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Summary

Cell phenotype is specified by environmental cues
embedded in the architecture and composition of the
extracellular matrix (ECM). Much has been learned about
matrix organization and assembly through analyses of the
ECM protein fibronectin (FN). FN matrix assembly is a
cell-mediated process in which soluble dimeric FN is
converted into a fibrillar network. Binding of cell surface
integrin receptors to FN converts it to an active form, which
promotes fibril formation through interactions with other
cell-associated FN dimers. As FN fibrils form on the outside
of the cell, cytoplasmic domains of integrin receptors

organize cytoplasmic proteins into functional complexes
inside. Intracellular connections to the actin cytoskeletal
network and stimulation of certain key intracellular
signaling pathways are essential for FN-integrin
interactions and propagation of FN fibril formation. Thus,
assembly of native functional ECM depends on exquisite
coordination between extracellular events and intracellular
pathways.
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Introduction

cell surface receptors, usually through binding of @81

Fibronectin (FN), a ubiquitous and abundant extracellulaintegrin receptor. Specific recognition of FN by this integrin
matrix (ECM) protein, is secreted by cells as a soluble dimeiequires the Arg-Gly-Asp (RGD) cell-binding sequence in the
and is subsequently assembled into insoluble multimeric fibrilype Ills module (Hynes, 1992; Ruoslahti and Pierschbacher,
at the cell surface. Assembly of a fibrillar FN network is al987) along with the synergy sequence located in the adjacent
complex process, the mechanics of which are an area of actitype 11110 module (Bowditch et al., 1994; Nagai et al., 1991)
research. Fibril formation is cell mediated and depends offFig. 1)\. Cell-associated FN is initially distributed diffusely
interactions between FN and integrin receptors on the cetiver the cell surface. As assembly progresses, dimeric FN
surface. Subsequent steps convert FN into a dense meshwéokms short deoxycholate-soluble fibrils, which are
of interconnected fibrils that provide a dynamic environmensubsequently converted into a dense detergent-insoluble
for cells. We know quite a bit about the major steps thafibrillar network (Fig. 2).

comprise the FN matrix assembly reaction. However, as we As a dimeric ligand, FN induces integrin clustering, which
learn more about FN and its receptors, new and interestingings together bound FN and increases its local concentration.
mechanistic questions have arisen regarding the molecul@ihe cysteines that constitute the dimerization site at the C-
changes that convert soluble FN into insoluble fibrils and hOVMgrminus are, therefore, essential for assemb|y' promoting
assembly is modulated by intracellular signals. What we knoweceptor clustering and FN-FN interactions. There are at least
and some of what we don’t know are summarized in thigour sites for FN-FN binding, and these are distributed across
Commentary. the length of each subunit (Fig. 1). Interestingly, many of these
sites act as partners for the site in the N-terminal assembly
. . . domain, which perhaps explains why this is the only FN-
Mapr steps in the FN_ mgtnx assembly. pathway . binding site that is essential for fibril formation. Fragments
FN is secreted as a disulfide-bonded dimer composed p_”ma”é()ntaining the assembly domain, such as the 70 kDa N-
of three types of repeating module (I, Il and 1) (Fig. 1)terminal fragment (Fig. 1), can inhibit fibrillogenesis without
(Hynes, 1990; Pankov and Yamada, 2002). Sets of modulegecting FN-integrin interactions (McDonald et al., 1987;
make up domains for binding to a variety of EXtracelIUIarMcKeown-Longo and Mosher, 1985: Sechler and

and cell surface molecules, including —collagen,goparshayer, 1998), and FN lacking this domain is incapable
glycosaminoglycans, fibrin, integrins and FN itself. Although,' . ooy (Schwarzbauer, 1991; Sottile and Mosher, 1997;
the diagram in Fig. 1 implies an extended structure for F ottile et al., 1991). In addition, during the early stages of fibril

subunits, FN in solution is a compact dimer, folded into . ; o
conformation that does not undergo fibril assembly (Ericksoiormat'on' the 70 kDa fragment can be used to identify sites

an,d_ Carrell, 1983; Johnson et ,al" 1_999; Rocco et al" 1_98’?fr;|dividual modules are numbered according to their positions from N- to C-terminus

