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Abstract

The Insieme Project provides a research platform for analysing and optimizing

parallel programs. It consists of the Insieme Compiler, the Insieme Runtime

System and INSPIRE - the INSieme Parallel Intermediate REpresentation.

INSPIRE is an explicitly parallel intermediate representation, which unifies the

representation of parallel APIs and languages such as OpenMP, CILK, MPI,

and OpenCL. This intermediate representation is the foundation for analyses

and optimizations. Through the Insieme Compiler a programmer is able to

tune and optimize such parallel programs.

To support C/C++ based input codes, the Insieme Compiler utilizes the

Insieme Frontend, which is capable of parsing and converting C/C++ into IN-

SPIRE. For parsing C/C++, the Insieme Frontend relies on the Clang project.

The resulting abstract syntax tree, generated by Clang, is then converted into

INSPIRE.

As part of this master thesis an existing (Clang based) C frontend was

extended into a frontend capable of handling C and C++ based input codes.

This extension required specification and implementation of the conversion

process for C++ specific abstract syntax tree nodes from the Clang abstract

syntax tree into INSPIRE.

Within this master thesis this conversion process, from the Clang abstract

syntax tree into INSPIRE, is documented. This includes an introduction into

the abstract syntax tree and its structure, details on how the Insieme Frontend

traverses the abstract syntax tree and specifics on the conversion process of

abstract syntax tree nodes into INSPIRE.

Furthermore an interception mechanism is implemented in scope of this mas-

ter thesis. With this interception mechanism the Insieme Frontend is able to

support and interface external libaries without converting these libraries into

INSPIRE and recompiling them.
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Chapter 1

Introduction

The development of nowadays hardware architectures started with sequentially

processing computations and moved over the last decades towards parallelism.

This change was forced by decreasing improvements of the sequential perfor-

mance due to physical constraints. Hardware vendors applied various tech-

niques and concepts to mitigate the downshift of improvements in sequential

computing performance. Some techniques, such as pipelining, branch predic-

tion, super-scalar architectures, are suitable to be optimized by conventional

compilers. They require no interaction with the end user, which is in the con-

text of a compiler the software developer. Other techniques, such as single

instruction multiple data (SIMD) instructions, or multi-level data and instruc-

tion caches are optimized only in simple cases by conventional compilers and

still require involvement of the user during tuning and optimizing.

Coarse-grained concepts such as simultaneous multithreading (SMT), sym-

metric multiprocessing (SMP), or heterogeneous architectures (e.g. GPGPU),

rely heavily on the manual interaction with the user to improve the computa-

tional performance. Typically these concepts are managed and utilized by the

developer via libraries (e.g. Phtread, MPI, OpenCL) or language extensions

(e.g. OpenMP, Cilk).

In the exemplary case of a heterogeneous cluster with nodes providing acceler-

ator cards, a developer needs to apply different libraries and frameworks to fully

capitalize the available computational power for a software project. For inter-

node communication he might apply MPI, for intra-node parallelism OpenMP

and Pthreads, and to utilize the accelerator cards, OpenCL would be necessary.

One can easily see that the sheer amount of different libraries and standards

makes the process of developing and optimizing a software project a challenging

and complex task. Especially the management of interaction between different

runtime systems - OpenMP on the intra-node level, MPI on the inter-node level

and OpenCL for accelerators - is a time-consuming process during development

and may introduce inefficiencies during execution.
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To mitigate the complexity of such a software project the developer needs tool

support. Such a tool would be for example a compiler and an accompanying

runtime system, capable of optimizing the plethora of different APIs and runtime

systems.

The goal of the Insieme Project is to offer such a compiler and runtime.

The Insieme Compiler supports multiple input languages and standards such

as C/C++, OpenMP, OpenCL, MPI, Cilk. The input code gets translated

into a unified, parallel, intermediate representation (INSPIRE) which is the

foundation for researching new analyses and transformations tailored towards

parallel programs. The generated output programs of the Insieme Compiler

are targeted towards the Insieme Runtime System. Which is able to interact,

monitor and dynamically reconfigure hardware, and thus enables and manages

parallel execution.

1.1 Compilers and their infrastructure

In general a compiler infrastructure is organized in five major components. The

Intermediate Representation (IR), accompanied by analysis and transformation

tools builds the foundation. Based on the intermediate representation the other

components are built: Frontends convert the given input code into IR, Backends

synthesize from the IR the resulting target code. An optional Runtime System

may offer advanced operations such as resource management or dynamic inter-

pretation or additional compilation support. The Compiler Driver is managing

the whole compilation process. It organizes the different compilation stages and

optimizations conducted on the IR. Further more the Driver offers an interface

to the end user - the software developer.

Source-to-Source Compiler A traditional compiler takes source code written

in a higher-level language and translates it into a lower-level language. Usually

the target language is assembly language or binary, to produce an executable.

In other words, the compiler translates the input code from a higher-level of

abstraction into a lower-level of abstraction.

In contrast to that, a source-to-source compiler takes input source code and

translates it again into source code. The level of abstraction is kept on a sim-

ilar level. This can be leveraged to refactor source code automatically, or to

parallelize and annotate source code.

A source-to-source compiler may optimize and transform on a higher-level of

abstraction, but is able to utilize the optimizations of a traditional compiler on
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the lower-level of abstractions by compiling the generated code with a third-

party compiler.

The Insieme Compiler The Insieme Project organizes its compiler in a similar

way. INSPIRE is the intermediate representation, the Insieme Frontend con-

verts C/C++ based input codes into INSPIRE. The Insieme Backend sythesizes

from the INSPIRE representation the resulting target code in C/C++. The tar-

get code utilizes the Insieme Runtime System. Hence the Insieme Compiler is

a source-to-source compiler.

As implementing a C/C++ parsing frontend is hard, tedious and error-prone,

the Insieme Frontend relies on the Clang project [1] to parse C/C++ based

input codes. After the input code was parsed, the resulting abstract syntax tree

is converted into INSPIRE.

As part of this master thesis an existing C frontend was extended into a

frontend capable of handling C and C++ based input codes. This extension

required specification and implementation of the conversion of C++ specific ab-

stract syntax tree nodes into INSPIRE. Within this master thesis the conversion

from the Clang abstract syntax tree into INSPIRE is documented.

By extending the Insieme Frontend to support C++, the Insieme Compiler

is able to offer existing analyses and transformations not only to C input codes

but also to C++ input codes. Furthermore the support for C++ builds the

foundation to research C++ specific analyses and transformations within the

Insieme Compiler.

1.2 Related Work

Among the available conventional compilers and their infrastructures, GCC [2]

and LLVM [3] are two large open-source projects which offer a production quality

compiler.

• GCC - the GNU Compiler Collection, offers an open source production-

quality compiler. It is widely used in the Linux eco-system.

GCC uses several intermediate representations with different levels of ab-

straction: GCC uses different frontends for different languages. These

frontends lower their language into a language independent intermedi-

ate representation (IR) called GENERIC. This GENERIC AST is then

lowered further down into GIMPLE. GCC uses two kinds of GIMPLE,

a higher-level one which is produced after lowering GENERIC by the a

middle-end and a low-level GIMPLE which is generated by linearizing

control-flow structures used in high-level GIMPLE.
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The low-level GIMPLE is then rewritten into single static assignment

(SSA) form and translated into RTL (Register Transfer Language) which

is the very-low level IR used in the back-end to generate the target code.

In short, GCC uses as intermediate representations GENERIC - generated

by the front-ends, high-level and low-level GIMPLE - in the middle-end,

and RTL - in the back-end.

• LLVM offers an open source production-quality compiler infrastructure.

An important goal of the LLVM project is to offer a modular and reusable

compiler infrastructure. To achieve this goal LLVM restricts itself to only

one RISC-like intermediate representation - LLVM IR. It is based on 31

instructions and enforces SSA form with an infinite amount of registers.

A variety of frontends lower their input code into LLVM IR and after

running optimizations and transformation, a variety of backends generates

the target code.

Source-to-source Compilers Two exemplary production-quality source-to-

source compilers are the Clang project [1] and the Rose compiler project [4].

Each project uses a rather rich and detailed abstract syntax tree (AST) to

capture all the information of the given input code. This includes comments

and code formatting details to accurately reproduce the input code if necessary.

This can be leveraged for static analyzing or refactoring tools.

• Clang is the C language family frontend for the LLVM project. It parses

the input code into the Clang AST. Besides generating LLVM IR from the

Clang AST as target code it can also be used as source-to-source compiler

and generate code with a similar level of abstraction as the input code.

• ROSE is a research-oriented compiler project. It uses a commercial, ex-

ternal frontend, from EDG [5], and has its own abstract syntax tree -

Sage III also known as the ROSE IR. The goal of the ROSE project is in

providing an infrastructure for source-to-source and analysis tools.

1.3 Organization

This master thesis is structured into three chapters. In Chapter 2 we cover

the Insieme infrastructure consisting of the Insieme Compiler and the Insieme

Runtime System. We introduce INSPIRE (INSieme Parallel Intermediate REp-

resentation), the intermediate representation building the foundation of the In-

sieme Compiler and its components.
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The Insieme Frontend is covered in Chapter 3, it covers how the C/C++

input code is parsed into an abstract syntax tree, and converted into INSPIRE.

In Chapter 4 we detail how the conversion process for C/C++ can be altered

and adjusted to support further C/C++ based input languages. This includes

OpenMP, CILK, MPI and OpenCL. We also elaborate how the conversion of

additional C/C++ language standards such as C++11 can be supported by the

Insieme Frontend.

1.4 Contributions

The authors contributions were the extension of the existing C frontend based

on the Clang infrastructure to support C++. In the course of this work the

conversion of several C++ specific Clang AST nodes was specified and the

specification implemented.

To enable support for third-party libraries within the Insieme infrastructures

the author implemented an intercepting mechanism. This intercepting mech-

anism offers means to model code in IR interfacing third-party libraries. The

Interceptor utility and an accompanying plugin were created.

Another major contribution is this document, which provides documentation

of the Insieme Frontend itself.
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Chapter 2

Insieme Project

In this chapter we give a short introduction of the Insieme Compiler Project of

the Parallel and Distributed Systems Group at the University of Innsbruck. The

mission statement [6] for the Insieme Project on the Insieme Project homepage

[7] states:

The main goal of the Insieme project of the University of Innsbruck

is to research ways of automatically optimizing parallel programs

for homogeneous and heterogeneous multi-core architectures and to

provide a source-to-source compiler that offers such capabilities to

the user.

The following features are stated as essential in achieving this goal [6]:

• support for multiple programming languages and paradigms

such as C, Cilk, OpenMP, OpenCL and MPI (C++ support

is under development)

• multi-objective optimization techniques supporting objectives

such as execution time, energy consumption, resource usage

efficiency and computing costs

• the Insieme Runtime that provides an abstract interface to the

hardware infrastructure, offering online code tuning and steer-

ing, dynamic reconfiguration of hardware resources and moni-

toring of the application’s performance

• an input code independent Intermediate Representation (IN-

SPIRE) for developing new compiler techniques to optimize

parallel programs

These essential features are provided and implemented by the Insieme infras-

tructure consisting of the Insieme Compiler which is using the INSieme Parallel

Intermediate REpresentation and the Insieme Runtime System.

The support for “multiple programming lanuages and paradigms” is provided

by the Insieme Compiler. The Insieme Compiler is a source-to-source compiler,
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which takes parallel input codes based on C and C++ and produces output code

to utilize the Insieme Runtime System. Currently the supported parallel input

languages and standards are OpenMP, OpenCL, MPI and Cilk.

To enable extensive analyses and transformations in the Insieme Compiler,

the INSieme Parallel Intermediate REpresentation (INSPIRE) is used as in-

termediate representation (IR). The design goal of INSPIRE was to represent

all the different parallel input languages (OpenMP, OpenCL, MPI, Cilk) in an

unified intermediate representation. Further tools are provided by the Insieme

Compiler to perform and implement analyses and manipulations on INSPIRE.

The Insieme Runtime System has been designed to run parallel programs

represented in INSPIRE and translated by the Insieme Compiler. The Insieme

Runtime System offers means to monitor and interact with hardware, and en-

ables and manages parallel execution. These functions are utilized by the code

generated by the Insieme Compiler. The means of control offered by the Insieme

Runtime System are leveraged to optimize the various objectives (i.e. execution

time, energy consumption, efficient resource usage, computing costs) stated.

2.1 Insieme Infrastructure Overview

The Insieme infrastructure consists of the Insieme Compiler, the Insieme Run-

time System and the INSieme Parallel Intermediate REpresentation (INSPIRE).

The general structure of the infrastructure is fixed, e.g. the Insieme Frontend is

responsible for translating the input code into INSPIRE, the Insieme Analyses

& Transformations are utilized for optimizations, the Insieme Backend produces

the output code to be compiled with the backend compiler. Currently there are

two backends, one generating sequential code, and the other one generating code

utilizing the Insieme Runtime System. So the choice of the Insieme Backend,

influences the setup in respect to the Insieme Runtime System.

A typical setup of these components can be found in Figure 2.1. It is possible

to use the Insieme Compiler to translate the given input code from the C/C++

based input language (OpenMP, OpenCL, MPI, Cilk) into its INSPIRE repre-

sentation, run analyses and transformations on the INSPIRE representation and

produce output code to utilize the Insieme Runtime System. The produced out-

put code is compiled by the Backend Compiler, which is a secondary compiler -

usually GCC - into an executable binary.
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Figure 2.1: Typical setup of the Insieme infrastructure

2.2 Insieme Compiler Toolset Overview

The Insieme Compiler itself is organized in different components: Frontend,

Backend, Analyses/Transformations. A Driver is organizing and managing the

different stages of the compiler.

Frontend The Frontend is responsible for parsing the input code into an ab-

stract syntax tree (AST) and translating the AST into the semantically equiva-

lent INSPIRE representation. To avoid the tedious implementation of a C fam-

ily languages frontend, an external software was used. Clang [1] is the frontend

project used by the LLVM compiler project [3]. It combines a solid translation

of C/C++ languages into an AST with a powerful set of tools to manipulate

the AST. The Insieme Frontend is strongly influenced by the tools provided by

the Clang project.

Analyses/Transformations Offers the tools and means to implement and re-

search various analyses and transformations on the INSPIRE representation.

Backend From the INSPIRE representation the output code is created. The

Backend is capable of generating output code to utilize the Insieme Runtime

System or a sequential version.

(Compiler) Driver A Driver can be seen as the main interface for a end-user

(e.g. in the context of a compiler, a software developer) to the compiler’s tools.

It sets up the environment and conducts the sequence of the different stages of

the Insieme Compiler. As pictured in Figure 2.1, the Driver orchestrates the

Frontend, Analyses, Transformation and Backend. Depending on the intended

use, there can be different drivers for one compiler.
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One example for a driver is the insiemecc driver for the Insieme Compiler.

It can be used as a replacement for GCC or any other C/C++ compiler. It

collects all the inputs (e.g. input files, include paths, library locations), and

options (e.g. language standard for the input code, support for certain parallel

language APIs) needed for the compilation process.

2.3 Insieme Parallel Intermediate Representation

In the following section we present a short overview of the INSieme Parallel In-

termediate REpresentation (INSPIRE) according to Jordan et al. [8]. First we

present the design principles and basic concepts of INSPIRE, followed by sec-

tions on the sequential and parallel control flow, and support for object-oriented

languages. This section is only meant to introduce INSPIRE, its design and us-

age. Further we present an overview of C++ features and their representation

in INSPIRE. For a more complete introduction see Jordan et al. [8]. More de-

tails and reasoning on the design of INSPIRE can be found in Herbert Jordan’s

thesis [9]. The content of this section can be seen as an introductory summary

of Jordan et al. [8] and Herbert Jordan’s thesis [9].

2.3.1 Design and Basic Concepts

The INSieme Parallel Intermediate REpresentation (INSPIRE) is the interme-

diate representation used by the Insieme Compiler Infrastructure to represent

programs and run analyses and transformations to achieve optimizations. The

intermediate representation is defined over an “extensible, high-level intermedi-

ate language comprising explicit parallel constructs to unify the representation

of heterogeneous parallel codes” [8]. As stated in Jordan et al. [8] and Herbert

Jordan’s thesis [9] an intermediate representation should be expressive, analyz-

able, transformable and extensible. Some of these criterias conflict with each

other. Thus for INSPIRE were five main design principles derived:

Explicit - INSPIRE shall be explicit in all important concepts, e.g. parallelism

and memory management, to simplify analyses and enable transforma-

tions.

