111]. Interestingly, lipin phosphorylation driven by

pro-growth signaling is reversed by the CTDNEP1 phosphatase

that resides at the nuclear periphery, and pro-growth signals in

yeast also control the lipin phosphorylation state via this phos-

phatase (Fig 3B) [112].

Tailoring lipid synthesis to cell-type-specific functions

Lipid synthesis is regulated by differentiation programs concomitant

with how they alter the size and morphology of cells, and/or the

volume of internal organelles. In addition, organelle scaling occurs

in response to environmental cues, for example, when hepatocytes

expand the size of the ER to house detoxifying cytochrome P450

enzymes [113], or in professional energy-processing cells that alter

TAG production according to nutritional cues (Fig 3A).

The UPR machinery, especially the IRE1/XBP1(S) branch, is

the main driver of lipid synthesis coupled to changes in ER and

secretory pathway volume (Fig 3A). XBP1 is required in secretory

cells, such as pancreatic acinar cells and salivary gland cells, and

XBP1 deletion causes lethal phenotypes in mice because these

cells fail to achieve fully differentiated states that support high-

level protein secretion [73]. XBP1 deletion also inhibits the ER

membrane expansion that occurs when B cells differentiate into

antibody-secreting plasma cells, while forced XBP1(S) expression

is sufficient to induce ER expansion and differentiation of this cell

type [114]. Thus, although IRE1/XBP1(S) were first described in

the context of a pathological response to protein misfolding, this

pathway also promotes membrane lipid synthesis during normal

differentiation.

Another well-characterized scaling of lipid synthesis occurs with

the synthetic pathway leading to TAG (fatty acid synthesis, GPAT,

AGPAT, lipin, and DGAT enzymes; Fig 1A). It is particularly active

in cell types that convert nutrients into energy stores, such as

mammalian adipocytes and hepatocytes. In addition, environmental

signals further refine TAG pathway activity, and there are important

roles for the UPR and SREBP regulatory mechanisms in TAG

production (Fig 3A). Here, again, IRE1/XBP1(S) play roles. Condi-

tional deletion of XBP1 from mature mouse hepatocytes decreases

flux into the GPL/GL network (detected by [14C]-acetate incorpora-

tion into lipids) concomitant with reduced expression of fatty acid

synthesis and Dgat2 genes. Hepatocytes that lack XBP1 are also less

able to upregulate lipid synthesis in response to a high-carbohydrate

diet [115]. This XBP1-mediated control over hepatic lipogenesis

appears to occur via IRE1-dependent and IRE1-independent medi-

ated mechanisms that overall remain poorly described [115]. In

addition, TAG synthesis in hepatocytes is further promoted by

insulin signaling acting via SREBP-1. Mouse studies have shown

that hepatocytes lacking SREBP-1 release less TAG into the circula-

tion, while forced SREBP-1 (or SREBP-2) expression leads to excess

TAG deposition [116].

◀
Figure 3. The regulation of ER-localized lipid synthesis in cell growth, differentiation, and disease.

(A) SREBP-1 and/or XBP1(S) signaling are important for cellular adaptation of lipid synthesis to cell growth, differentiation (like secretory pathway expansion), or the

environment (like TAG production in response to nutrients). The mechanisms that allow context-dependent variation in the final outcome of these pathways remain under

study. (B) Growth signals, including key pathways such as insulin signaling, stimulate increased lipid synthesis associated with increased cell biomass. The activation of

cell growth-associated lipid synthesis typically requires mTORC1 and couples to SREBP-1 including enhancing SREBP-1 cleavage. Pro-growth signaling also consistently

causes lipin phosphorylation, which converts this enzyme from a nuclear localization to a cytosolic localization, and negatively correlates with PtdA-phosphatase activity.