Williams et al., 1982). Substantial evidence supports the idegbng the FN molecule. For exampleolls the ninth type Ill module. Alternatively

that FN must be activated to assemble into fibrils (Johnson gitliced modules that are occasionally included in the protein are not numbered but are
. . igstead called EIlIA and EIIIB. The alternatively spliced segment betwegratitl 11l1s

al., 1999; Mosher, 1993' Schv_varzbauer a”q SeCh!er' 19_99’called theV region or IIICS. The N-terminal 25 amino acids of ¥heegion contain

Sechler et al., 1996). Activation is induced by interactions withhe a4g1 integrin-binding site called CS1.
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Assembly domain binding. Variable alignment
=N FN would place the other binding domains
Fibrin - collagen [N | FN Cell Heparin (for heparin, cells, collagen, etc.) into

different molecular contexts and close
‘“III'D'OO’D'D'D‘”@‘“.O“()@’“.O’D’D’D‘W to different ‘near-neighbors’ on
adjacent dimers. In this way, dimer
70 kDa fragment Synergy RGD cs alignment would have a significant

Fig. 1. Domain structure of fibronectin (FN). FN consists of type | (rectangles), type Il (ovals)'n:ﬁ]acr:;g:t f|lr?2tla$1?:rggeli(lflyassembly is

and type Il (circles) repeats. Sets of repeats constitute binding domains for fibrin, FN, collagiil i

cells and heparin, as indicated. The three alternatively spliced segments, EIlIA, EIlIB and V (aiiated by integrins that recognize the
[1ICS), are in yellow. The assembly domain and FN-binding sites are highlighted in orange. and synergy  sequences.
indicates the C-terminal cysteines that form the dimer. Surprisingly, the specific location of
the cell-binding site within FN is not
critical. Placement of repeats dHo
of assembly, where it binds to FN and colocalizes withmore N-terminal in place of Uls (Fig. 1) generated a
clustereda5p1 integrin (Dzamba et al., 1994; Wierzbicka- recombinant FN that assembled normally (Sechler et al., 2001).
Patynowski and Schwarzbauer, 2002). The existence of oMen RGD-independent mechanism acts through binding of
essential FN-binding site enhances control of the assembtyf1 integrin to the CS1 sitevithin the alternatively spliced
process since all interactions depend on accessibility to this region near the C-terminus (Sechler et al., 2000). Clearly,
single site. The fact that there are multiple partners for this sitée integrin-binding site does not need to be centrally located
suggests that the alignment of FN dimers within fibrils variegor initiation and propagation of FN fibril formation.
depending on which partners are available for assembly At early stages of de novo assembly, FN fibrils are short and
usually extend between adjacent cells or from the cell to nearby
substrate (Fig. 2). These fibrils are soluble in buffers containing
2% deoxycholate detergent. As more FN accumulates at the
cell surface, fibrils are gradually converted into a detergent-
insoluble form, and a significant proportion of these exist as
high-molecular-weight multimers (McKeown-Longo and
Mosher, 1983). Insolubility and multimerization might involve
intermolecular disulfide bonding catalyzed by the intrinsic
protein disulfide isomerase activity of FN (Langenbach and
Sottile, 1999) or might result from highly stable
protein—protein interactions (Chen and Mosher, 1996). Partial
unfolding of the Il module of FN promotes formation of
amyloid-like fibrils in vitro (Litvinovich et al., 1998); so
perhaps a similar process [@strand exchange contributes to
the detergent insolubility of the FN matrix. Further
investigation of this and other potential mechanisms is needed
to decipher the process by which FN fibrils become insoluble.