Unified - INSPIRE shall represent different input language constructs with the

same meaning in the same constructs. This results in one formalism to

represent different parallel input languages such as OpenMP, Cilk, MPI,

OpenCL. This means that if the input languages use different constructs

to express the same meaning, then the resulting INSPIRE representation

should be the same for all input languages. The different input languages
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vary in the way they are implemented, for example OpenMP uses compiler

directives (pragmas) and a library, Cilk is a language extension to C/C++

and implements their parallelism by using additional keywords, MPI uses

libraries to implement the parallelism, and OpenCL uses libraries and Just-

In-Time compilation. INSPIRE defines a parallel model which is capable

to cover all the input languages and their formalism for parallel control

flow. All these varying approaches need to be recognized by the Frontend

and translated into the corresponding INSPIRE constructs.

Simple - INSPIRE shall have constructs with a precise and non-overloaded in-

terpretation.

Modular - INSPIRE shall offer a fixed language core and means to define ex-

tensions. These extensions are defined within the language and not its

implementation.

Compact - INSPIRE shall have as few constructs as necessary.

Based on these design principles, INSPIRE was designed with influences from

functional programming languages and formal specification languages. From

functional programming languages the property of functions are first-class citi-

zens, thus powerful functional composition is taken and from formal specification

languages the concept of abstract types and operators over such abstract types

is inherited. The type system offers type variables to enable generic functions

and abstract types. With these abstract types INSPIRE represents primitive

types, basic data structures and interfaces for external libaries. Furthermore

additional abstract types can be added without modifications on the language

itself.

INSPIRE is defined in two components: the language core and extensions.

The language core covers a fixed set of primitives: types, expressions and

statement constructs, also it specifies the deduction of types, composition and

evaluation-order of expressions, statement processing and variable scope.

Based on the language core, extensions can be defined. Either by using ab-

stract constructs, or - preferably - by composing already defined constructs into

derived constructs. When abstract constructs are used, the utilities handling IN-

SPIRE (e.g. Analysis, Transformations, the Backend), need to interpret them

correctly.

The data structure of INSPIRE is again influenced by formal and functional

languages and their self-contained structure. Logically INSPIRE is a tree struc-

ture without cross or back edges. The overall structure of a resulting INSPIRE

tree is not reflecting the organization of the input source files but rather the
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execution of the code. Hence the root node of the tree represents the execution

of a code fragment, typically the main function of a program or separate libary

functions. In addition an INSPIRE tree stores the expression representing the

target function for function calls right at the call site. This results in remov-

ing the distinction made by C/C++ between translation units or header and

implementation files. Due to this approach INSPIRE allows to facilitate con-

text sensitive or whole-program optimizations. As this self-contained structure

would require huge memory due to the duplication of functions and types the

physical representation of the logical INSPIRE tree is a DAG with node sharing.

INSPIRE is only focused on the semantic aspect of a program. To provide

additional information (e.g. analysis results, loop-scheduling policies) every IR

node can be annotated with generic information. These annotations can for-

ward meta-information to the various stages of the compiler for example the

analysis results to the Transformation stage, or loop-scheduling information to

the Runtime System.

2.3.2 Sequential control flow

Here we list the constructs used within INSPIRE to represent sequential control

flow, as presented in Jordan et al. [8] and Herbert Jordan’s thesis [9].

Types

To define types in INSPIRE the following constructors are offered. The actual

definitions of these constructors are presented in Jordan et al. [8]. Primitive

types like boolean (bool), signed 4-byte integer (int〈4〉), or double (real〈8〉) are

defined using parametrized abstract types. Besides such primitive types, basic

data structures are also defined with parametrized abstract types. For example

dynamically sized array of booleans - array〈bool〉 - or statically sized vector of

integers - vector〈int〈4〉〉. Then there are type constructors to construct struct,

union, function, and closure types. To define generic types type variables can

be used. Typically we use greek letters (α, β) or ’a, ’b as identifiers for type

variables. Furthermore there is a constructor to define recursive types.

Expressions

To model data and control flow the constructors for variables, literals and call

expressions are provided. There are four expressions to construct struct, union,

function, closure values. A literal is a typed constant in INSPIRE. This can be

utilized to introduce an abstract function or operator by using a literal with a

function type. When generic functions are invoked using a call expression, the
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type of the generic function is instantiated according to the arguments. For all

expressions a type is deduced with inductive type deduction rules.

Statement

In INSPIRE every expression is a statement. Furthermore there are eight state-

ments typically found in imperative languages: compound, variable declaration,

if, while, for, return, break, continue.

2.3.3 Extension for Mutable State

Until now we only described and used the language core and its pure features i.e.

side-effect-free features, which imply immutable data. As the input language

(i.e. C/C++) needs mutable state we need a way to model it in INSPIRE.

The language core is extended by using the abstract generic types and generic

functions with the reference type: ref〈α〉. Here α is a type variable. A value of

this type represents a reference to a memory location containing a value of type

α. Such a memory location represents a C/C++ variable of the given type. To

operate on references several operators are defined. An incomplete list of the

available operators is given in Table 2.1. Additionally to the operators shown

in the table comparison operators are provided.

Operator Type Description

ref.var (type〈α〉)→ ref〈α〉 allocation of stack memory

ref.new (type〈α〉)→ ref〈α〉 allocation of heap memory

ref.delete (ref〈α〉)→ unit
deallocation of heap mem-
ory

ref.deref (ref〈α〉)→ α
read value from memory
location

ref.assign (ref〈α〉, α)→ unit
update/assign value in
memory location

ref.reinterpret (ref〈α〉, type〈β〉)→ ref〈β〉 casting memory location
of type α to type β

Table 2.1: Operators of ref extension

Only ref.var and ref.new operators can allocate memory, either bound to

the current scope’s stack or to the heap. The type〈α〉 is a generic type used to

specify the type of the memory location to allocate. The ref.assign operator

is the only operator able to mutate the state of a memory location.

With references the requirement to differ between r-values and l-value is re-

moved as these two cases can be distinguished by the type. In C the bool type
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can be a mutable memory location (an l-value) as well as the result from an

operation (an r-value). In INSPIRE the first would be an expression of type

ref〈bool〉 while the second would be a value of type bool.

To model a C/C++ variable of a constant type (e.g. const bool) we set

the kind of the ref type to source thus it is then called a src type. Such a

src reference models a read-only memory location. Furthermore the kind of ref

type can be set to sink, which is than a write-only ref and is called a sink. For

the sink type there is no equivalent in C/C++.

2.3.4 Extension for Containers

Another use of the abstract generic types is the support for container types like

arrays, lists, and vectors. In INSPIRE the abstract generic type array〈α〉 repre-

sents a dynamically sized array with elements of type α. Besides the dynamically

sized array INSPIRE has an extension to model statically sized vectors modeled

as the abstract generic type vector〈α,#elem〉 which represents a statically sized

vector of size #elem with elements of type α. Accompaning the generic types

are operators to manipulate and access these containers.

Operator Type Description

array.create (type〈α〉, uint〈8〉)→ array〈α〉
creates an (immutable) ar-
ray with the given number
of undefined elements

array.elem (array〈α〉, uint〈8〉)→ α
obtains the value at a
given index position

array.ref.elem (ref〈array〈α〉〉, uint〈8〉)→ ref〈α〉 accessing an element of an
mutable array

Table 2.2: Operators on array container

In general the result of the array.create operator will be assigned to an ref-

erence refering to a memory location holding an element of array type, i.e. a

variable of type ref〈array〈α〉〉. Access to an element of such an mutable array

the array.ref.elem operator is used, this obtains a reference to the adressed el-

ement which can than be read with the ref.deref operator or updated with the

ref.assign operator.

Similar operators as for the array type exist for the vector type.
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2.3.5 Parallel Control Flow

To model the parallel control flow INSPIRE defines a parallel model based on

recursively nested thread groups, and explicit parallel constructs like jobs, spawn,

merge, pfor. With this parallel model INSPIRE is able to represent the various

input languages (OpenMP, Cilk, MPI, OpenCL) with one unified formalism.

More details on the parallel model can be found in Herbert Jordan’s thesis [9]

and Peter Thoman’s thesis [10].

2.3.6 Support for object-oriented languages

INSPIRE provides additional constructs to represent object-oriented features

like inheritance relationships for types, and means to represent constructors,

destructors and member functions.

The design objective to be explicit was dropped for several features found in

C++ as it turned out to be to ambitious to represent every implicit semantical

detail of C++ explicitly in INSPIRE. Some of the features which were kept

implicit e.g. implicit life-cycle management of objects – no explicit triggering of

the destructor of an variable at the end of its scope, implicit copy constructors

for passing arguments by value.

Then again several of the implicit features of C++ are made explicit e.g.

constructor invocations, virtual functions, implicit type conversions, overloading

of operators, memory management.

Several features of C++ were omitted in INSPIRE as they were found to be

not relevant for the semantics of the program, e.g. access modifiers (private/pro-

tected/public) – everything is public, names and namespaces, translation units,

split up of header/implementation. These features exist either for the conve-

nience of the user or for increasing the users productivity.

An important reason for the success and wide application of C++ is its sup-

port for libraries and their smooth integration into the users code. An important

example for such a library is the STL providing the user with standard imple-

mentations for e.g. containers, algorithms and IO. Thus for INSPIRE it was

an important goal to keep the ability to interface C++ libraries provided by a

third-party without the need to translate these libraries into INSPIRE.

Instead of modelling the structure of a program, i.e. how the program is

organized into translation units, and header or implementation files, INSPIRE

models the actual execution. This results in the fact that only code which is

actually executed is represented in an INSPIRE representation of an program.

In some cases a C++ class provides member functions which are not invoked

explicitly in the user code. One example are copy constructors – which are

invoked implicitly when passing or returning a value to a function but are rarely
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invoked explicitly by the users code. Another example is the requirement of some

containers that the object it stores provides certain comparison operators to offer

sorting utilities. Again these operators might not be invoked explicitly from the

users code but inside the third-party library providing the container. As these

member functions might not be invoked explicitly, they might not be covered

by the INSPIRE representation of the code, and therefore lost. To solve the

issue with such possibly implicit features and keep the compatibility with such

libraries and cover all the member functions, the ClassMetaInfo was introduced.

It collects all member functions (e.g. constructors, destructor, (virtual) member

functions, operators) and attaches them as an annotation, to the class type. The

Backend is responsible to generate output code for the functions present in the

ClassMetaInfo.

2.4 Insieme Runtime System

The Insieme Runtime System is the main target of code generated by the In-

sieme Compiler, and an essential part of the Insieme Infrastructure, hence it is

introduce here. For a complete introduction and greater details on the Insieme

Runtime System see the dissertation of Peter Thoman [10].

The parallel programs generated by the Insieme Compiler and run with the

Insieme Runtime System, allows those programs to interact with and manage the

hardware they are run on, and enable and manage their parallel execution. With

the Insieme Runtime System the executed program is able to leverage parallelism

on coarse and fine-grained level. The generated code maps the INSPIRE parallel

model to the program model provided by the Insieme Runtime System.
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Chapter 3

Insieme Frontend

3.1 Overview

This chapter details the conversion process for C/C++ input codes into the IN-

SPIRE representation. The result of this conversion process is the intermediate

representation (IR) of the given input codes in INSPIRE. Throughout this mas-

ter thesis the term IR is used for the intermediate representation of the input

codes in INSPIRE.

In Figure 3.1 we illustrate the overall architecture of the Insieme Compiler

with emphasis on the Insieme Frontend. After the Insieme Frontend completed

its conversion process, the resulting IR is stored in an IRProgram - a container

storing the entry points of the input code (e.g. the main function) and their

corresponding IR - the INSPIRE tree. In the Insieme Compiler, this IRProgram

is passed on to the subsequent stages of Analyses/Transformations and finally

the Backend is responsible of generating output C/C++ code.

Input 
Code
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Transformations

Output
Code

In
si

em
e

B
ac

ke
nd

Source

Header

Insieme Frontend
ConversionJob

C
on

ve
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( IRProgram )

IR
Translation
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Figure 3.1: Overview of the Insieme Compiler

We start by outlining the whole conversion process and the involved compo-

nents as pictured in Figure 3.2. Following this overview we detail the main com-

ponents involved in the conversion: Section 3.2 covers the Clang AST, Section

3.3 details the Converter and in Section 3.4 the IRTranslationUnit is explained.

The Driver is the interface to the user and responsible for preparing and

managing the different stages of the Insieme Compiler. After the Driver collected
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Figure 3.2: Processing a ConversionJob

all the user input, a ConversionJob is set-up with all the inputs relevant for

parsing and converting the given input code. This includes amongst other:

source code files, include directories, and flags specifying the input language

(i.e. C/C++, OpenMP, Cilk, MPI, or OpenCL). A ConversionJob stores all

these user inputs and manages the conversion from C/C++ into INSPIRE.

Source files and translation units First a short overview on the structure of

C/C++ programs: a C/C++ program is structured in source files and header

files. The header files typically declare the interface to an external library or

a component of the program. These header files are referenced by the source

file with the #include directive of the preprocessor. The preprocessor knows

how to search the header file in the include directories specified by the user.

After preprocessing a translation unit is formed that contains the contents of

the source file and all its included headers. One such translation unit can then

be compiled into one object file, resulting in a library, or an executable. Simply

put, a translation unit is a source file and its included header files.

For preprocessing and parsing, the Insieme Frontend uses the Clang Project

[1]. Thus we leverage the abstract syntax tree used by the Clang project: the

Clang AST. To support the different parallel input languages (e.g. OpenMP,

Cilk, MPI, OpenCL) we need Clang to be able to preprocess and parse them.

Now to the actual conversion process from C/C++ to INSPIRE. This process

can be split into two steps:

C/C++ to Clang AST The first conversion step, from C/C++ source code to

the Clang AST, is handled in the Insieme Frontend by the Translatio-
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nUnit component. For each C/C++ translation unit there is one single

TranslationUnit instance. Such a TranslationUnit sets up the Clang in-

frastructure needed to preprocess and parse the given C/C++ translation

unit into its Clang AST.

Clang AST to INSPIRE The second conversion step, from the Clang AST to

INSPIRE, is handled by the Converter components. The basic nodes of

the Clang AST describe declarations, statements, expressions, and types.

These basic nodes are handled by separate Converters. To ease the tran-

sition from the translation unit oriented approach used by C/C++ and

Clang AST to the execution oriented approach used by INSPIRE we in-

troduced the IRTranslationUnit component. An IRTranslationUnit stores

a symbolic form of INSPIRE. This symbolic IR relaxes the self-contained

property of the logical INSPIRE by introducing symbols for types (i.e. an

abstract type) and functions (i.e. abstract function) to be used instead

of the actual implementation of these types and functions. For example

whenever there is a call to a function instead of the implementation (i.e. an

INSPIRE expression) we use the symbol. This symbolic form of INSPIRE

is only used in the Frontend and assists with the resolution of recursive

types and functions. From the symbolic IR stored in the IRTranslatio-

nUnit the final IRProgram is resolved.

As a C/C++ program is usually composed by multiple translation units, the

ConversionJob converts every single translation unit into its corresponding IR-

TranslationUnit. At the end of the conversion process all the IRTranslationUnits

are merged into one single IRTranslationUnit. That single IRTranslationUnit is

then resolved into the IRProgram.

Program representations and their structure A different view on this process

gives Figure 3.3, illustrating the different program representations and their

structure. Throughout the conversion process, C/C++ source code, Clang AST,

symbolic INSPIRE, and INSPIRE are used as program representation. In Figure

3.3 (a) we see two separate source files, after preprocessing, i.e. translation units.

These two translation units are parsed into two Clang ASTs in Figure 3.3 (b) and

converted into two separate IRTranslationUnits in Figure 3.3 (c). After merging

the IRTranslationUnits, they are resolved into the IRProgram. Figure 3.3 (d)

shows the logical structure, and Figure 3.3 (e) shows the physical structure of

INSPIRE.

Details on the structure of Clang AST are presented in Section 3.2. The con-

version steps for the Clang AST nodes into the symbolic form of INSPIRE are
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given in Section 3.3. The logical and physical structure of INSPIRE were intro-

duced in Section 2.3. In Section 3.4 we detail the structure of IRTranslationUnit

and how to resolve the symbolic INSPIRE into the logical INSPIRE.

TranslationUnitDecl
(file 1)

/*file 2*/
int f(...);
int g(...);

void main() {
  g(...);
  f(...);
}

IRTranslationUnit
(file 1)

IRTranslationUnit
(file 2)

...

f

...

g

lit f lit g

...

main

lit glit f

... ...

gf

f

...

g

...

var g
f

...