This in turn disinhibits CCTa by reducing PtdA metabolism to DAG. Lipin PtdA-phosphatase activity also inhibits SREBP by sequestering cleaved SREBP at the nuclear

periphery. The inner nuclear membrane CTDNEP/NEP1R1 phosphatase complex maintains dephosphorylated lipin and thus counters pro-growth lipin phosphorylation

[112,138]. Pi, orthophosphate. (C) Pathological impact of elevated TAG production in hepatocytes caused by excess nutrients. These cells are functionally specialized to convert

carbohydrates into TAG. High-level TAG production from excess nutrients alters the ER membrane lipid saturation profile and the ratio between PtdCho and PtdEtn. This

altered membrane lipid composition induces broader ER dysfunction, included impairing calcium transport and protein misfolding.
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The mechanism(s) that allow SREBP-1 activation to elevate TAG

synthesis in this context, while the same pathway promotes cell

growth in other cells/situations, remain poorly defined. In addition,

there are also similar questions about how the XBP1(S) pathway

has differing effects in different contexts. Since both systems are

transcriptional, they may target different gene sets in different cell

types [117], although this is an incomplete explanation since gene

expression changes usually correlate poorly with altered lipid

production. It may relate to differences in whether SREBPs and

XBP1(S) are activated by factors such as insulin signaling, versus

activated by ER membrane composition. For example, ER

membrane composition will also modify the final outcome of XBP1

(S) and SREBP signaling by repressing or augmenting the activity of

newly expressed lipid synthetic enzymes via mechanisms described

above (Fig 2C–F). Additionally, ER membrane composition may

impact on the gene targets of XBP1(S) or SREBP-1. A conceptual

example of this comes from lipin. As explained above, lipin PtdA-

phosphatase activity [which, in turn, is affected by ER membrane

composition (Fig 2F)] controls whether cleaved SREBP is seques-

tered to the nuclear periphery thus preventing its binding to SREs

(Fig 3B) [27].

ER lipid synthesis in pathology

In addition to lipid synthesis, the ER stores calcium and processes

newly translated secretory pathway proteins. These core ER func-

tions are so tightly linked that defects in one typically cascade to

impact the others; for example, reduced calcium often causes

protein misfolding due to impaired function of calcium-dependent

chaperones, in turn activating the UPR and thus altering lipid

synthesis. This means that ER dysfunction can drive altered lipid

production downstream of different primary insults. In addition,

there is strong evidence that abnormal lipid synthesis is itself the

primary driver of ER dysfunction in some human metabolic and

obesity-related pathologies [118–124]. These focus on hepatocytes

that are functionally specialized to process nutrients into storage

lipids, and also have large amounts of ER dedicated to secretory

pathway functions.

Hepatocytes are a cell type that upregulates TAG synthesis in

response to nutrients. The TAG synthetic pathway overlaps with that

of membrane GPL/GL, diverging only at the final step catalyzed by

DGAT (Fig 1A). Thus, when excess nutrients elevate flux into and

through hepatocyte GPL/GL synthesis pathways, the network must

buffer against spillover into non-TAG branches, in order to maintain

membrane composition. Indeed, under normal conditions, the fatty

acyl chain profile of liver ER membrane lipids is unrelated to that of

dietary lipids, showing segregation of membrane GPL and TAG

production. However, the saturation profile of membrane GPL is

altered in obese mice toward mono-unsaturated acyl chains, suggest-

ing that pathway buffering breaks down under conditions of excess

TAG production [120]. The same study also identified that hepatic

ER membranes from obese animals contain excess PtdCho compared

to PtdEtn. This occurred alongside elevated expression of CCTa,

together with the PEMT enzyme (Fig 1A). The study then elegantly

examined whether the abnormal ratio between PtdCho and PtdEtn

had a role in the pathology of obese mice. This was done via Pemt

knockdown, which halts PtdEtn to PtdCho interconversion and thus

specifically reduces PtdCho relative to PtdEtn. This genetic manipu-

lation not only corrected the PtdCho/PtdEtn imbalance, but also

reduced ER dysfunction in the mice including restoring the function

of the SERCA calcium pump that has a well-characterized sensitivity

to ER membrane composition [125] (Fig 3C).