Fibronectin activation by conformational change

A key feature of the matrix assembly model is a conformational
change that converts soluble FN into an activated dimer. In
vitro manipulation of soluble FN has provided compelling
evidence for conformational changes that take FN from a
compact to an extended form. Changes in pH or ionic strength,
addition of mild denaturants, as well as interactions with
heparin or collagen fragments, can induce conformational
changes as measured by a variety of biophysical, biochemical
and microscopic approaches (Bushuev et al., 1985; Erickson
and Carrell, 1983; Khan et al., 1990; Ugarova et al., 1996;
Williams et al., 1982). Many of the models for the structure of
soluble FN include folding over of the N-terminal region to
allow interdomain interactions with other parts of the molecule

. . ) ) - ) (Homandberg and Erickson, 1986; Ingham et al., 1988;
Fig. 2. Progression of fibronectin (FN) fibril formation. Cid®cells
ng’e incut?ated with rat plasma F(N q%@ml'l) for 1 hour or 8 Johnson et al., 1999; Khan et al., 1990; RQCCO _et a_l., .198.3;
hours. Matrix was visualized by staining with IC3 anti-rat FN Sechler et al., 1996). Thus, one outcome of integrin binding is
antibody followed by fluorescein-labeled secondary antibody. FN  induced expansion of the compact dimer. This expansion
fibrils accumulate over time to form a dense network around the ~ €xposes FN-binding domains that are hidden in the compact
cells. form and allows them to participate in FN—-FN interactions.
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Such a model provides a satisfying explanation for regulateshultiple FN-binding sites. Hocking et al. have also identified
FN assembly. Experiments using a recombinant FN lacking the cryptic binding site for FN and the 70 kDa fragment in intact
first seven type lll repeats support this idea. This protein showH 1 by heat denaturation (Hocking et al., 1994). Similarly,
an increased rate of fibrii assembly characterized byeat-denatured Hbcan bind to Il (Hocking et al., 1996). In
accelerated formation of detergent-insoluble material, which iboth the peptide and heat-denatured modules3-sandwich
consistent with increased access to FN-interacting domairssructure of the type Il repeat is unfolded, and hydrophobic
(Sechler et al.,, 1996). Regulated activation by inducedore residues are exposed. Possibly, exposure of hydrophobic
expansion has particular significance for circulating plasmaequences is sufficient to provide a platform for FN binding.
FN, providing a mechanism to prevent formation of insolubleOr perhaps the effects are less specific, since the 111-1C peptide
fibrils in the bloodstream. also induces aggregation of fibrinogen (Yi and Ruoslahti,
Many different sites can participate in FN—FN interactions2001), and heat-denaturedslik as active as heat-denatured
(Fig. 1), and some of these may confer the compadtlio in Ill1 binding (Hocking et al., 1996). Although {ll
conformation on the soluble protein. The N-terminal assemblfragments have some assembly-related activities in vitro, it is
domain has the most binding partners and is able to interacbw clear that IH is not essential for matrix assembly, since a
with native Ilh-> (Aguirre et al., 1994), heat-denatured; lll recombinant FN lacking this module forms a perfectly normal
(Hocking et al., 1994), the heparin-binding domaini$lily) matrix (Sechler et al., 2001). Although there remain questions
(Bultmann et al., 1998) and a combination of-plplus heat- about which cryptic sites are relevant to assembly, it is clear
denatured IHo (Hocking et al., 1996). Interactions have alsothat binding sites are sequestered in soluble FN and must be
been reported between nativeildnd Illz (Ingham et al., exposed for FN to form fibrils.
1997), as well as betweenitli4 and lll2-3 (Johnson et al.,
1999). Thus, there are numerous permutations of FN-FN o
interactions that can occur. It remains to be determined whethEfasticity of FN fibrils
certain sites are preferentially used in soluble versus fibrillaEN fibrils are not static but are rearranged and recycled by cell
FN. movements, cell density and degradative processes (Hynes,
Availability of integrin-binding sites also appears to bel990; Hynes, 1999). Tools are now available for determining
regulated. Epitopes within the cell-binding domain and the \the extent of FN rearrangements in real time. Erickson and co-
(INCS) region are exposed by adsorption of FN to a solidvorkers have used cells expressing a GFP-tagged FN to show
surface or by binding of heparin, treatment with proteases dhat FN fibrils are quite elastic and highly stretched (Ohashi et
changes in salt concentration (Ugarova et al., 1996; Ugarow., 1999). For example, detachment of one end of a fibril from
et al., 1995). Alternative splicing modulates cell interactions aa cell surface resulted in fibril shortening as it snapped back to
well. For example, increased cell spreading and migration dfs site of attachment on another cell. In some cases, detached
HT1080 cells occurs on FN containing the EIIIA module,fibrils contracted to less than one-quarter of their extended
suggesting that inclusion of this repeat, which resides near tiength. Changes in cell shape induced by EDTA treatment also
RGD and synergy sequences, improves access to cell-bindingused fibril rearrangements. This elasticity provides a
sites (Manabe et al., 1999). dynamic and pliable ECM environment to accommodate cell
activities within tissues and also provides the potential for
o _ regulation of fibril organization and availability of binding
Exposure of binding sites sites. However, extensive fibril contraction may not occur very
Treatments that induced protein expansion in vitro, as well asequently in vivo since FN fibrils are attached both to cells
mutations that affect the conformation of the moleculeand to other ECM proteins.
increase FN dimer incorporation into the matrix (McKeown- Several mechanisms have been proposed to explain fibril
Longo and Mosher, 1985; Sechler et al., 2001; Sechler et aklasticity (Erickson, 1994; Ohashi et al., 1999). Straightening of
1996; Sottile and Mosher, 1993). This indicates that FNFN subunits provides one mode of extension. Disruption of
conformation controls the progression of assembly. In additiorinterdomain interactions that contribute to the compact
mechanical stretching of FN adsorbed onto a silicone rubb&onformation of soluble FN would expand the protein. This may
substrate increases binding of a 70 kDa fragment containirtee facilitated by ‘hinge’ sequences within FN. In fact, sequence
the assembly domain (Zhong et al., 1998). This latter resu@fazing at the repeating FN structure shows several sites where
demonstrates that FN assembly sites can become exposeddxjra residues are inserted between repeats. The largest of these
application of tension to immobilized FN. is the alternatively spliced region (see Fig. 1). Interestingly,
Cryptic binding sites, those that are exposed by unfolding dhis segment is always present in tissue FN (Schwarzbauer et al.,
individual type Ill modules, have also been implicated in FN1985). Further straightening of the zigzag connections between
assembly. The most dramatic examples of cryptic sites atgpe Il modules would provide additional extension from 160
those that are detected only in denatured fragments or peptidasa to ~175 nm for each dimer (Erickson, 1994). Another level
Incubation of soluble FN with the 111-1C peptide, which spansof unfolding could result from unraveling of individual type I
about two-thirds of the lllmodule, induced formation of a repeats, which, unlike type | and Il repeats, are not stabilized by
multimeric form of FN that could be stretched into a fibrillar-disulfide bonds. Modeling studies have suggested that
like network (Morla et al., 1994). One plausible mechanism o&pplication of sufficient force promotes gradual unfolding of
IlI-1C action is that it disrupts interdomain interactions inindividual repeats. Breakage of hydrogen bonds betvfien
soluble FN and thus promotes intermolecular associations strands in type Il modules could lead to partial or eventually
solution. That this peptide is able to bind to many differentomplete unraveling (Krammer et al., 1999). This has important
parts of FN (Ingham et al., 1997) indicates that it might exposemifications for regulation of cell-matrix interactions because
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unfolding of lllio would include concomitant flattening of the inhibitors of contractility have the opposite effect and block
RGD loop. Experimental support for type Ill module unravelingassembly of FN matrix induced by LPA (Zhong et al., 1998).
has been provided by atomic force microscopy (AFM) analyseGlearly, RhoA-mediated contractility can regulate FN
where individual fragments from titin, tenascin or fibronectinassembly and acts, at least in part, by generating the tension
have been stretched (Oberhauser et al., 2002; Oberhauser etraluired for expansion of compact dimers and exposure of FN-
1998; Rief et al., 1997). binding sites.