...

main

g

...

var g
f

...

main

...

main
/*file 1*/

int f(...) { 
… 
}

int g(...) {
...; g(...);
f(...);...;
}

gf

...

main

TranslationUnitDecl
(file 2)

(a)
source code

(b)
Clang AST

(c)
INSPIRE (symbolic)

(d)
INSPIRE (logical)

(e)
INSPIRE (physical)

Figure 3.3: Structures of different representations

To support the various parallel input languages the conversion process has to

be adapted to the specific needs. We provide a plugin system which is able to

alter the conversion in critical points like the set-up of the Clang infrastructure

itself or in the Converters of the Clang AST. The implementation of this plugin

system is detailed in the master thesis of Stefan Moosbrugger [11].

Details on the support and conversion process for the various sequential and

parallel input languages and APIs are discussed in Chapter 4.

3.2 Clang AST

3.2.1 Overview

For preprocessing and parsing the given C/C++ input codes we leverage the

Clang project [1] and its abstract syntax tree – the Clang AST. This section

covers the conversion of one C/C++ input translation unit into its corresponding

Clang AST. First we give a short introduction of the Clang Project, then a short

overview of the setup of the Clang infrastructure in a TranslationUnit. The

main part is an introduction of the Clang AST and its main nodes describing

declarations, statements, expression and types. The goal of this section is not

to explain the Clang AST in full detail but to give a basic understanding of
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the nodes and how the Clang AST is structured. This basic understanding

is needed for Section 3.3, describing the conversion from the Clang AST to

INSPIRE. The Clang project provides a more complete introduction [12] and a

extensive documentation [13] of the Clang AST and its many different kinds of

nodes.

3.2.2 The Clang Project

The goal of the Clang project is to build a frontend for the LLVM Project[3]

supporting the C language family. As stated in the Clang user manual [14], the

C language family includes C/C++ and Objective-C/C++ and various dialects.

The Clang Project aims to provide a library-based architecture to be utilized in

diverse utilities and applications which offer fast compilation and low memory

consumption.

Currently the Insieme Project only targets C/C++ input codes therefore the

Insieme Frontend is only utilizing the C/C++ nodes of the Clang AST.

3.2.3 Setup of the Clang Infrastructure

For each translation unit of the input code we setup a TranslationUnit object,

which is responsible for parsing the given translation unit into the Clang AST.

The TranslationUnit object sets up the Clang infrastructure with the given

translation unit and configures it with the additionally user-provided options.

These options include for example the specific input language (e.g. C or C++),

the language standard, include directories, or preprocessor macro definitions.

When the setup is finished, the input code is preprocessed and parsed, result-

ing in a Clang AST.

3.2.4 Clang AST nodes

The nodes of the Clang AST are organized in multiple class hierarchies, which

do not share a common base class. The basic nodes of the Clang AST are

Decl (i.e. a declaration), Stmt (i.e. a statement), Expr (i.e. a expression)

and Type (i.e. a type). These basic nodes are the base classes for rather large

class hierarchies. Beside these basic nodes, and their rather large hierarchies,

plenty of nodes exist which are part of no hierarchy or only a small hierarchy.

Use cases of such smaller hierarchies would be modelling inheritance relation

of classes or modelling templates. Nodes which are specifically used to support

a certain language (e.g. C, C++, Objective-C/C++) have a prefix to indicate

this. Nodes only used for C++ use CXX as prefix. In the following, we present an
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incomplete selection of nodes. For a complete list of the available nodes check

the Clang AST documentation [13].

Declarations

Declarations are modelled in the Decl node. Some Decl nodes inherit from

DeclContext – they act as declaration context for other declarations, or in other

words: declarations which can contain other declarations. Examples for such

nodes would be the TranslationUnitDecl node or the FunctionDecl node. An

example for a declaration which is not a declaration context for other declara-

tions would be a variable declaration.

As the Clang AST has numerous declaration nodes, inheriting from the Decl

node, we present only an incomplete list with the more relevant nodes for the

Insieme Frontend:

• TranslationUnitDecl is the main entry into the Clang AST of one

C/C++ translation unit (i.e. a preprocessed input file with all its headers),

from there we can traverse the whole Clang AST. TranslationUnitDecl

is a DeclContext as it can contain further declarations like: function

declarations, type declarations, or declarations of global variables.

• FunctionDecl nodes model function declarations. The child nodes of a

FunctionDecl node model the various aspects of a function declaration

or function definition like the function parameters, or the function body.

From FunctionDecl the nodes for C++ methods (CXXMethodDecl), con-

structors (CXXConstructorDecl) and destructors (CXXDestructorDecl)

are derived.

• VarDecl nodes model variable declarations and their requirements

for memory allocation. The node modelling function parameters

(ParamVarDecl) inherits from VarDecl.

• TypeDecl nodes model the declaration and layout of (user-defined) types.

The nodes for class/struct types (CXXRecordDecl) or enumeration types

(EnumDecl) as well as typedef’s (TypedefDecl) are derived from TypeDecl.

Statements

Statements are modelled in the Stmt node. Every Stmt node provides means to

access all it’s children - substatements or subexpressions. In general, statement

nodes are used for both C and C++. Following is an incomplete list of the

available Stmt nodes:
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CompoundStmt - a block of statements: {...}. The statements inside the block

are organized as a list of Stmt nodes.

IfStmt - an if statement, child nodes are for example the then and else branch

and the condition expression.

ForStmt - a for loop, child nodes are for example the initialization statement,

the condition, the increment expression and of course the loop body

WhileStmt - a while loop, child nodes are for example the condition, and of

course the loop body

DoStmt - a do-while loop, similar to the WhileStmt node. The child nodes are

for example the condition, and of course the loop body

ReturnStmt - a return statement

Further Stmt nodes would be the ContinueStmt, BreakStmt, GotoStmt,

SwitchStmt. There is only a limited number of C++ specific Stmt nodes such

as:

CXXTryStmt - a try block

CXXCatchStmt - a catch block

Expressions

Expressions are modelled in the Expr node, which is a subclass of Stmt. This

means a Expr node can be used everywhere a Stmt node could be used.

In general expression nodes are used for both C and C++.

CallExpr - a call to a function. Its child nodes describe the callee and its

arguments.

DeclRefExpr - a Expr node referring to a declaration like a function or variable,

in other words the usage of a previously declared C/C++ symbol. For

example the callee of a function call is typically a DeclRefExpr.

UnaryOperator - the various unary operators and the expression it is applied

on as a child

BinaryOperator - the various binary operators and the expressions, left-hand-

side and right-hand-side, they are applied to, as children

There are several C++ specific Expr nodes:

CXXMemberCallExpr - inherited from the CallExpr node, models a call to a

C++ member function. Child nodes are the callee and its arguments, as

well as the this-object the member function is called on.
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CXXOperatorCallExpr - inherited from the CallExpr node, models a call to

overloaded operator. For overloaded operators written as member func-

tion, is the this-object also a child node.

CXXConstructExpr - a constructor call. Its child nodes describe the callee and

its arguments.

CXXThisExpr - the this keyword. Represents the this-object.

CXXNewExpr/CXXDeleteExpr - models new/new[] and delete/delete[] oper-

ators for memory allocation and deallocation. For class types it has child

nodes to the constructor and destructor.

CXXThrowExpr - models the throw expression for exceptions

Types

Types are modelled in the Type node. In general type nodes are used for both

C and C++ like:

BuiltinType - builtin types like integers (e.g. short, int), floating point

(double, float), character char, void or boolean (bool).

PointerType - pointer types, like <type>*. Where <type> is a child node of

the PointerType node of the type the pointer points to.

EnumType - enumeration types.

RecordType - unions, classes and struct types.

FunctionType - function types, their return type and possibly the parameter

types.

There are several C++ specific type nodes. Some will only be used if a specific

language standard is used:

ReferenceType - models the C++ reference type

AutoType - models the C++11 auto type

MemberPointerType - models a pointer to a member of a C++ class or struct,

can be a data member or a function member

Template. . . Type - several nodes to model template types
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Type Qualifiers Additionally to the types, C/C++ offers qualifiers (e.g.

const, volatile) for types. These qualifiers influence details on the memory

allocation or the allowed useage for a particular value of that qualified type.

For reasons of efficiency, Clang uses for types with a type-qualifier (e.g. const,

volatile) not individual nodes but uses an additional node only used for

modelling the qualifiers: QualType. The actual type is a child of the QualType

node. This reduces the number of type nodes as their is no need to represent

types like int, const int, volatile int, const volatile int in their own

nodes but by using a QualType node and the underlying type as one of its

children.

3.2.5 Example

A simple way to transform the Clang AST into a textual representation, is by

using the Clang compiler itself. With this command one gets the Clang AST of

the given input file: clang -Xclang -ast-dump <input file>.

The input translation unit shown in Listing 3.1 consists of two functions

i.e. func1 and func2. This results in the Clang AST given in Listing 3.2,

consisting of an TranslationUnitDecl and two FunctionDecl nodes for the

functions func1 and func2. Each of these functions bodies are represented as

a CompoundStmt and other Stmt nodes representing the statements inside the

functions bodies.

1 void func1 () {

2 int x;

3 int y = 1;

4 x = y+2;

5 }

6

7 void func2 () {

8 func1 ();

9 }

Listing 3.1: C function with a Call

3.3 Converting Clang AST nodes into INSPIRE

3.3.1 Overview

This section covers the conversion of the Clang AST, and its individual nodes,

into IR. The results of this conversion are stored in an IRTranslationUnit.

19



1 TranslationUnitDecl 0xb7390 <<invalid sloc >>

2 ... Clang internal declaraions ..

3 |-FunctionDecl 0xb7ce0 <c_ex1.c:1:1, line :5:1> func1 ’void ()’

4 | ‘-CompoundStmt 0xb7f78 <line :1:14 , line :5:1>

5 | |-DeclStmt 0xb7de8 <line :2:2, col:7>

6 | | ‘-VarDecl 0xb7d90 <col:2, col:6> x ’int’

7 | |-DeclStmt 0xb7e88 <line :3:2, col:11>

8 | | ‘-VarDecl 0xb7e10 <col:2, col:10> y ’int’

9 | | ‘-IntegerLiteral 0xb7e68 <col:10> ’int’ 1

10 | ‘-BinaryOperator 0xb7f50 <line :4:2, col:8> ’int’ ’=’

11 | |-DeclRefExpr 0xb7ea0 <col:2> ’int’ lvalue Var 0xb7d90 ’x’ ’int’

12 | ‘-BinaryOperator 0xb7f28 <col:6, col:8> ’int’ ’+’

13 | |-ImplicitCastExpr 0xb7f10 <col:6> ’int’ <LValueToRValue >

14 | | ‘-DeclRefExpr 0xb7ec8 <col:6> ’int’ lvalue Var 0xb7e10 ’y’ ’int’

15 | ‘-IntegerLiteral 0xb7ef0 <col:8> ’int’ 2

16 ‘-FunctionDecl 0xb7fd0 <line :7:1, line :9:1> func2 ’void ()’

17 ‘-CompoundStmt 0xff0b8 <line :7:14, line :9:1>

18 ‘-CallExpr 0xff090 <line :8:2, col:8> ’void’

19 ‘-ImplicitCastExpr 0xff078 <col:2> ’void (*)()’ <

FunctionToPointerDecay >

20 ‘-DeclRefExpr 0xb8070 <col:2> ’void ()’ Function 0xb7ce0 ’func1’ ’

void ()’

Listing 3.2: Simplified AST of example given in listing 3.1

For every basic node type (i.e. Decl, Stmt, Expr, Type), one such a Converter

or Visitor is implemented: DeclVisitor, StmtConverter, ExprConverter, and the

TypeConverter. The Converters use the Visitor-pattern to traverse the Clang

AST. The Converters implement visitor methods to convert the individual nodes

of the Clang AST. These visitor methods need to know how to traverse the

specific Clang AST node, i.e. which child nodes are available and how to access

them.

During the traversal of the Clang AST the active converter might change as

the visitor methods passes the conversion of a child node to responsible con-

verter. This means when during the conversion of a Stmt node the StmtCon-

verter encounters a child which is a Expr node, the conversion of the child node

- the Expr node - is handled by the ExprConverter.

In the following Section 3.3.2 we cover in detail how declarations are converted.

The three main declarations we need to convert are:

• TypeDecl - node for declarations of user-defined record types like struct,

class, or union and for typedefs

• FunctionDecl - node for declarations of functions, and as well for C++

member functions, constructors or destructors as well

• VarDecl - node for declarations of variables like parameters, global vari-

ables, and local variables
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The main entry point into the Clang AST is a TranslationUnitDecl.

First we convert all type declarations (TypeDecl), followed by the variable

declarations for global variables (VarDecl) and finally function declarations

(FunctionDecl). Variable declarations for parameters and local variables

(VarDecl) are converted ad-hoc during the traversal of the declaration state-

ment they are declared in.

Furthermore we present the Converters for the basic node types i.e. for Type

nodes - the TypeConverter in Section 3.3.3, for Stmt nodes - the StmtConverter

in Section 3.3.4 and for Expr nodes - the ExprConverter in Section 3.3.5.

As the Clang AST has a rather large number of nodes, we showcase only a

selection of the nodes for each basic node type.

DeclVisitor
TypeVisitor   GlobalVisitor   FunctionVisitor

StmtConverter

CompoundStmt
ReturnStmt

ForStmt
IfStmt

ContinueStmt
CXXTryStmt

...

ExprConverter

BinaryOperator
IntegerLiteral
FloatingLiteral

CallExpr
CXXConstructExpr

CXXMemberCallExpr
CXXThrowExpr

...

TypeConverter

BuiltinType
FunctionType
PointerType
ArrayType

RecordType
ReferenceType

...

INSIEME Core -- IR Toolbox
IRBuilder

IR Analysis/Transformations

Figure 3.4: Interaction between the main frontend components

In Figure 3.4 we give an overview of the main Frontend components - the dif-

ferent declaration visitors (TypeVisitor, FunctionVisitor, GlobalVisitor), Con-

verters (TypeConverter, StmtConverter, ExprConverter) and the Insieme Core

tools - interact.

The declarations encountered during the traversal of a TranslationUnitDecl

are visited by the declaration visitor (DeclVisitor). The child nodes of such

a declaration are then converted by the responsible Converter. For example

a function declaration has its body as a compound statement. Thus the con-

version of the compound statement is handed over to the StmtConverter. The
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same is true for expressions found in the body, they are handed over to the

ExprConverter, and types are converted by the TypeConverter.

The IR for the various nodes is generated with the help of the Insieme tool

box – the Insieme Core. The IRBuilder provides means to build up the various

IR statements, expressions and types. Besides that the Insieme Core provides

methods to analyse and transform IR fragments.

3.3.2 Converting Decl nodes

The conversion of Decl nodes starts with the traversal of the Clang AST at the

main entrypoint: a TranslationUnitDecl. We use a visitor for declarations

and declaration contexts. This visitor traverses to all child nodes which are

a Decl node. If a declaration is a declaration context (e.g. FunctionDecl,

NamespaceDecl, RecordDecl, TranslationUnitDecl) we recursively visit all

contained declarations.

Depending on the child nodes we are interested in, we implement certain

visitor methods. For example the TypeVisitor implements only the visitor

method for TypeDecls, and the FunctionVisitor only the visitor method for

FunctionDecls.

TranslationUnitDecl

(2) convert global 
VariableDecl

global VariableDeclTypeDecl

(1) convert TypeDecl

FunctionDecl

(3) convert 
FunctionDecl

Figure 3.5: Traversing a TranslationUnitDecl

As pictured in Figure 3.5 we start our conversion process by visiting first all

type declarations (TypeDecl) (1) (e.g. TypedefDecl, RecordDecl, EnumDecl).

Thus the visitor methods for these declarations are implemented. In that way

we have converted all user defined types in beforehand and can use them in the

subsequent conversion process. After converting all user-defined types we con-

tinue with all variable declarations (VarDecl) of global variables (2). Finally we

convert function declarations (FunctionDecl) (3). This includes C++ member

methods - CXXMethodDecl, constructors - CXXConstructorDecl and destructors

- CXXDestructorDecl.

The visitor methods handling these kinds of declarations forward the actual

conversion to separate conversion methods (convertTypeDecl, convertFunctionDecl,

convertGlobalVariable). These conversion methods expect a declaration node
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and return the corresponding IR representation. To alter the conversion the

plugin system can be utilized.