This study and others [119–124] have demonstrated that

increased hepatic lipid synthesis is a primary driver of liver pathol-

ogy in metabolic diseases related to excess food intake. Along these

lines, genetic knockout of certain elongase and desaturase enzymes

reduces obesity-related phenotypes in mice, implicating abnormal

acyl chain incorporation into lipids as harmful [126]. Indeed, the

interconnected nature of ER functions gives rise to a model where a

vicious cycle of abnormal or excess lipid synthesis impacts the

calcium and protein folding functions of the ER that, in turn, further

amplify or alter lipid synthesis through membrane composition

and/or UPR activation. There is also a strong correlation between

hepatic ER pathology and the development of systemic metabolic

defects such as hyperglycemia and insulin resistance, because of the

central role of the liver in controlling circulating lipids. For example,

the Pemt knockdown described above rescues systemic abnormali-

ties in parallel with restoring normal hepatic ER membrane compo-

sition [120], clinical data correlate specific acyl chain TAG profiles

with type 2 diabetes [127], and genetically reducing lipin degrada-

tion in mice (thereby allowing SREBP suppression) reduces high-fat-

diet liver pathology and circulating insulin levels [111]. Thus,

abnormal ER lipid synthesis contributes to the pathology of obesity,

which explains the clinical benefit of drugs that regulate lipid

enzymes such as statins (HMGCR inhibitors) as well as inhibitors of

TAG production [128–131].

Conclusions and perspectives

More than 60 years of work has identified and biochemically char-

acterized the enzymatic networks of lipid synthesis. The field is

Box 2: In need of answers

(i) How are lipid synthetic enzymes spatially organized in the animal

cell ER, including large and/or polarized cell types such as a

neuron, and how does enzyme localization impact on synthetic

pathway activity?

(ii) What regulatory mechanisms control ER-localized sphingolipid

synthesis, and is there overlap with cholesterol and GPL/GL regula-

tion?

(iii) Fatty acid elongases and desaturases also reside in the ER

membranes, and there are examples from yeast where they are

regulated by membrane-sensing mechanisms [50]. In animal cells,

they are targeted by signaling pathways such as SREBP-1, but

there is relatively little known about how ER membrane composi-

tion affects these enzymes or, in turn, the overall regulation of acyl

chain diversity [126].

(iv) What underlies cell context-dependent effects of regulatory mech-

anisms, including how XBP1(S) or SREBP-1 activation causes dif-

ferent events under different conditions?

(v) The development of pharmacology that inhibits specific lipid

enzymes might allow for their functional dissection (without rely-

ing on genetics). In addition, these may represent new therapies to

test in lipid metabolism-associated pathologies.

(vi) The role of abnormal ER lipid metabolism in hepatic pathology is

established. However, its contribution to other human pathologies,

including those with ER dysfunction, remains unclear.

EMBO reports Vol 18 | No 11 | 2017 ª 2017 The Authors

EMBO reports ER-controlled lipid biosynthesis Julie Jacquemyn et al

1916



rapidly progressing on structural and biochemical dissection of

enzyme function and regulation, as well as moving forward into the

cell biology of how enzymes are spatially organized and regulated,

and how synthesis adapts to developmental, physiological, and

pathological circumstances. One example is the progress describing

the lipid environment of the ER membrane as a central regulator of

enzyme activities, including that interactions between lipid and

protein are being modeled and solved at a structural level. However,

it also remains experimentally difficult to characterize ER membrane

lipid composition in different cell types and conditions, in part

because classic density-based purification of ER membranes is itself

altered by membrane lipid composition. Potentially, exploitation of

click-chemistry reporters of lipid synthesis, microscopy readouts of

membrane biophysics, and/or affinity-based membrane purification

methods will promote our understanding of ER lipid synthesis and

regulation beyond hepatocytes from where the majority of our infor-

mation still derives. This is particularly important given that many

human diseases feature ER dysfunction [132], and thus, there is a

possibility that pathogenically altered lipid synthesis is a broadly

useful therapeutic target beyond the types of liver disease where this

is already established.
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