If unfolding can occur in vivo, which parts of the molecule Control of FN matrix by contractility may have
are likely to be affected? FN studies show variation in thg@hysiological ramifications in the vasculature. Varicose human
stability of individual type 11l repeats in that different amountssaphenous veins show reduced deposition of FN matrix and
of force are needed to unfold them. AFM data suggest that tlteecreased Rho kinase expression (Cario-Toumaniantz et al.,
Il 1-2 pair is quite stable and unlikely to unfold in the native2002). Platelets assemble FN fibrils when stimulated by LPA
protein (Oberhauser et al., 2002), raising a question about tlee sphingosine 1-phosphate (Olorundare et al., 2001).
nature of the cryptic site in il Other AFM work and computer Interactions between FN ambf31 integrin contribute to full
modeling, by contrast, supportiddlunfolding at relatively low activation of Rho, whereasvf33 and other integrins do not
force (Craig et al., 2001; Krammer et al., 1999; Oberhauser stibstantially activate Rho (Danen et al., 2002) and are less able
al., 2002). This may have functional significance given thato form dense matrix (Wennerberg et al., 1996; Wu et al.,
heat-denatured Hb can form a ternary complex with the 70 1996). In vivo, LPA stimulation might allow integrins other
kDa fragment and heat-denatured [Hocking et al., 1996). thana5B1 to support matrix assembly.