Symbolic IR For name-dependent declarations - such as user-defined types,

functions, global variables - we generate an IR symbol to be used throughout

the conversion process. The actual implementation of the declaration is stored

along with the symbol in the IRTranslationUnit.

For user defined types we use an IR generic type as symbol. The builtin types

like char, integer, floating point types are represented by the primitive IR types

and need no symbol.

For functions and global variables an IR literal with the correct IR type is

generated and used as a symbol. For functions we use the function name and

the function type for the symbol.

For global variables we extend the variables name by the input source file and

line position of the variable declaration in order to create a unique name and

avoid name collisions. This unique name, and the type of the global variable is

used for the symbol.

For all other variables we do not use a symbol but generate an IR variable with

the type of the variable declaration. The name of the variable is automatically

created. For convenience a NameAnnotation can be attached to provide the

variable name to the Backend.

Whenever the Clang AST is referring to a declaration, we use the IR sym-

bol instead of the actual implementation. For example see the details for the

conversion of a CallExpr node for the use of function symbols, or the TagType

node for the use of type symbols.

The resolution and resolving of the symbolic IR into the logical IR is shown

in Section 3.4.

Converting TypeDecl

The Clang AST has several nodes inheriting from TypeDecl. A major role

plays the TagDecl - modelling enums, classes, structs and unions - and the

TypedefDecl - modelling a typedef:

TagDecl - is a super class of the EnumDecl - for enum types - and RecordDecl

- for struct/class/union types. The actual conversion into an IR type is

handled the by the TypeConverter.

TypedefDecl - Typedefs are seen as syntactic sugar giving a different name

to a type. Thus we use the actual type. In case of an anonymous type

(i.e. enum, struct, class or union) we use the name from the typedef in
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the IR as symbol. The actual underlying Type node is converted by the

TypeConverter.

Such a TypeDecl is either named or anonymous. For an anonymous TypeDecl

we derive a name. That name is used to create a symbol - an IR generic type

- which is used throughout the conversion process. This symbol is stored in an

IRTranslationUnit along with the definition of the type. During the conversion

process we only use the symbol. The resulting symbol is stored in a type cache

to avoid multiple conversions of the same type.

Converting VarDecl

The conversion for variable declarations differs depending on the kind of the

variable. We distinguish between global variables and local variables.

• Global variables are converted into an IR literal (i.e. the symbol), and an

IR expression representing the initialization. The resulting IR literal is

stored in a cache to avoid multiple conversions. In the IRTranslationUnit

we store the IR literal for the global variable along with the initialization

expression. During the conversion process we only use the symbol. After

the conversion process is done, and all IRTranslationUnits are merged into

a single IRTranslationUnit, all the globals are prepended to the body of

the main entry point of the IRProgram (e.g. the main() function).

• Local variables are converted into an IR variable with the variables type

converted by the TypeConverter into an IR type.

• Static (local) variables are modeled in a special IR construct to repre-

sent the first initialization at the first execution of the function they are

declared in.

Only global variables are converted before the function declarations. Local

and static local variables are converted ad-hoc when they are encountered during

the conversion of the function declaration they are declared in. To avoid multiple

conversions of the same variable, we store the IR result of a variable (i.e. an IR

literal or IR variable) in a cache.

Mutable variables As in C/C++ variables are always mutable, we need to

represent this as well in IR. We use the IR extension type ref. This represents

the reference to an mutable memory location as introduced in Section 2.3. Hence

a mutable C/C++ variable is represented as an IR variable with a ref type. For

example a variable of type int has the IR type ref〈int〈4〉〉.
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Converting FunctionDecl

To convert a function declaration we need to convert the function’s type, its

parameters and the function body itself. These steps are pictured in Figure 3.6.

In IR we express a function declaration as a lambda expression. To refer to a

function, for example through a function call, we use during the conversion only

a symbol - an IR literal. Such a symbol is basically the name of the function and

its function type. After converting a function declaration we store the symbol

along with the implementation in the IRTranslationUnit. To avoid multiple

conversions of the same function declaration we use a cache to store the used

symbols.

TypeConverter

convert Variable Type

create IR Variable

(3) handle Function Parameter

(4) handle Function Body

(5) handle ClassMetaInfo for member 
function, constructor, destructor

(2) generate symbol

(1) convert FunctionType

StmtConverter

ExprConverter

convert FunctionDecl

(6) store symbol and 
implementation in 
IRTranslationUnit 

Figure 3.6: Converting a FunctionDecl

The conversion process for function declarations starts by converting the func-

tion type (1). The particular types for the return type and the parameters are

converted into IR types by the TypeConverter. In the case of a C++ member

functions we additionally need to extend the parameter list with the parameter

for the this-pointer, and what kind of member function they are e.g. a con-

structor, a destructor or an ordinary member function. All this results in an IR

function type.

For every function we generate a symbol - an IR literal - out of its name

and type (2). This symbol is stored in the IRTranslationUnit along with the
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functions definition. During the conversion process we use only the symbol

whenever that function is referenced (e.g. through a function call).

Next we convert the function parameters into IR variables (3). These variables

are only available in the functions scope.

Following, we continue with the conversion of the functions body (4). As a

function body is always a Clang CompoundStmt node, this conversion is handed

over to the StmtConverter.

To ensure that we are able to reinstanciate all member functions, constructors,

and destructor for a certain C++ class, we use the ClassMetaInfo annotation

(5). Such a ClassMetaInfo stores to a class type all the member functions,

constructors and destructor. Along with the used IR symbol we store the infor-

mation if a member functions was declared as virtual or const. The Class-

MetaInfo annotation is stored in the IRTranslationUnit, it gets attached to the

class type after resolving the symbol with the actual IR implementation in the

final resolution step.

Finally we store the symbol for the function declaration along with the func-

tions IR implementation in the IRTranslationUnit (6).

Special cases Some special cases and details are not pictured in Figure 3.6:

• Pure virtual Member function - for pure virtual (or abstract) member

functions we generate only a symbol - an IR literal. The correct imple-

mentation is provided by a super class of the member functions class type.

• this-parameter - C++ member functions, constructors and destructor

expect an implicit this-parameter - representing the object the member

function is acting on. Typically this is done by an additional parameter

- in the first position - of the member function type. In the converted

function body we use an IR literal to represent the this-variable, when

the this-parameter (an IR variable of the class type) is added to the

function type we replace the this-literal with the IR variable used as a

parameter.

• Extern functions - Extern functions only provide the functions prototype

and do not have a body. Due to this we can infer that some other trans-

lation unit or library provides the implementation of this function. Thus

we only generate an IR symbol with the function’s name and the func-

tion’s type. Additionally we annotate the symbol with the information

from which header file the declaration came. This IncludeAnnotation is

needed for the Backend to correctly include the header files for third-party

libraries. For more details on third-party libraries see Chapter 4.
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• Templated functions - Templated functions and member functions are han-

dled in the Clang AST by providing fully instantiated function (member

function) declarations. The handling of the IR symbol differs as the tem-

plate arguments are used in the name. Thus we do not need any special

treatment besides the name handling in order to convert them into IR.

Listing 3.3 shows a templated function and Listing 3.4 the (simplified -

some details are omitted, and the names might differ) resulting IR func-

tion. Notice the names, fun int, and fun float, of the generated IR func-

tion, representing the template argument.

1 template <T>

2 void fun(T par) { ... }

3 ...

4 fun <int >(1);

5 fun <float >(1.0);

6 ...

Listing 3.3: Templated C++ function

1 . . .
2 l e t = f u n i n t ( int<4> par ) −> u n i t { . . . }
3 l e t = f u n f l o a t ( r e a l<4> par ) −> u n i t { . . . }
4 . . .
5 f u n i n t ( 1 ) ;
6 f u n f l o a t ( 1 . 0 ) ;
7 . . .

Listing 3.4: IR struct for templated C++ function

3.3.3 Converting Type nodes

The conversion of Type nodes is implemented by the TypeConverter. It uses a

visitor pattern implemented by the TypeVisitor provided by the Clang project.

We implemented the actual conversion of the different nodes in the visitor meth-

ods. We will showcase only a selection of the type nodes the Clang AST provides

and we convert. The TypeConverter offers means to alter the conversion through

the plugin system. The Type nodes are converted into IR types. For user-defined

types (e.g. struct, class, union) symbols are used during the conversion process,

the actual implementation of these types is stored in the IRTranslationUnit.
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BuiltinTypes

The builtin types are converted into their corresponding primitive IR type:

• Character types - the basic char is represented in IR as a char. For

wide character support the IR type wchar is used with an additional type

parameter specifying the width (e.g. 16 or 32 bits).

• Integer types - signed integers (e.g. short, int, long, int128 t) are rep-

resented as int. For the unsigned types (e.g. unsigned short, unsigned

int, unsigned long, uint128 t) uint is used. An additional type pa-

rameter is used to specify the width in bytes. For example a short with

2 bytes - int〈2〉, and a unsigned int with 4 bytes - uint〈4〉.

• Floating point types - e.g float, double, long double are represented in

IR as real type with an additional type parameter specifying the width,

for float - real〈4〉, double - real〈8〉, long double - real〈16〉.

• Void type - represented in IR as unit.

• Boolean type - represented in IR as bool.

FunctionType

A FunctionType is converted into an IR function type. The return type, and

the parameter types are converted separately, and then put together into an IR

function type. In the special case of having only one parameter of type void

the parameter type is omitted in the resulting IR function type. For variadic

arguments, an IR abstract type is used (VarList).

For example a function expecting an integer and a float, without a return

value: in C/C++ void fun(int, float)) and in IR (int〈4〉, real〈4〉) -> unit.

The Clang AST makes no distinction between a function type for a C function

or for a C++ member function, constructor or destructor, but INSPIRE does.

INSPIRE uses an additional parameter for the IR function type to distinguish

between constructor, member functions, destructors, or plain functions.

ArrayType

We differ between arrays with a fixed size and arrays which are dynamically

sized.
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Fixed-size array Array types with a fixed size - i.e. the size is known at

compile-time - are represented as a ConstantArrayType node in the Clang AST.

These nodes are converted into an IR vector type, with the element type and

the fixed size as type parameters (e.g. vector〈elementType, size〉).
For a mutable variable of a fixed-sized array we use ref〈vector〈elementType,

size〉〉, which represents a mutable IR vector with elements of elementType.

Dynamically-sized array For dynamically-sized array types - i.e. the size

is not known at compile-time - the Clang AST uses three different nodes

(DependentSizeArrayType, IncompleteSizeArrayType, VariableArrayType).

These nodes are converted into an IR array type with the element type and

the dimension of the array as type parameters (e.g. array〈elementType,

dimension〉).
For a mutable variable of a dynamically-sized array we use ref〈array〈elementType,

dimension〉〉, which represents a mutable IR array with elements of elementType.

PointerType

A pointer type represents a reference to an entity of the referred type. For exam-

ple an integer pointer type (i.e. int*) refers to a memory location representing

an integer value (i.e. an int).

As a pointer type is a reference to a memory location, we use the IR ref type

to model C/C++ pointers types.

The referred type is converted on its own by the TypeConverter and is sub-

sequently used to build the correct IR representation of the given pointer type.

There are two options to model pointer types in IR, depending on if the

pointer is pointing to a scalar or an array:

Pointer-to-scalar A memory location of a scalar would be represented as

ref〈type〉. Thus a pointer type pointing to a scalar could be modeled as

ref〈ref〈type〉〉 as lvalue-type and ref〈type〉 as rvalue-type.

Pointer-to-array A memory location of an array would be represented as

ref〈array〈type,1〉〉. Thus a pointer type pointing to an array could be

modeled as ref〈ref〈array〈type,1〉〉〉 as lvalue-type and ref〈array〈type,1〉〉 as

rvalue-type.

But just from a C/C++ pointer type (e.g. int*) we can not determine if

the memory location the pointer type is referring to is a scalar (i.e. a int) or

an array (i.e. int[]). As we can model a scalar as an array with only one

element, the pointer-to-array is the more general representation. This results
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in all pointer types to be represented as ref〈array〈type,1〉〉 (rvalue). A pointer

variable is then represented in IR as ref〈ref〈array〈type,1〉〉〉 (lvalue).

Special cases In C/C++ we have two special cases of pointer types, the pointer

to a void type, and the pointer to a function type.

Void pointer – A void pointer type (i.e. void*) represents a reference to a

memory location containing a value of any (or unknown) type. In IR

we use the any type to represent any type. Thus the void pointer is

represented as ref〈any〉 (rvalue). Thus a variable of void pointer type is

represented as ref〈ref〈any〉〉 (lvalue).

To represent an array of void pointers we either use the IR vector or array

type. Depending on the array if it is dynamically-sized or fixed-sized:

• A dynamically-sized array of void pointers is represented as

ref〈ref〈array〈ref〈any〉,1〉〉〉.

• A fixed-sized array of void pointers is represented as ref〈vector〈ref〈any〉,size〉〉.

Function pointers – A function pointer type represents a reference to an actual

function. In Listing 3.5 a function pointer to a function expecting an

integer, and having no return value is shown.

1 void (*fp)(int);

Listing 3.5: C/C++ function pointer type example

Thus in IR we simply represent it as an IR function type (rvalue). A

variable of such a function pointer is then represented as ref〈function type〉
(lvalue).

The same applies for dynamically-sized and fixed-sized arrays of function

pointers:

• A dynamically-sized array of function pointers is represented as an

(mutable) array of functions. These are converted into an IR ar-

ray of function types: ref〈array〈function type,1〉〉. A variable of a

dynamically-sized array of function pointers is then represented as

ref〈ref〈array〈function type,1〉〉〉.

• A fixed-sized array of function pointers is represented as a vector of

functions: vector〈function type,#elem〉. A variable of a fixed-sized

array of function pointers is then represented as ref〈vector〈function

type,#elem〉〉.
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Pointer type lvalue rvalue

Pointer-to-scalar ref〈ref〈array〈type,1〉〉〉 ref〈array〈type,1〉〉
Pointer-to-array ref〈ref〈array〈type,1〉〉〉 ref〈array〈type,1〉〉

Void pointer (void*) ref〈any〉 ref〈ref〈any〉〉
Function pointer function type ref〈function type〉

Table 3.1: IR representations of pointer types

VectorType

The VectorType node represents a generic vector type used for SIMD opera-

tions. In IR we represent this as a (abstract) type: simd〈vector〈elementType,size〉〉.
Additionally to the type, we provide unary and binary operators to be used

with the IR type. For the conversion of the operators see the sections on

UnaryOperator 3.3.5 and BinaryOperator 3.3.5.

TagType

The TagType represents struct, class, union, enum types. They are organised

in subclasses, for struct, class, union a RecordType is used. For enumerations

(i.e. enum) an EnumType is used.

RecordType For struct/class types we create an IR struct type, consisting

of all the fields and their types (e.g. struct NAME { int〈4〉 field1; real〈4〉 field2;

}). The same holds for union types, for these we generate an IR union type,

with all the member fields (e.g. union NAME { int〈4〉 field1; float〈4〉 field2;}).
For C++ struct/class types, besides the member fields also the inheritance

relations to the types parents are added to the IR type.

We also generate an IR symbol for struct/class/union types - an IR generic

type. That symbol is used during the conversion process instead of the actual

type. The type implementation is stored along with its symbol in the IRTrans-

lationUnit. This symbol also eases the resolving of recursive types. The final

resolution of recursive structs is done when all IRTranslationUnits were merged

together. See Section 3.4 for details on the resolution process. Typically a

RecordType has a name, which is used for the IR symbol and the IR type

definition.

Recursive RecordType Example In Listing 3.6 we give a simple example of

a recursive struct type (e.g. used for a linked list) in C. From that struct
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type the StructType symbol is generated. This symbol is also used in the im-

plementation to model the pointer to another StructType object. This pointer

introduces the recursion in the type. In Listing 3.7 the corresponding entry in

the IRTranslationUnit is shown.

After the resolution of the symbols the correct IR recursive type is used for

such cases.

1 struct StructType {

2 int data;

3 StructType* next;

4 };

Listing 3.6: Simple recursive C/C++ struct type

1 StructType : struct StructType {
2 int<4> data ;
3 r e f<array<StructType ,1>> nex t ;
4 }

Listing 3.7: IRTranslationUnit entry of a simple recursive struct type

EnumType For enumeration (i.e. enum) types we generate an abstract IR type

which contains a unique name of the enum and all the enums constants with

their initial value. Enum constants are represented with an abstract IR type of

their own, consisting of the constants name and the constants value.