Other regions that may be prone to unravel include Il How do FN, integrins and cytoskeletal components come
(Litvinovich et al., 1998) and l{b-13(Oberhauser et al., 2002). together to promote fibrillogenesis? Integrins affect
Thus, variation in type Il stability may limit the unfolded intracellular processes through a variety of cytoskeletal,
regions to specific parts of the protein, in particular the celladapter and signaling molecules, including paxillin, vinculin,
and heparin-binding domains. talin, focal adhesion kinase (FAK) and Src (Miranti and

Baneyx et al. have used fluorescence resonance energyugge, 2002; Schwartz et al.,, 1995). In response to
transfer (FRET) to determine the contribution of FN elasticityintegrin—FN interactions in culture, some of these proteins are
to formation of matrix fibrils (Baneyx et al., 2001; Baneyx etdifferentially incorporated into two distinct protein assemblies:
al., 2002). They attached different fluorescent tags to frefocal adhesions and fibrillar adhesions (Geiger et al., 2001,
sulfhydryls in repeats Kl and lllis and to free amines Zamir et al., 1999). Focal adhesions, which are paxillin- and
randomly along the length of FN. Variations in FRET providevinculin-rich structures, provide cells with firm substrate
convincing evidence for conformational changes within an FNittachment and points of anchor for actin stress fibers. Fibrillar
dimer as it goes from solution to cell-associated to fibrillaradhesions, by contrast, are rich in tensin but not paxillin or
Differences along the length of fibrils indicated that FN dimervinculin. They form by FN-dependent movement of ligated
vary in their degrees of expansion from the compact to the531 integrins along stress fibers towards the cell center
extended form. The level of FRET at some locations may als@hashi et al., 2002; Pankov et al., 2000; Zamir et al., 2000).
suggest module unraveling but this is open to interpretatio.his process may mediate matrix assembly by stretching FN
Erickson has recently argued that the majority of the FRETNto fibrils from the pool of dimers that are clustered at focal
signals in these experiments can be attributed to expansion adhesions. In cultured cells, tensin appears to be an important
the compact conformation and not to module unravelingomponent of this process, because expression of a tensin
(Erickson, 2003). Thus, although there is general agreemeftagment blocks integrin translocation and FN fibrillogenesis
that FN dimers are compact in solution and expand to afiPankov et al., 2000). However, although focal adhesions and
extended conformation during matrix assembly, it is stillfibrillar adhesions participate in fibril formation in vitro, matrix
unclear whether unfolding of individual modules contributes tassembly within tissues might use yet another type of paxillin-
fibril elasticity. positive matrix contact (Cukierman et al., 2001; Sechler and

Schwarzbauer, 1997). Clearly, integrins are essential mediators

o - of FN fibrillogenesis through their connections between FN
Elasticity and cytoskeletal contractility and the actin cytoskeleton and their effects on Rho activity.
Integrins link FN fibrils to the actin cytoskeleton, and thisHowever, questions remain about the composition of
connection is important for FN fibrillogenesis (Ali and Hynes,functional integrin-based connections and the effects of
1977; Wu et al., 1995). The organization of the actinextracellular environment on recruitment of intracellular
cytoskeleton is regulated by signaling through Rho familycomponents.
GTPases (Hall and Nobes, 2000). Treatment of cells with
serum or its component lysophosphatidic acid (LPA) activates o .
Rho, inducing changes in cell shape and actin organization af@egrin signaling controls assembly
enhancing FN matrix assembly (Zhang et al., 1994). Simila€ell-ECM interactions regulate gene expression, intracellular
effects have been observed after microinjection opH and calcium levels, phospholipid metabolism, small
constitutively active Rho (Zhong et al., 1998), treatment ofcTPases, kinases and phosphatases (Miranti and Brugge,
cells with the microtubule-disrupting agent nocodazole (Liu e2002; Schwartz et al., 1995). The ability of integrins to link the
al., 1998; Zhang et al., 1997) or culturing cells under tensioBCM with cytoplasmic molecules and the actin cytoskeleton is
within a stabilized, stressed collagen gel (Halliday andritical in initiating a variety of intracellular signaling
Tomasek, 1995). All of these treatments are associated wiiathways. Cell adhesion and spreading, migration, cell survival
actomyosin-induced cell contraction. Not surprisingly,and proliferation all depend on integrin signaling through FAK,
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which directly interacts with downstream signaling moleculesl., 2000). Truncated syndecan-2 lacking part of the
such as Src, phosphatidylinositol 3-kinase (PI3-kinase) ancytoplasmic tail acts in a dominant-negative fashion to ablate
Grb7 (Schlaepfer et al., 1999; Zhao and Guan, 2000). FAK hassembly of both FN and laminin matrices. By contrast,
been implicated in cell growth responses to altered FN matrigyndecan-2 lacking the entire tail has no effect on matrix
structure (Sechler and Schwarzbauer, 1998). In addition, FAKrmation.
and its downstream effectors Src and PI3-kinase play essentialSyndecan-4 may play a more direct role in FN
regulatory roles in the early stages of FN fibrillogenesis. SYHibrillogenesis. It cooperates with integrins to regulate Rho-
cells (which lack Src family kinases Src, Yes and Fyn), cellslependent cell adhesion, spreading and actin organization
treated with Src and PI3-kinase inhibitors, and FAK-null cellfSaoncella et al., 1999). Concomitant ligatiombB1 integrin
all show significant decreases in FN matrix assemblynd syndecan-4 increases levels of active Rho and
(Wierzbicka-Patynowski and Schwarzbauer, 2002) (D. llic angphosphorylated FAK (Wilcox-Adelman et al., 2002).
C. Damsky, personal communication). SYF cells also showonditions that stimulate both Rho and FAK have been shown
dramatically reduced phosphorylation of FAK. The recruitmento favor FN matrix assembly (Midwood and Schwarzbauer,
of Src and PI3-kinase by active FAK thus probably transducez002).
signals required to initiate and maintain propagation of FN Syndecan-4 may also act on assembly through protein kinase
fibrils. This hypothesis is further supported by the similarity inC (PKC). The cytoplasmic tails of clustered syndecan-4 bind
embryonic defects of mice lacking FN (George et al., 19930 PKC (Horowitz and Simons, 1998; Oh et al., 1997). This
FAK (Furuta et al., 1995) or the three kinases Src, Yes and Fkinase can associate with focal adhesions in fibroblasts (Barry
(Klinghoffer et al., 1999). Because Src can affect FAKand Critchley, 1994). In addition, PKC activation improves cell
phosphorylation and thus its activity (Miranti and Brugge,spreading and FAK phosphorylation on an FN substrate (Vuori
2002; Zhao and Guan, 2000), there is probably a feedback loapd Ruoslahti, 1993) and increases binding of FN to fibroblast
among these kinases resulting in mutual activation andell surfaces (Somers and Mosher, 1993). Thus, PKC
reinforcement, which in turn promotes FN matrix assemblylocalization and activation affect processes required for cell-
Such a loop might activate intracellular signaling in responsmediated FN matrix assembly. In addition, PKC activation has
to cell-ECM interactions while it also regulates cell binding tobeen shown to increase FN production and fibrillogenesis in a
ECM and organization of FN into fibrils. variety of cell types, including pulmonary fibroblasts, retinal