In Listing 3.8 the abstract IR type used to represent enum constants is shown.

constantName is a unique name of the constant, and constantValue is an integer

value representing the enum constants value.

1 i n s i e m e e n u m c o n s t a n t<constantName , constantValue>

Listing 3.8: IR construct for enum constant

In Listing 3.9 the abstract IR type used to represent enum types is shown.

enumName is the enum types name. The shown enum type consists of two

constants: someConstant1, someConstant2

Templated RecordType The Clang AST handles templated record types sim-

ilar to the way templated functions and member functions are treated, as de-

scribed in 3.3.2. The Clang AST provides already the fully instantiated type

declarations for templated record types.
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1 ins ieme enum<
2 enumName ,
3 i n s i e m e e n u m c o n s t a n t<someConstant1 , i n i t V a l u e 1 >,
4 i n s i e m e e n u m c o n s t a n t<someConstant2 , i n i t V a l u e 2>
5 >

Listing 3.9: IR construct for enum type

Listing 3.10 shows a templated C++ struct and Listing 3.11 the (simplified -

some details are omitted, and the names might differ) resulting IR. Notice the

member field elem which is already typed to an IR integer

1 template <T>

2 struct TemplatedStruct {

3 T elem;

4 ...

5 };

6 ...

7 TemplatedStruct <int > obj;

8 ...

Listing 3.10: Simple templated C++ struct

1 . . .
2 struct T e m p l a t e d S t r u c t i n t < elem : int<4> > o b j ;
3 . . .

Listing 3.11: IR struct for simple templated C++ struct

ReferenceType

ReferenceType is a C++ specific type node, modelling the reference type (e.g.

int&). This is converted into a special IR construct for references (Listing 3.12)

and constant references (Listing 3.13).

1 struct { r e f< ’ a> c p p r e f ; } ;

Listing 3.12: IR construct for C++ reference type

Additionally to these two constructs, operators are provided to manipulate

and access these constructs.
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1 struct { src< ’ a> c o n s t c p p r e f ; } ;

Listing 3.13: IR construct for C++ const reference type

This special IR construct is needed to keep compatibility with third-party

libraries, as the reference type could be represented with the ref -type as well,

similar to the pointer type. But this would result in the same code generated

by the Backend - most likely as a pointer- and if the third-party library expects

a reference the generated code would be incompatible.

3.3.4 Converting Stmt nodes

The conversion of Stmt nodes is implemented by the StmtConverter. As IN-

SPIRE provides similar constructs to represent statements as the nodes used by

the Clang AST, the conversion of statement nodes is rather straight forward.

The StmtConverter takes Clang AST Stmt nodes and converts them into IR

statements.

CompoundStmt

A Clang AST CompoundStmt is turned into an IR CompoundStmt. All the con-

tained statements are converted by the StmtConverter and put in the resulting

IR CompoundStmt.

IfStmt

A Clang AST IfStmt is turned into an IR IfStmt. The condition expression, the

then-branch and else-branch are converted separately and then put together

into the IR IfStmt. A cast is added for condition expressions which are not of

type bool.

In Listing 3.14 we give an example for a simple while-loop in C/C++, and in

Listing 3.15 we show the corresponding while-loop in IR.

ForStmt

A Clang AST ForStmt is turned into an IR ForStmt but only if it is a true for-

loop. This means it needs to be able to be converted into a count-controlled loop,

and have no early-exit, i.e. no break, or continue statement in the loop-body.

The children of a ForStmt node are converted by the corresponding converter.

The children include besides the loop-body itself, as well the possible initializa-

tion/condition and increment expressions.
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1 if(condition1) {

2 if(condition2) {

3 // firstIf then -body

4 }

5 } else {

6 if(condition3) {

7 // thirdIf then -body

8 } else {

9 // thirdIf else -body

10 }

11 }

Listing 3.14: If-statement in C/C++

1 i f ( c o n d i t i o n 1 ) {
2 i f ( c o n d i t i o n 2 ) {
3 // firstIf then -body

4 } ;
5 } else {
6 i f ( c o n d i t i o n 3 ) {
7 // thirdIf then -body

8 }
9 else {

10 // thirdIf else -body

11 } ;
12 } ;

Listing 3.15: If-statement from Listing 3.14 in IR

If the for-loop can not be turned into a count-controlled loop, it is rewritten

as a condition-controlled while-loop.

In Listing 3.16 we give an example for an for-loop which will be re-written

into an while-loop in IR. In Listing 3.17 we show the resulting while-loop in IR.

1 for(int i=0;i<10;i++) {

2 if(i%2 == 0) {

3 i++;

4 }

5 }

Listing 3.16: C/C++ For-Loop which gets rewritten into While-Loop
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1 {
2 r e f<int<4>> i = < i n i t code >;
3 i := 0 ;
4 while (∗ i <10) {
5 i f ( i % 2 == 0) {
6 i ++;
7 }
8 i ++;
9 } ;

10 } ;

Listing 3.17: Rewritten C/C++ While-loop from Listing 3.16 (in IR)

WhileStmt

A Clang AST WhileStmt is turned into an IR WhileStmt. The condition ex-

pression is converted by the ExprConverter, and the loop-body is converted

by the StmtConverter and represented as an IR CompoundStmt. For condition

expressions which are not of type bool a cast is added.

In Listing 3.18 we give an example for a simple while-loop in C/C++, and in

Listing 3.19 we show the corresponding while-loop in IR.

1 while(condition) {

2 // while -body

3 }

Listing 3.18: C/C++ While-Loop

1 while ( c o n d i t i o n ) {
2 // while -body

3 } ;

Listing 3.19: While-loop from Listing 3.18 in IR

Switch/Case

The Clang AST uses different nodes to model the switch - SwitchStmt- and

the case - SwitchCase.

The IR switch statement does not provide a fall-through if there is no break-

statement between different cases. To model this semantics in IR the statements

of consecutive cases are copied into their own IR cases. In IR a default case is
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always added, if there is no default-case in the input code, it is just an empty

IR CompoundStmt.

For example Listing 3.20 shows a switch/case with fall through, which turns

into the IR representation as given in Listing 3.21

1 switch(condition) {

2 case1:

3 case2: stmtOfCase2;

4 break;

5 }

Listing 3.20: Switch/Case with fall-through in C

1 switch ( c o n d i t i o n ) {
2 case1 : stmtOfCase2 ; break ;
3 case2 : stmtOfCase2 ; break ;
4 default : {}
5 }

Listing 3.21: Switch/Case with fall-through in IR

ContinueStmt

A Clang AST ContinueStmt is turned into an IR ContinueStmt.

BreakStmt

A Clang AST BreakStmt is turned into an IR BreakStmt.

ReturnStmt

A Clang AST ReturnStmt is turned into an IR ReturnStmt. The IR ReturnStmt

has the type of the return expr. If the return has no return expression, the IR

ReturnStmt is of type unit and returns a unit literal.

Exceptionhandling – try/catch

C/C++ exception handling is represented by the Clang AST with the

CXXTryStmt and the CXXCatchStmt nodes. These nodes are turned into

IR TryStmt and a CatchClause. The parameters of the catch statements are

represented as VarDecls and are converted similar to the parameters of a
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function declaration. The ellipsis (. . . ) indicating a catch-all is represented as

a parameter of type any.

The throw is an expression, thus it is explained in the following section when

the ExprConverter is detailed.

For an example see Listing 3.22. It shows a try-catch with a catch-all clause,

which turns into the IR representation as given in Listing 3.23.

1 try {

2 // try -body

3 } catch (...) {

4 // catch -all -body

5 }

Listing 3.22: Try-Catch with a catch-all caluse in C++

1 try {
2 // try-body

3 } catch ( any v1 ) {
4 // catch -all-body

5 }

Listing 3.23: Try-Catch with catch-all clause in IR

3.3.5 Converting Expr nodes

The conversion of Expr nodes is implemented by the ExprConverter. It uses

the visitor pattern implemented by the StmtVisitor (provided by the Clang

project). The TypeConverter offers means to alter the conversion - plugin sys-

tem. The Expr nodes are converted into IR expressions.

Literals

The Clang AST uses several nodes to represent literals of different types, e.g.

IntegerLiteral, FloatingLiteral, CharacterLiteral, StringLiteral.

• Integer literal - is converted into an IR literal of integer type (int with the

correct width).

• Floating-point literal - is converted into an IR literal of floating-point type

(real with the correct width).
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• Character literal - is converted into an IR literal of character type (char

with the correct width). Wide characters are converted into wchar with

their corresponding width.

• String literal - as a string literal can be seen as a fixed-sized array of

characters, string literals are converted into an IR literal with type

vector〈charType,size〉. As the string can use different character types we

can use for the charType a normal character type (i.e. char) or a wide

character type (i.e. wchar).

• Boolean literal - true and false are converted into IR literals of IR type

bool.

Casts

The Clang AST has several nodes to model casts. There are two categories

the implicit casts and the explicit cast. The explicit casts themselves are then

separated into different nodes to differ between an explicit C cast and explicit

C++ casts like static cast, and dynamic cast.

Additionally to these nodes the Clang AST uses an enumeration to differen-

tiate between the different kinds of cast. As there are over 50 different kinds of

casts used by the Clang AST we demonstrate only a few.

• Casts between Integrals, Floating point and boolean are realised with sep-

arate IR operators. For example a cast from an unsigned integer to a

signed integer the uint.to.int operator is used. This IR operator expects

a source type and a target precision. In the case for uint.to.int the pro-

totype is (uint〈#a〉,#b) -> int〈#b〉. Where #a and #b are integer type

parameters specifying the width of the type.

When the cast is between the same type but the precision changes, an IR

operator to adjust the precision is used. For examples from short to int

integers the int.precision operator is used.

In the case for int.precision the prototype is (int〈#a〉,#b) -> int〈#b〉.
Where #a and #b are integer type parameters specifying the width of the

type.

• Casts between pointer types are called by the Clang AST a BitCast.

These casts are modeled in general with the IR ref.reinterpret operator.

• Casts between integer and pointers are modeled by an IR int.to.ref and

and ref.to.int operator. As there are no negative integer values for pointers

this operator expects a uint.
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C++ specific casts Whenever possible we use the basic IR operators but for

certain cases we need to use special operators as there is additional implicit

behaviour beside the casting.

• A cast from a sub class to a super class is called by the Clang AST a

DerivedToBase. This can be modeled with the IR ref.narrow operator.

• A C++ dynamic cast - dynamic_cast<type> - is modeled with an IR

operator of its own: dynamic cast. This is needed as there is implicit

behaviour with the dynamic cast as it checks at runtime the types and if

the cast is legal, otherwise it throws an exception.

• A cast from a base to derived class type is typically done with a static

cast - static_cast<type>. This is modeled in IR with an operator of its

own: static cast.

MemberExpr

The Clang AST MemberExpr node models an access to a member of a record

type (like struct, union, or class). For this node we need to convert the

base object and construct the access to the member. Depending on the access

type either by-arrow (i.e. base->member) or by-dot (i.e. base.member) we use

different IR operators as the type of the base object differs.

Access-by-arrow In this case the base objects type is a pointer-type and, thus

we use the IR composite.ref.elem operator which is implemented with the

ref.narrow operator.

Access-by-dot In this case the base objects type is a value-type and use the IR

composite.member.access operator.

Binary Operators

C/C++ provides several different builtin binary operators:

• comparison operators (<, >, <=, >=, ==, !=, &&, ||)

• bitwise and shift operators (&, ^, |, <<, >>) and their compound as-

signment variant (&=, ^=, |=, <<=, >>=)

• arithmetic operators (+, -, *, /, %) compound assignment variant

(+=, -=, *=, /=, %=)

• assignment operator (=)
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For all this operators the IR provides an equivalent operator. The compound

(assignment) operators, i.e. operators of the form lhs op= rhs;, are rewritten

into lhs = lhs op rhs; in IR.

The generated IR not only depends of the operator but also depends on types

of the operands (lhs/rhs).

In general we convert first the left-hand-side and right-hand-side expressions

and then we convert the correct operator and generate a call-expression to the IR

operator with the left-hand-side and right-hand-side expressions as arguments.

Assignment In IR to model mutable variables we use the IR ref type. An

assignment of a value to a variable can only happen for variables of ref type.

For these assignments the IR ref.assign operator is used.

Pointer arithmetic The IR operator arrayView is used to model pointer arith-

metics. For pointer artihmetics we need one of the operands to be a pointer and

the operator needs to be an additive operator (+, -). A special case of pointer

arithmetics is the pointer distance. This occurs with a subtraction operator,

and both operands being pointers, i.e. int x = ptr1-ptr2; . This is modeled

with the IR arrayRefDistance operator.

Logical operators As C/C++ uses short-circuit evaluation for logical-and (i.e.

&&) and logical-or (i.e. ||), the IR operators need to represent this semantics.

This is implemented by lazy evaluating the right-hand-side operand.

Comparison operators For every primitive IR type, IR provides the corre-

sponding comparison operators.

Shift operators For every primitive IR type, IR provides the shift operators.

SIMD vector operators For vector types, we use distinct IR opera-

tors to model the possibility of running them on SIMD hardware (Sin-

gle Instruction, Multiple Data). We have SIMD operators for the bi-

nary operators (+, -, *, %, /, &, |, ^, <<, >>), comparison operators

(==, !=, <, >, <=, >=) and unary operators (~, -).

Unary Operators

For the C/C++ unary operators the IR provides an equivalent operator or we

use a IR construct to model the behaviour.
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Increment and decrement operators C/C++ provides a post-increment

and a post-decrement as well as a pre-increment and a pre-decrement op-

erator. To model the specific behaviour of these operators, that is for the

post-increment/decrement returning the value of the expression before the in-

crement/decrement occured and for the pre-increment/decrement returning the

value after the increment/decrement occured, we use the following constructs:

• Post-increment/decrement are modeled in IR explicitly as:

C/C++ operator IR construct

a++ tmp=a; a = a+1; tmp;

a-- tmp=a; a = a-1; tmp;

• Pre-increment/decrement are modeled in IR explicitly as:

C/C++ operator IR construct

++a a = a+1; a;

--a a = a-1; a;

A special case is when we have post/pre increment or decrement on pointer

types. In IR we represent this with the IR arrayView operator.

Other unary operators

• Bitwise not (~) - represented as an IR not operator. For vector types we

use a distinct SIMD operator.

• Logical not (!) - represented as an IR lnot operator, for non-boolean types

we need to cast the sub-expression, representing the operand, to the IR

bool type.

• Unary minus (-) - for vector types we use a distinct SIMD operator, for

expressions of all other types we get the sign inverted (basically subtracting

the expression from 0: -expr => 0 - expr)

• Dereference operator (*) - for IR array/vector types an array access of

element 0 is modeled. For the ref type we use the IR deref operator

• Address-of (&) - is represented by the IR scalar.to.array operator. As the

address-of operator returns the address as a pointer and pointer values are

represented in IR as ref〈array〈type,1〉〉. Thus the IR scalar.to.array oper-

ator turns a scalar (ref〈type〉) into an array/pointer (ref〈array〈type,1〉〉).
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DeclRefExpr

Whenever the Clang AST refers to another declaration a DeclRefExpr node

is used. For example a function call is modeled as a CallExpr node with a

DeclRefExpr pointing to the actual function declaration of the callee.

The same principle applies for variables, enum types or in the case of C++

for fields of structs and classes.

As we are using only IR symbols during the conversion we need to look up

the correct symbol for a given declaration or convert the given declaration into

an IR symbol:

• Function declarations are converted into an IR symbol, which is basically

an IR literal

• Global variable declarations for global variables are converted into an IR

literal

• Local variable declarations for local variables are converted into an IR

variable

CallExpr

The CallExpr represents all calls to normal functions. C++ member functions

are handled in a separate CXXMemberCallExpr node.

We need to convert the callee, the arguments and generate an IR call expres-

sion. The conversion of the callee is handled by the ExprConverter. Typically

the callee is a DeclRefExpr refering to a function declaration. This returns a

literal - the IR symbol - representing the callee. The arguments are as well

converted by the ExprConverter.

Listings 3.24 and 3.25 give a short example how a C function call is converted

into INSPIRE.

1 void func1(int arg1 , float arg2 , char arg3) {

2 // function body

3 }

4

5 ...

6 func1(1, 2.0, ’c’); //call to func1

7 ...

Listing 3.24: C function call
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The calls to the function func1 are converted into an IR call expression, calling

an IR literal , of type (int〈4〉, real〈4〉, char)− > unit, representing func1. The

associated implementation is stored in the IRTranslationUnit.

Listing 3.25 shows the IRTranslationUnit entry for the implementation and

the IR call expression.

1 //implementation stored in IRTranslationUnit

2 l e t func1 = ( int<4> v1 , r e a l<4> v2 , char v3 ) −> u n i t
3 { /* function body */ }
4 . . .
5 func1 (1 , 2 . 0 , ’ c ’ ) ;
6 . . .

Listing 3.25: Call to func1 from Listing 3.24 in IR

CXXMemberCallExpr

The CXXMemberCallExpr node inherits from the CallExpr node. Similar to the

CallExpr node we need to convert the callee, the arguments and build an IR

call expression.

Additionally we need to take care of the this-object. This means we need to

convert it and add it to the arguments. By convention is the this-object the

first parameter.

Listings 3.26 and 3.27 give a short example how a C++ member function call

is converted into INSPIRE.

1 void Class:: memberFunc(int arg1 , float arg2)

2 { // function body }

3 ...

4 //call to Class:: memberFunc

5 someClass_object.memberFunc (1, 2.0);

6 ...

Listing 3.26: C++ member function call

The calls to the member function memberFunc are converted into an IR call

expression, calling an IR literal, of type (ref〈Class〉, int〈4〉, real〈4〉, char)− >

unit, representing memberFunc. Note that the first parameter of the function

type represents the this-object. The associated implementation is stored in

the IRTranslationUnit. Additionally a member function entry is added to the

ClassMetaInfo for the Class type.
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Listing 3.27 shows the IRTranslationUnit entry for the implementation and

the IR call expression.

1 //implementation stored in IRTranslationUnit

2 l e t memberFun =
3 mfun C l as s th is : : ( int<4> v1 , r e a l<4> v2 ) −> u n i t
4 { /* function body */ }
5 . . .
6 //call to Class::memberFunc

7 memberFunc ( s o m e C l a s s o b j e c t , 1 , 2 . 0 ) ;
8 . . .

Listing 3.27: Call to Class::memberFunc from Listing 3.26 in IR

CXXOperatorCallExpr

The CXXOperatorCallExpr node inherits from the CallExpr node. C++ allows

to overload operators, this happens either as member function or as non-member

function. Depending on which case we have, the arguments (left-hand-side,

right-hand-side) and possibly the this-object need to correctly handled.

After converting the callee and the arguments we generate an IR CallExpres-

sion calling the converted callee with the converted arguments.

Operator as member function If the overloaded operator is written as member

function we need to handle the arguments correctly. This depends on what arity

the operator is, unary, binary or the special case of the function call operator

(i.e. operator().

Some operators are only allowed to be overloaded as member functions

(=, ->, (), [], ->*, new, new[], delete, delete[]).

• For unary operators there is only one argument which is then the this-

argument to the operator member function.

• For binary operators there are two arguments, the first one is seen as the

left-hand-side argument, this is the this-argument for the operator mem-

ber function. The second argument is then the right-hand-side argument

of the operator.

• For the function call operator there is a special case, as the first argument is

seen as the this-argument and all the other arguments are the arguments

of the function call.
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Operator as non-member function If the overloaded operator is written as

a non-member function the argument handling changes slightly, as there is no

this-argument to take care of. Thus the arguments are handled like it would

be with a normal function call. For unary operators the first argument is seen

as the right-hand-side (for unary prefix operator), and left-hand-side (for unary

postfix operator) of the operator. For binary operators the first argument is

seen as the left-hand-side and the second argument as the right-hand-side of the

operator.

CXXConstructExpr

A CXXConstructExpr node models the call to a C++ constructor in the Clang

AST.

Basically we do the same as for the member function call, convert the callee,

and generate an IR call expression with the converted arguments.

One big difference is: there is not yet a this object, as it is constructed

and initialized with the CXXConstructExpr. Thus the this-argument is an

undefined IR variable of the class type. This represents the memory location on

the stack.

Listings 3.28 and 3.29 give a short example how a C++ constructor call is

converted into INSPIRE.

1 void Class:: Class(int arg1 , float arg2)

2 { // constructor body }

3 ...

4 // constructor call instantiating an object

5 Class object(1, 2.0);

6 ...

Listing 3.28: C++ constructor call

The calls to the constructor for the class Class are converted into an IR call

expression, calling an IR literal, of type (ref〈Class〉, int〈4〉, real〈4〉)− > unit,

representing Class::Class constructor. Note that the first parameter of the

function type represents the this-object. The associated implementation is

stored in the IRTranslationUnit. Additionally a constructor entry is added to

the ClassMetaInfo for the Class type. As already explained the this-object

still needs to be created, so the at the call site (i.e. the IR call expression) we

create a undefined IR variable for the this-object.

Listing 3.29 shows the IRTranslationUnit entry for the implementation, the

IR call expression and the undefined IR variable as argument.
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1

2 l e t C l a s s =
3 c t o r C la s s th is : : ( int<4> v1 , r e a l<4> v2 ) −> u n i t
4 { //constructor body }

5 . . .
6 //constructor call instantiating an object

7 d e c l r e f<Class> o b j e c t =
8 C la s s (
9 //undefined IR variable for this -object

10 var ( undef ( C la s s ) ) ,
11 //other constructor arguments

12 1 , 2 .0
13 ) ;
14 . . .

Listing 3.29: Call to constructor of class Class from Listing 3.28 in IR

Non-userprovided constructors For non-userprovided default and copy-

constructors we use a dummy implementation which is ignored by the Backend,

i.e. the Backend does not generate code for the dummy implementation. As

the C++ standard [15] defines that for non-userprovided default and copy-

constructors the compiler provides an implementation, hence this is left to the

actual backend compiler (e.g. gcc).

CXXNewExpr

The CXXNewExpr node models the new operator for objects, and the new[] op-

erator for object arrays.

With the new/new[] operators, memory is allocated on the heap. Additionally

if the type we allocate memory for, is a class type, the correct constructor is

called to initialize the allocated memory. We use the IR ref.new operator to

model memory allocation on the heap.

Allocating single object - new operator The CXXNewExpr node has for class

types the constructor as a child represented as a CXXConstructExpr. The

CXXConstructExpr is converted on its own. The this-variable is then rep-

resented by a call to the IR ref.new operator representing an allocation on the

heap. For non-class types there is no constructor provided. As the new oper-

ator returns a pointer to the newly allocated memory we need to use the IR

scalar.to.array operator to turn the scalar/single object into the correct array/-

pointer type.
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Allocating array object - new[] operator For class types we get the construc-

tor expression and generate a derived IR ArrayCtor operator. This IR operator

takes an allocator-function - in general the IR ref.new operator, a constructor,

and the size of the array in elements. This IR operator models the allocation of

all the elements, and calls the constructor for every element. For non-class type

arrays we use the IR operators ref.new and array.create.

CXXDeleteExpr

With the CXXDeleteExpr node the delete operator for objects, and the

delete[] operator for object arrays is represented. With delete/delete[]

heap allocated memory is deallocated, and additionally for class types the

destructor is called. We use the IR ref.delete operator to model deallocation of

heap memory.

For non-class types we use the IR ref.delete operator in both cases, the non-

array form (delete) and the array form (delete[]).

Deallocating single object - delete For deallocating an object of class type

we need a destructor call before deallocating the memory. The destructor call is

simply an IR CallExpr to the IR function representing the class types destructor.

Then the deallocation is represented as a call to the IR ref.delete operator.

Deallocating array - delete[] For deallocating an array of objects of class

type we need a destructor call for all elements of the array before deallocating

the memory. This is represented by a derived IR ArrayDtor operator. This IR

operator takes the destructor, deallocator-function - in general the IR ref.delete

operator, and the expression to be deleted. This IR operator models the de-

structor call for all elements and the deallocation of all the elements.

CXXThisExpr

The CXXThisExpr node represents the this-pointer used in member functions.

In IR we use a literal (i.e. this) with the correct class type. The class-type is

converted by the TypeConverter.

When a member function, constructor, or destructor declaration gets con-

verted (as detailed in 3.3.2), we replace the this-literal by the actual parameter

variable used in the member function, constructor, or destructor.
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CXXThrowExpr

The CXXThrowExpr node represents a throw expression used to raise an excep-

tion. Typically the throw expression is surrounded by a try-catch block.

In IR we use a ThrowStatement but ExprConverter needs to return an IR

expression. Thus we need to wrap the ThrowStatement into a lambda expression

and call the lambda expression.

Temporaries and expressions with cleanups in C++

The Clang AST uses several nodes to model temporaries and expressions with

cleanups in C++:

• The CXXTemporary node is used to identify a C++ temporary.

• The CXXBindTemporaryExpr node is used whenever an expression is bound

to a temporary (i.e. CXXTemporary).

• The MaterializeTemporaryExpr node is used whenever a temporary

value needs to be materialized - i.e. written into memory.

• The ExprWithCleanups node represents an expression which needs to run

some cleanup after the expressions evaluation. For example a C++ tem-

porary which needs to run a destructor at the end of its lifetime. This

cleanup (e.g. a destructor call) is not explicitly modeled in IR but left as

implicit behaviour.

3.3.6 Examples

To exemplify the conversion process we give two examples. At first a rather

simple one written in C and a second one written in C++.

C/C++ function example It consists of one translation unit with two func-

tions, func1 and func2. In Listing 3.30 we show the C input code.

From the C code in Listing 3.30 we generate a Clang AST as shown in List-

ing 3.31. This Clang AST consists of one TranslationUnitDecl with two

FunctionDecl nodes. A FunctionDecl (FunctionDecl nodes are handled by

convertFunctionDecl in the DeclarationVisitor).

A FunctionDecl has a function body, which is modelled in a CompoundStmt

(Stmt nodes are handled by the StmtConverter). A CompoundStmt is composed

by other Stmt and Expr nodes (Expr nodes are handled by ExprConverter).

In the Stmt/Expr nodes, Type nodes are used (Type nodes are handled by the

TypeConverter).
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1 void func1() {

2 int x;

3 int y = 1;

4 x = y+2;

5 }

6

7 void func2() {

8 func1();

9 }

Listing 3.30: C function with a Call

1 TranslationUnitDecl

2 ... Clang internal declaraions ..

3 |-FunctionDecl func1 ’void ()’

4 | ‘-CompoundStmt

5 | |-DeclStmt

6 | | ‘-VarDecl x ’int’

7 | |-DeclStmt

8 | | ‘-VarDecl y ’int’

9 | | ‘-IntegerLiteral ’int’ 1

10 | ‘-BinaryOperator ’int’ ’=’

11 | |-DeclRefExpr ’int’ lvalue Var ’x’ ’int’

12 | ‘-BinaryOperator ’int’ ’+’

13 | |-ImplicitCastExpr ’int’ <LValueToRValue >

14 | | ‘-DeclRefExpr ’int’ lvalue Var ’y’ ’int’

15 | ‘-IntegerLiteral ’int’ 2

16 ‘-FunctionDecl func2 ’void ()’

17 ‘-CompoundStmt

18 ‘-CallExpr ’void’

19 ‘-ImplicitCastExpr ’void (*)()’ <FunctionToPointerDecay >

20 ‘-DeclRefExpr ’void ()’ Function ’func1’ ’void ()’

Listing 3.31: Simplified AST of example given in Listing 3.30

The input translation unit with the two C functions is converted into one

IRTranslationUnit containing the corresponding IR. This IRTranslationUnit is

shown in Listing 3.32.

In Listing 3.32 one sees the IR representation for the two functions func1

and func2. Function func2 (shown in line 14-16) uses a IR literal (func1 ) to

represent a call to func1. After resolving this IRTranslationUnit the IR literal

is replaced with the actual IR implementation of func1.

As there are no user-defined types, global variables, global variables initializ-

ers, meta-information for C++ methods, or entry points (i.e. main function),

the IRTranslationUnit consists only of the functions func1 and func2.
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1 Types : ,
2 G l o b a l s : ,
3 I n i t i a l i z e r : ,
4 Entry Poin t s : {} ,
5 MetaInfos : {} ,
6 Funct ions :
7 func1 : ( ( )−>u n i t ) => fun ( ) −> u n i t {
8 d e c l r e f<int<4>> v1 = var ( u n d e f i n e d ( type<int<4>>)) ;
9 d e c l r e f<int<4>> v22 = var ( 1 ) ;

10 v1 := v22 +2;
11 }
12 func2 : ( ( )−>u n i t ) => fun ( ) −> u n i t {
13 func1 ( ) ;
14 }

Listing 3.32: IRTranslationUnit resulting from the AST given in Listing 3.31

C++ Class Example To show the conversion of a C++ class with member

functions we use a simple Counter class. The Counter class is composed of

one data member - val, the current value of the counter and several member

functions to access and manipulate the current value. With the member func-

tions inc, and dec the counter value can be increased respectivly decreased.

By default inc and dec change the value by one. The reset member function

resets the counter value, by default to zero. With get the counter value can be

retrieved. Listing 3.33 shows the declaration of the Counter class.

1 struct Counter {

2 int val;

3 Counter(int val = 0);

4 void inc(int diff = 1);

5 void dec(int diff = 1);

6 void reset(int val = 0);

7 int get() const;

8 };

Listing 3.33: C++ Counter class

At the beginning of the conversion process we convert the C++ class type

into an IR type. The C++ Counter class is encoded in INSPIRE into a type

similar as shown in Listing 3.34. Let Counter denote the resulting IR type.

Following the types, all the (member) functions are converted. Exemplary we

present the results at the different stages of the conversion process for one of

the member functions: Counter::inc. The conversion process begins with the
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1 struct <
2 v a l : int<4>
3 >

Listing 3.34: IR type of the Counter class

the input code in C++ (Listing 3.35), from which a Clang AST is generated

(Listing 3.36). From the Clang AST finally the IR is produced (Listing 3.37).

The implementation in C++ is shown in Listing 3.35. It takes one integer ar-

gument and adds it to the Counter class data member val. The corresponding

Clang AST is shown in Listing 3.36. It consists of an CXXMethodDecl with the

body in an CompoundStmt and the parameter as a ParmVarDecl. As the param-

eter has a default value (in the declaration - see Listing 3.33), the ParmVarDecl

node has a child node to represent this default value - a IntegerLiteral node.

1 void Counter ::inc(int diff) { this ->val += diff; }

Listing 3.35: Counter::inc member function of the Counter class

1 CXXMethodDecl inc ’void (int)’

2 |-ParmVarDecl diff ’int’

3 | ‘-IntegerLiteral ’int’ 1

4 ‘-CompoundStmt <col:25, col:46>

5 ‘-CompoundAssignOperator ’int’ lvalue ’+=’ ComputeLHSTy=’

int’ ComputeResultTy=’int’

6 |-MemberExpr ’int’ lvalue ->val

7 | ‘-CXXThisExpr ’struct Counter *’ this

8 ‘-ImplicitCastExpr ’int’ <LValueToRValue >

9 ‘-DeclRefExpr ’int’ lvalue ParmVar ’diff’ ’int’

Listing 3.36: Clang AST for member function Counter::inc

The MemberExpr (line 6 and 7) models the access of the val data member of

the Counter class. The child node models thereby the object on which the mem-

ber access is happening. In this case the object is the this-object, represented

by the CXXThisExpr. This is converted in IR into: this->val.

The compound assignment operator used in this->val += diff; is repre-

sented by the CompoundAssignOperator node. In IR this is rewritten into this-

>val := this->val + diff, as presented previously in Subsection 3.3.5.

In Listing 3.37 the resulting INSPIRE implementation of the Counter::inc

member function is presented.
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The IR function type would be similar to Counter :: (int〈4〉) → unit. Note

that the parameters of the IR function, for the member function, is extended to

represent the (implicit) this-object.

As detailed in Section 3.3.2 during the conversion process we store the con-

verted IR for functions and types in an IRTranslationUnit along with an IR

symbol by which they are used. In this case let inc be the symbol. This is used

in Listing 3.39.

1 ( r e f<Counter> this , int<4> d i f f ) −> u n i t {
2 this−>v a l := this−>v a l + d i f f ;
3 } ;

Listing 3.37: IR of Counter::inc member function of the Counter class

To finish the Counter example, we show in Listing 3.38 a simple main function

(the entry point), instantiating a Counter object and calling the inc member

function one.

1 int main() {

2 Counter c;

3 c.inc();

4 return 0;

5 }

Listing 3.38: C++ main function using the Counter object

The resulting IR for the main function is shown in Listing 3.39. The default

argument for the diff parameter of the inc member function is provided as an

explicit argument in the call. Similarly the this-object is provided as an explicit

argument. Again this IR implementation is stored in the IRTranslationUnit.