Perturbation of FN assembly by changes in intracellulapigment epithelial cells, vascular smooth muscle cells,
pathways through activation of Src and other oncogenes makesteoblasts, hyperglycemic mesangial cells ¥adopuscells
a significant contribution to tumor cell phenotype. For(Kaiura et al., 1999; Lee et al., 1996; Lin et al., 2002a; Lin et
example, increased Src expression and activity are associat@d 2002b; Osusky et al., 1994; Singh et al., 2001; Yang et al.,
with a decrease in the amount of FN matrix (Hynes, 199®002). Together, these findings implicate PKC signaling in
Olden and Yamada, 1977) and with changes in cell-FMhodulation of FN assembly.
interactions in human colon cancer (Jones et al., 2002). In at
least some cells, the ERK/MAP kinase pathway mediates the
inhibitory effects of v-Src (Ladeda et al., 2001), thusAn integrated model of FN assembly
implicating the Ras oncogene pathway in FN matrixThe work discussed above allows us to generate an
regulation. integrated model of FN assembly in vivo. In this model, FN
Oncogenes also affect integrin function and localizationmatrix assembly is initiated when inactive, compactly folded
which further exacerbates defects resulting from loss of FNeN binds toa531 integrins. FAK co-localizes with integrins
Activation of Raf-1 downstream of H-Ras suppresses thand is rapidly phosphorylated in response to ligand binding
ability of a5B1 integrin to mediate FN matrix assembly (Fig. 3A). Phospho-FAK recruits Src, and these two kinases
(Hughes et al.,, 1997). The suppression correlates wittegulate the very early steps of assembly. Although initially
activation of ERK, which is similar te-srctransformed cells. distributed diffusely over the cell surface, integrin complexes
HT1080 human fibrosarcoma cells, which have one activatesbon become clustered in response to bivalent FN. Integrin
N-ras allele, can be stimulated to assemble FN matrix bylustering recruits signaling and cytoskeletal proteins into
activation of integrins using M or B1 integrin-activating focal complexes (Fig. 3B). Kinase cascades downstream of
antibody or by inhibition of Ras signaling through ERK activated Ras and Rho GTPases stimulate a number of
(Brenner et al., 2000). Thus, mutations in at least twdlistinct intracellular responses, including reorganization of
oncogenesias andsrc, have detrimental effects on FN matrix the actin cytoskeleton and changes in gene expression.
and, in some cells, exert their effects through a commo@oncomitantly, FN is converted from an inactive, compact
downstream effector, ERK. form to an active, expanded form through a process that
depends on cell contractility (Fig. 3B). Tension applied to
o FN dimers can expand and unfold the subunits to expose
Integrin signals do not act alone sites for FN—FN interaction, thus initiating FN fibril
Cells that have impaired proteoglycan synthesis exhibiftormation.
defective FN matrix assembly (Chung and Erickson, 1997). Co-localization of syndecan-4 in focal adhesions increases
This defect may be due, in part, to reduced activity othe levels of active Rho GTPase and PKC, further reinforcing
syndecans, transmembrane proteoglycans that can bind to Fdtal adhesion function. Many of these signaling pathways
(Mercurius and Morla, 2001; Woods et al., 1988). Syndecarappear to feedback on integrins, strengthening connections
2, the major syndecan in fibroblasts, appears to have through recruitment of additional components and sustained
regulatory, albeit indirect, effect on matrix assembly (Klass eactivation of signals. Together the combination of cytoskeleton
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FN Perspectives

A ¢ We have made significant headway in determining the major
Integrin dimer molecular steps of FN matrix assembly. Understanding the
\ 1 \ |-/ molecular changes as FN goes from the inactive to the active

%) W\Tann form will be aided by high-resolution structures of larger
A P FAK pieces of the protein and of these in various activation states.

~ In addition, there are certainly other ECM proteins that

Sre modulate or facilitate fibril assembly and these need to be

identified, perhaps by application of genome-wide approaches.
We must also investigate further the role of intracellular
pathways. We need to learn more about not only the
components that co-localize with integrins during assembly but
also their stoichiometries and nearest neighbors within focal

and fibrillar adhesions. Issues such as reinforcement of
3 /F integrin—FN connections and regulation of fibril density also
AN need to be tackled. We still have much to learn about matrix

4 assembly.
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