Starting from the final IRTranslationUnit the resulting IRProgram is resolved.

This means that every IR symbol is replaced by the implementation it represents.

More details on this resolution is given in Section 3.4.

1 fun ( ) −> int<4> {
2 d e c l r e f<Counter> cObj =
3 Counter Ctor ( var ( u n d e f i n e d ( type<Counter>)) , 0) ;
4 i n c ( cObj , 1) ;
5 return 0 ;
6 } ;

Listing 3.39: IR for main function given in Listing 3.38
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3.4 IRTranslationUnit

3.4.1 Overview

In the IRTranslationUnit we collect all the converted IR generated by the Con-

verters, be it for functions, types or global variables. Basically it is the IR

equivalent of one Clang AST TranslationUnitDecl node. During the Fron-

tend we use a symbolic form of INSPIRE to avoid resolving recursive types

and functions already during the conversion step from the Clang AST to IN-

SPIRE. This means that every (user-defined) type gets a symbolic IR type (i.e.

an abstract type) which is used at every occurrence instead of the actual IR

type. The same holds for functions where a function symbol (i.e. an abstract

function) is used at every call to that function instead of the actual IR lambda

expression representing the functions implementation. After merging the IR-

TranslationUnits into one single IRTranslationUnit the symbolic IR has to be

resolved to get the final IRProgram. The resolution of the symbolic IR is han-

dled by the Resolver, which resolves the possibly recursive types and functions

and replaces the IR symbols by their actual IR implementation.

In Figure 3.7 we give a short overview of the process from converting Transla-

tionUnits into IRTranslationUnits, merging them into a single IRTranslationUnit

and resolving it into an IRProgram.

TranslationUnit TranslationUnit TranslationUnit

IRTranslationUnit IRTranslationUnit IRTranslationUnit

IRTranslationUnit

IRProgram

Conversion from Clang AST to (symbolic) INSPIRE

merging IRTranslationUnits

resolving symbolic INSPIRE

. . .

. . .

Figure 3.7: Merging multiple IRTranslationUnits and resolving the symbolic IN-
SPIRE into an IRProgram
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3.4.2 Structure and merging of IRTranslationUnit

In the IRTranslationUnit we use different containers to store the various gener-

ated IR for types, functions, global variables.

Types All the generated types are stored in a map. The IR symbol is the key

and the actual implementation is the value of this type map.

Functions All the generated functions are stored in a map. The IR symbol

is the key and the actual definition of the function is the value of the function

map.

Global variables All the generated global variables and their initialization are

stored as a list of pairs. The pair represents the IR symbol for the global variable,

and the initialization expression.

ClassMetaInfo During the conversion process we store the ClassMetaInfo an-

notation in the IRTranslationUnit. The ClassMetaInfo annotation is attached

to the class type in the final resolution step.

Merging IRTranslationUnits The merging of several IRTranslationUnits con-

sists of pairwise copying together each of the containers for types, functions,

global variables, and ClassMetaInfo.

The Figure 3.7 pictures conversion of multiple TranslationUnits into their cor-

responding IRTranslationUnits, and the merging of multiple IRTranslationUnits

into a one single final IRTranslationUnit from which the resulting IRProgram is

resolved.

3.4.3 Converting an IRTranslationUnit into an IRProgram

After the multiple IRTranslationUnits got merged into a single IRTranslatio-

nUnit we need to convert it into an IRProgram. This conversion consists of

three steps:

• resolve symbolic IR of the entry point

• resolve symbolic IR of the ClassMetaInfo annotations

• add global variable initializers to the entry point

Resolving the symbolic IR is handled by the Resolver, details are provided in

the following section.
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The initialization of global variables is represented as assignment statements

(i.e. globalVar = initExpr;). These initializations are prepended to the function

body of the entry point, typically the main function.

Resolver

The Resolver is responsible for resolving and replacing every IR symbol found

in a given IR node. Every IR symbol is replaced by the actual definition it

represents after resolving possibly recursive types and functions.

For IR symbols which represent a recursive type or recursive function the

Resolver introduces an IR recursive type or recursive function. An IR symbol

is direct recursive if it is used in the definition it is associated with, or mutual

recursive if two or more symbols are used mutually in their definitions.

In Listing 3.46 and 3.48 we give examples for direct and mutually recursive

functions, and in Listing 3.42 and 3.44 we give examples for direct and mutually

recursive types in symbolic IR.

After the Resolver is finished, the IR does not contain any IR symbols any-

more. Every IR symbol is replaced by the definition it represented. The self-

contained structure of INSPIRE is now established.

Resolving algorithm The resolving algorithm used by the Resolver acts on an

IR node. Such an IR node can be a symbol or a definition of an IR symbol.

1. Collect set of contained symbols – First the Resolver collects an initial

set of contained symbols. If the starting node was an IR symbol the set

contains only one element: the given IR symbol. If the starting node was

a definition of a type or function the Resolver visits all nodes depth-first

and collects all used IR symbols.

2. Build dependency graph – Starting from the initial set the Resolver builds

a dependency graph. The dependency graph’s nodes are symbols, and the

vertices are dependencies between symbols. Such a dependency exists be-

tween a symbol Sa and the symbols contained in the definition associated

with symbol Sa.

3. Compute strongly connected components (SCCs) graph – From the de-

pendency graph build up in step two the SCCs are computed. This is

done by the Boost::graph library [16].

4. Resolve SCCs components bottom up – The SCCs are sorted in reverse

topological order to resolve the dependency graphs SCCs from bottom up.

The topological sorting is done by Boost::graph library [16].
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Components with one node need to be checked if they are recursivly de-

pendent on themselves. That means their definition contains the symbol.

Components with more than one node are mutually recursive, thus all the

nodes are put into a recursive type/function.

• For recursive types a new IR recursive type is added. This IR recur-

sive type consists of an IR type variable and its definition for every

component representing a type of the SCC graph.

• For recursive functions a new IR recursive function is added. This

IR recursive function consists of an IR variable and its definition put

in a IR lambda expression.

5. Resolve input – Finally all the IR symbols are replaced by the resolved

implementations.

3.4.4 Examples

Following are several examples how IRTranslationUnits are resolved into IRPro-

grams.

Simple Example

In the simple example several functions are called from each other. In the

IRTranslationUnit the functions are represented by their IR symbol. After re-

solving the IRTranslationUnit, the symbols got replaced by their corresponding

implementation.

1 Types :
2 int : int<4>;
3 Funct ions :
4 func : ( ) −> int { return 1+2; }
5 func1 : ( ) −> int { int x = func ( ) + func ( ) ; return

x ; }
6 main : ( ) −> int { return func1 ( ) ; }
7 EntryPoints :
8 main

Listing 3.40: IRTranslationUnit example

57



1 ( ) −> int<4>
2 {
3 return ( ( ) −> int<4>
4 {
5 int<4> x =
6 ( ( ) −> int<4> { return 1+2; }) +
7 ( ( ) −> int<4> { return 1+2; }) ;
8 return x ;
9 }

10 }

Listing 3.41: IRProgram resolved from the IRTranslationUnit example given in
Listing 3.40

Recursive type examples

For the resolution of recursive types we give two examples. One with a direct

recursion and another one being mutual recursive over two types. Before re-

solving the IRTranslationUnit the recursive types are IR struct types using IR

symbols for their members. After the resolution the IR struct types turned into

IR recursive types.

Direct recursion In the Listing 3.42 the symbol List is used in line 3 of the

definition of the List type.

1 L i s t : struct L i s t {
2 int data ;
3 r e f<array<L i s t ,1>> nex t ;
4 }

Listing 3.42: Direct recursive type example (symbolic IR)

1 l e t t y p e0 = struct ’ L i s t <
2 data : in t ,
3 nex t : r e f<array< ’ L i s t ,1>>
4 >;
5 l e t t y p e1 = rec ’ L i s t {
6 ’ L i s t = ty p e 0
7 } ;

Listing 3.43: Direct recursive type example (resolved IR)
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Mutual recursion In the Listing 3.44 the symbols Inner, and Outer are used

in line 3 and line 7 of the definitions of the Inner and Outer types.

1 Inner : struct Inner {
2 int i ;
3 r e f<array<Outer ,1>> o u t e r ;
4 }
5 Outer : struct Outer {
6 int o ;
7 r e f<array<Inner ,1>> inner ;
8 }

Listing 3.44: Mutual recursive type example (symbolic IR)

1

2 l e t t y p e0 = struct ’ Inner <
3 i : in t ,
4 o u t e r : r e f<array< ’ Outer ,1>>
5 >;
6 l e t t y p e1 = struct ’ Outer <
7 o : in t ,
8 inner : r e f<array< ’ Inner ,1>>
9 >;

10

11 l e t t y p e2 = rec ’ o u t e r {
12 ’ inner = t y p e0 ;
13 ’ o u t e r = t y p e1 ;
14 } ;
15 l e t t y p e3 = rec ’ inner {
16 ’ inner = t y p e0 ;
17 ’ o u t e r = t y p e1 ;
18 } ;

Listing 3.45: Mutual recursive type example (resolved IR)

Recursive function examples

For the resolution of recursive functions we provide two examples. One with a

direct recursion and another one being mutual recursive over two functions. Be-

fore resolving the IRTranslationUnit the functions use symbols for the recursive

calls. After resolution the functions are represented as IR recursive function.
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Direct recursion The symbol succ is used in line 5 of the definition of the

successor function.

1 succ : ( int n ) −> int {
2 i f ( n == 0) {
3 return 1 ;
4 } else {
5 return succ (n−1) + 1 ;
6 } ;
7 }

Listing 3.46: Direct recursive function example (symbolic IR)

1 l e t fun0 = recFun v1 {
2 v1 = fun ( int v0 ) −> int {
3 i f ( v0==0) {
4 return 1 ;
5 } else {
6 return v1 ( v0−1) ;
7 }
8 } ;
9 } ;

Listing 3.47: Direct recursive function example (resolved IR)

Mutual recursion The symbols even and odd are used in line 5 of the definition

of the even function and in line 12 of the definition of the odd function.
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1 even : ( int n ) −> bool {
2 i f ( n == 0) {
3 return true ;
4 } else {
5 return odd (n−1) ;
6 } ;
7 }
8 odd : ( int n ) −> bool {
9 i f ( n == 0) {

10 return fa lse ;
11 } else {
12 return even (n−1) ;
13 } ;
14 }

Listing 3.48: Mutual recursive function example (symbolic IR)
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1 l e t fun0 = recFun v10 {
2 v10 = fun ( int v0 ) −> int {
3 i f ( v0==0) {
4 return true ;
5 } else {
6 return v11 ( v0−1) ;
7 }
8 } ;
9 v11 = fun ( int v1 ) −> int {

10 i f ( v1==0) {
11 return fa lse ;
12 } else {
13 return v10 ( v1−1) ;
14 }
15 } ;
16 } ;
17

18 l e t fun1 = recFun v11 {
19 v10 = fun ( int v0 ) −> int {
20 i f ( v0==0) {
21 return true ;
22 } else {
23 return v11 ( v0−1) ;
24 }
25 } ;
26 v11 = fun ( int v1 ) −> int {
27 i f ( v1==0) {
28 return fa lse ;
29 } else {
30 return v10 ( v1−1) ;
31 }
32 } ;
33 } ;

Listing 3.49: Mutual recursive function example (resolved IR)
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Chapter 4

Supporting Languages and API

Constructs

4.1 Overview

In Chapter 3 we discussed the conversion process from the Clang AST to IN-

SPIRE for C/C++. In this chapter we discuss how this conversion process can

be altered with the help of the plugin system and how different utilisations of

the plugin system can be used for:

• adding support for additional sequential language standards such as

C++11

• interfacing sequential third-party libraries such as Boost and the C++

STL

• supporting parallel languages and APIs e.g. OpenMP, CILK, MPI, or

OpenCL

First in Section 4.2 we give a short introduction into the plugin system, provid-

ing the means to extend and alter the conversion process to support the various

languages and APIs. More details on the plugin system, and its implementation

can be found in Stefan Moosbruggers master thesis [11].

Then we discuss in Section 4.3 how we support additional sequential language

standards, in particular we give details on the support for C++11.

Following in Section 4.4 we detail how we interface sequential APIs, such as

C++ STL, and Boost. Especially for C++ STL we provide a detailed example.

Finally in section 4.5 we outline the Insieme Frontend support for OpenMP,

MPI, CILK and OpenCL, which can serve as an example for other C/C++

based parallel languages and APIs.
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4.2 Plugin System

4.2.1 Overview

This section gives an introduction on the plugin system and its different phases,

which are pictured in Figure 4.1. It is based on the thesis of Stefan Moosbrugger

[11], which provides a more complete introduction and explanation.

The Plugin system provides means to alter and extend the standard conversion

process presented in Chapter 3 at various phases. These phases have a fixed

order:

1. Clang frontend phase – influence how the Clang is setup to parse the input

source code

2. Conversion phase – alter and extend how certain Clang AST nodes are

converted into IR

3. Post conversion phase – alter the already generated IR of Clang AST nodes

4. IR (IRTranslationUnit) phase – alter and transform the IR stored in an

IRTranslationUnit

5. IR (IRProgram) phase – alter and transform the IR stored in an IRPro-

gram

The Pragma handling is also implemented via the plugin system. It defines

which pragmas are handled and how they are handled. The handling of the

pragmas itself is not fixed to a certain phase in the conversion process as it

might be necessary to influence different phases.

P
lugin

Conversion 
phase

Post conversion 
phase

TranslationUnit Converter

Input
Code

Options

C/C++ Clang AST INSPIRE

Pragma
handling

Clang frontend 
phase

IRProgramIRTranslationUnit

ConversionJob

IR phase

Figure 4.1: Overview of a plugin and its phases
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4.2.2 Clang frontend phase

The Clang frontend phase allows the plugin to alter and modify the setup of the

Clang infrastructure. This includes for example registering the pragma handlers

provided by the user, adding special include paths, or setting macro definitions

for the preprocessor.

Kidnapped header The plugin user can provide a custom version of a header

file which would be found otherwise in a different include path. This gives the

option to kidnap header files by adding an include header search path in front

of all other header search path. Thus when the Clang Preprocessor searches the

header files the custom version is found first.

Injected header The plugin user can specify header files to inject. This means

an additional #include directive is prepended at the beginning of the input file.

This happens before preprocessing the input file.

Macro definitions The plugin user can define macros which are then prepro-

cessed by the Clang preprocessor in the parsing step.

4.2.3 Conversion phase

The Conversion phase offers the possibility to modify and alter the way Clang

AST nodes are converted, instead of converting them in the standard conversion

process as presented in Chapter 3.

For any given instance of a Clang AST node only one plugin or the standard

conversion process can be used to convert that specific node into IR. In other

words, for the same Clang AST node type there can be several implementations

how to convert these nodes into IR, but only one of these implementations is

used. The plugin system offers method to alter the conversion of the basic node

types i.e. Expr, Stmt, Type, and Decl nodes.

4.2.4 Post conversion phase

The Post conversion phase offers the possibility to modify and alter the gen-

erated IR of a specific Clang AST node type, previously converted from the

Clang AST. The IR to be modified can be generated by the standard conversion

process or a plugin (handled in the Conversion phase). The plugin system offers

method to alter the generated IR of the basic node types i.e. Expr, Stmt, Type,

and Decl nodes.
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4.2.5 IR phase

In the IR phase one can alter and modify the generated IR on the level of a

single IRTranslationUnit or on the level of an IRProgram (i.e. after merging all

IRTranslationUnits and resolving the IR symbols).

Modifying an IRTranslationUnit After the Clang AST was converted into IR,

it is stored in an IRTranslationUnit corresponding to the Clang AST. This phase

offers the possibilities to modify the contents of that IRTranslationUnit. The

plugin user can alter specifically the stored types, functions, global variables

and their initializers, or any of the ClassMetaInfo.

Modifying an IRProgram After merging all IRTranslationUnits together and

resolving the symbolic IR, the IRProgram is available. This phase offers the

possibility to modify the final IRProgram. To navigate the IRProgram the user

can use the tools provided by the Insieme project to analyse and transform

INSPIRE.

4.2.6 Pragma handling

To implement and provide custom pragma handling the pragma plugin needs to

be able to modify and interact with the conversion process at all the different

phases. With the pragma handling implemented in the plugin system, the user

has a flexible way to add user-defined pragmas and also add user-defined han-

dling of pragmas without changing the standard way of the conversion process.

Recognizing user-defined pragmas

Modifies mainly at the Clang frontend phase, when preprocessing the input

source. This can be used to specify custom pragmas by the user.

User-defined handling of pragmas

This defines how the generated IR nodes are related with a pragma. For example

adding to an IR node an annotation with additional information. Moreover it

defines how to handle the IR nodes related with the pragma.
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4.3 Supporting sequential Language Standards

4.3.1 Overview

As already explained in Chapter 3 the Insieme Frontend is based on the Clang

AST, thus we can only support languages supported by the Clang project. This

includes the languages, as well as certain standards or features of the languages.

Such an additional language standard is the C++11 standard. The Clang

AST provides support for it and the conversion of the C++11 specific nodes is

implemented in Insieme as a plugin. The following subsection exemplifies how

a conversion for such an additional language standard, such as C++11, can be

implemented.

A similar procedure as presented, implementing the conversion in a plugin,

can be applied to other language standards, or specific language features. In

that way the code base is separated and its maintainability is increased.

4.3.2 C++11 Plugin

In order to support new C++11 features, several nodes were added to the Clang

AST:

• AutoType - the auto type

• DecltypeType - the decltype type

• CXXForRangeStmt - represents a range-based for-loop

• CXXNullPtrLiteralExpr - the nullptr literal

• LambdaExpr - models a lambda expression, the resulting function and pos-

sible captured variables

The conversion of these nodes, from Clang AST into IR, is implemented in

a plugin. This plugin handles these nodes in the Conversion phase. By imple-

menting the conversion of these C++11 specific nodes in a plugin, we increase

the maintainability of the standard conversion process and get the possibility to

switch between different language standards.

AutoType

The auto type automatically deduces the type of a variable, that is being de-

clared, from its initializer. For the auto type node the Clang AST provides

already the underlying type. Thus we refer the conversion to the TypeCon-

verter introduced in Chapter 3.
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DecltypeType

The decltype specifier can be used in declarations and gives the declared type

of an entity or the return type of an expression. Thus decltype(E) returns the

type of the entity or expression E.

The DecltypeType node provides as a child node, the expression or entity as

an Expr node. Thus we use the ExprConverter (as introduced in Chapter 3)

to convert the expression into IR. From the resulting IR representation we can

query the IR type.

CXXForRangeStmt

The CXXForRangeStmt node represents a range-based for-loop. As this

is not a count-controlled for-loop we turn it into an IR while-loop. The

CXXForRangeStmt node provides with different child nodes the necessary loop

properties such as: the loop-variable, the condition expression, the increment

expression, the begin and end of the range, and the loop body. These child

nodes are converted into IR by the StmtConverter or ExprConverter introduced

in Chapter 3, then put together to the resulting IR while-loop.

CXXNullPtrLiteralExpr

The C++11 nullptr literal is an explicit null pointer. The CXXNullPtrLiteralExpr

node provides the underlying type, which is converted with the TypeConverter

introduced in Chapter 3. The resulting IR type is used to generate a call to the

IR RefReinterpret operator to represent the nullptr as a correctly typed IR

RefNull expression.

LambdaExpr

The Clang AST LambdaEpxr node models a C++11 lambda expression. This

Clang AST node provides as children the resulting C++11 lambda function

declaration and possible captured variables.

The implementation of a C++11 lambda function is typically done as a small

anonymous class, where the call operator (i.e. operator() ) is overloaded with

the C++11 lambda function and the captured variables are passed to the con-

structor of the anonymous class, to initialize member variables to be used in the

operator().

As the Clang AST does not use identifiers for the member fields of anony-

mous classes, we enumerate the member fields in the resulting IR struct type

representing the anonymous class. During the conversion of the C++11 lambda

function declaration the captured variables are turned into IR variables which
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need to be replaced later on by the access to the member field of the anonymous

class.

The conversion of a LambdaEpxr node is handled in two steps:

1. First the LambdaEpxr node itself is converted. This is done during the

Conversion phase.

We begin the conversion by converting the captured variables into IR

variables.

Next the C++11 lambda function declaration representing the C++11

lambda function is converted. This generates an IR symbol for the C++11

lambda function and an IR function. The previously converted IR vari-

ables, for the captured variables, are used inside the resulting IR function

representing the C++11 lambda function. The IR symbol is used at every

callsite and the IR function is stored in the IRTranslationUnit as explained

before with functions and member functions.

Furthermore the captured variables are used as arguments for the con-

structor of the anonymous class to initialize the member fields.

2. To be able to correctly access the member fields of the this-object of the

anonymous class type, we need to fix the member access. This is done

in the Post-clang phase. We replace all the IR variables representing the

captured variables by the correct member access to the this-object.

The call to such a C++11 lambda function itself is handled in the standard

conversion process, as the Clang AST represents it as a CXXOperatorCallExpr

with the variable representing the lambda expression as the this-argument, and

an overloaded call operator (i.e. operator()) as the lambda function.

Listing 4.1 gives a simple example for a C++11 lambda function, and Listing

4.2 the shows the exemplary anonymous class used to implement it. Listing 4.3

shows the simplified IR (some details are omitted, and the naming scheme of

types a functions may differ).

1 void main() {

2 int x = 10;

3 auto lambda = [x]() { std::cout << x << std::endl; };

4 lambda ();

5 }

Listing 4.1: C++ lambda function example
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1 void main() {

2 int x = 10;

3 struct ANONYMOUS {

4 ANONYMOUS(int _x) : x(_x)

5 void operator () { std::cout << this ->x << std::endl; }

6 private:

7 int x;

8 };

9 ANONYMOUS(x).operator ();

10 }

Listing 4.2: C++ lambda function example with examplary anonymous class

1 l e t ANONYMOUS = struct<
2 m0 : int<4>
3 >;
4

5 l e t operator ( ) = mfun ANONYMOUS v0 : : ( ) u n i t { s t d : :
cout << v0−> m0 << s t d : : e n d l ; }

6

7 . . .
8

9 l e t main = fun ( ) −> u n i t {
10 d e c l r e f<int<4>> v1 = var (10) ;
11 d e c l r e f<ANONYMOUS> v2 = ANONYMOUS( v1 ) ;
12 fun000 ( v2 ) ;
13 }

Listing 4.3: C++ lambda function example in simplified IR

4.4 Supporting sequential APIs and Third-party Libraries

4.4.1 Overview

In order to be able to support and interface an external third-party library, we

utilize INSPIREs abstract (generic) types and functions. To generate those IR

types, literal and functions we need a way to identify calls and usages to the li-

brary’s functions and types and intercept their conversion. Furthermore we need

to provide information about the headers of the library. In the Insieme Backend

we then generate the corresponding include directives and calls to interface the

external libraries. Due to intercepting these third-party library functions and

types we avoid to recompile the library.

In short we need three steps: (1) identify functions and types of external
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libraries to intercept, (2) provide abstract IR function and types for them, and

(3) provide information about the header of the libraries.

These steps are implemented in a plugin and a utility:

• The interception plugin is handling step one, it utilizes the Interceptor to

identify calls and usages to functions and types to intercept.

• The Interceptor is handling steps two, and three, it is a utility to identify

functions and types to intercept and generate the abstract (generic) IR

types and function for them.

First we provide details on the plugin and the utility and then we discuss the

setup of interception for third-party libraries using the C++ Standard Template

Library as an example.

4.4.2 The Interception Plugin

The interception plugin is only used to identify the Clang AST nodes which

are referring or using functions and types which need to be intercepted. The

actual interception is handled by the Interceptor. We intercept the conversion

of functions already when the FunctionDecl node is converted. For functions,

to intercepted we hand over the FunctionDecl to the Interceptor and get back

the intercepted abstract (generic) IR function.

Similarly for possibly intercepted types, we need to check every Type node. If

the type needs to be intercepted, the interception is handled by the Interceptor.

The Type node is handed to the Interceptor and we get back an abstract (generic)

IR type.

In that way we provide for the rest of the conversion process already the inter-

cepted abstract (generic) IR functions and types. Thus whenever an intercepted

FunctionDecl or Type node is encountered the abstract (generic) IR function

or type is used. In other words, when the CallExpr to an intercepted function

is converted, the callee (i.e. the intercepted FunctionDecl) is already con-

verted into the abstract (generic) IR and stored in the IRTranslationUnit. The

CallExpr conversion uses the IR symbol associated with the function, similarly

as in the non-intercepted case as presented in Section 3.3.2.

In some cases, it might be necessary to provide more information about the

call or usage itself, to the Interceptor. For example templated functions might

be called with explicit template arguments. Such information is provided by the

Clang AST via the DeclRefExpr node.
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4.4.3 The Interceptor

The Interceptor is our utility to identify if a callee, i.e. a function, or a type

needs to be intercepted and generates the corresponding abstract (generic) IR.

For intercepted functions we introduce an abstract (generic) IR function, rep-

resenting the callee, and for intercepted types we introduce an abstract (generic)

IR type, representing the used type. Furthermore the Interceptor attaches an

IncludeAnnotation to the generated IR, providing the header information for

the intercepted library.

Identify functions and types to intercept

In order to be able to decide if a function or a type needs to be intercepted we

use its qualified name, i.e. the name of the function or type and all its enclosing

namespaces. To intercept a certain name or namespace, a regular expression,

matching that name or namespace, needs to be provided to the Interceptor.

If this regular expression matches the qualified name, the Interceptor gener-

ates the according abstract IR function or type. In order to intercept multiple

namespaces or names the regular expressions are concatenated with a logical-or.

In addition to the regular expression, for matching the (qualified) names, the

include path to the headers of the intercepted library needs to be provided to

be able to attach the correct IncludeAnnotation.

Intercepting functions

To intercept a function we generate abstract (generic) IR literal with the func-

tion’s type and its qualified name. Then an IncludeAnnotation is attached to the

literal, specifying the header file where the function is declared in the external

library.

In the Insieme Backend we generate from the IR literal a call to the function of

the external library. From the attached IncludeAnnotation the Insieme Backend

adds an #include directive referring to the header required for the intercepted

function. Hence the generated code links correctly against the intercepted li-

brary.

Intercepting types

To intercept a type we generate an abstract (generic) IR type with the qualified

name of the type. Primitive types are not intercepted, we only intercept user

defined types such as struct, class, union, enum. These types are stored in

the Clang AST in the TagType node. Then an IncludeAnnotation is attached

72



to the literal, specifying the header file where the function is declared in the

external library.

The Insieme Backend generates from the IR type the according type provided

by the external library. From the attached IncludeAnnotation the Backend adds

an #include directive referring to the header needed for the intercepted func-

tion. Hence the generated code links correctly against the intercepted library.

For templated (generic) C++ types we utilize the generic type system of the

IR and represent them as abstract (generic) IR types.

4.4.4 Intercepting Third-party libraries

In order to intercept a third-party library the user needs to provide a regular

expression matching the qualified name of the functions and types to intercept.

Besides that informations about the headers of the library need to be provided.

For example in order to intercept the Boost library one could use the regular

expression boost::.*. As header information the path to the Boost headers

directory is needed.

Intercepting C++ Standard Template Library Now a short example on how

we intercept the C++ Standard Template Library (STL). More precisely we

give an example in which we intercept the usage of a std::vector type and its

operators.

The regular expression used to identify types and functions of the STL is

rather simple. All STL types and functions are located in the std namespace,

hence we use std::.* as regular expression.

When the Insieme Frontend is setup to convert C++ input codes, the inter-

ception of the STL is setup by default. The regular expression and the neces-

sary header information are preset during the setup of the ConversionJob. The

header information for the STL is queried during setup from the third-party

backend compiler, typically GCC.

In Listing 4.4 we give a short example C++ code where an empty

std::vector - instantiated to an integer i.e. std::vector<int> - is de-

clared in line 1. In line 2 we add an element (i.e. 5) at the end of the vector

with the push back operation. Listing 4.5 then shows the resulting IR for the

code given in Listing 4.4.

The templated (generic) C++ type std::vector<T> is represented in IR as

an abstract (generic) type std::vector〈α〉. This templated C++ type needs a

proper instantiation when used in an actual instance. In this example we use a

simple vector of integer, thus the C++ vector type is instantiated to an integer

std::vector<int> which is represented in IR as std::vector〈int〈4〉〉.
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1 std::vector <int > v; // implict constructor call

2 v.push_back (5);

Listing 4.4: C++ std::vector

1 r e f<s t d : : v e c t o r<int<4>> v = s t d : : v e c t o r ( . . . ) ; //ctor -

literal

2 p u s h b a c k ( v , 5) ;

Listing 4.5: Intercepted std::vector

In Listing 4.4 we use two operations of the C++ vector, the default constructor

and the push back operator, these are represented as two abstract (generic) IR

operators. The IR type variable α, it is used in these two operations. The IR

type variable is replaced by the actual type used in the instance (i.e. int〈4〉).

• The default constructor is represented as an IR literal with an IR (con-

structor) function type: std::vector : std::vector〈α〉 :: (...)

• The push back operator is represented as an IR literal with the (member)

function type : push back : std::vector〈α〉 :: (α) → unit

4.5 Support for parallel APIs

4.5.1 Overview

This section gives a short overview on how we support parallel APIs and lan-

guages in the Insieme Frontend. Typically the implementation is done as a

plugin, which provides the means to convert the given parallel API and lan-

guage. The following subsections can serve as an example on how to implement

other C/C++ based parallel languages and APIs.

The details on how the different parallel models are represented in INSPIRE

are not subject of this section. An overview can be found in the dissertation of

Herbert Jordan [9].

4.5.2 OpenMP

The support for OpenMP is implemented as a plugin which provides the nec-

essary pragma handlers for the various OpenMP pragmas. For every OpenMP

pragma we want to be able to support a pragma handler of its own is provided.

The pragma handlers convert the given pragma, and the statements and ex-

pressions it is related to, into suitable IR constructs modeling the semantics of
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the OpenMP pragma. For details on the modeling of the various pragmas in

INSPIRE see the dissertation of Peter Thoman [10].

4.5.3 CILK

CILK is a language standard extending C/C++ by introducing new keywords.

The essential ones are spawn and sync, modeling a fork-join parallelism. As

Clang is currently not supporting CILK, the Insieme Frontend needs a trick to

parse and convert CILK source into INSPIRE.

We setup the Clang preprocessor in such way that the keywords are inter-

preted as macros and replaced by a pragma definition during the preprocessing.

For example the keyword spawn is turned into a pragma with a macro definition

("spawn = Pragma(cilk spawn)).

After preprocessing a CILK input code, with the additionally provided

macros, every statement containing a cilk keyword is marked with an additional

pragma. Later in the conversion process the CILK pragma handler converts

the marked statements into the IR constructs used to represent the fork-join

parallelism.

4.5.4 MPI

MPI is a standard providing an API and a library for message passing. Thus

in order to analyse MPI we need to identify calls to the MPI. These calls are

recognized as the name of the called function has MPI .* as prefix.

The identification of Clang AST CallExpr nodes with a callee to an MPI

function with MPI as prefix is done as a plugin. The callees are than converted

into specific IR operators modelling the MPI calls.

4.5.5 OpenCL

OpenCL provides its source code in two parts, a host part and a kernel part.

The conversion of these two parts is handled by two plugins, each handling

respectively one part.

Typically the kernel source is meant to be run on a device (e.g. a GPU, or

an accelerator card). The host code is responsible for the set-up of the kernel

as well as providing the data the kernel should operate on. This boilerplate

code is written using the OpenCL API with library calls. During the conversion

of OpenCL host and kernel code the boilerplate code, needed for the setup of

devices and kernels, and the kernels invocation, needs to be identified. These

OpenCL library calls are not represented in the resulting IR so as to generate

IR code focused on the essential kernel calls and data manipulation operations.
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In the Insieme Backend this boilerplate code is re-added where necessary with

appropriate calls to the Insieme Runtime System.

In order to identify the kernel code, a pragma needs to be added by the pro-

grammer to mark the kernel code. When a OpenCL kernel code is encountered

it is converted into a ConversionJob of its own. This ConversionJob is set-up

with the OpenCL kernel plugin enabled. After the conversion of the kernel is

finished, it gets inlined into the IR of the host code. As there could be multiple

kernels this is done for every marked kernel file.
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Chapter 5

Conclusions and Future Work

Developing parallel programs which utilize the available parallel hardware effi-

ciently is complex and time consuming. The software developer needs to manage

a lot of different parallel programming standards and APIs in order to reveal

and leverage parallelism. To handle the complexity of tuning and developing

an efficient parallel program the software developer needs tool support. One

such tool would be a compiler. The goal of the Insieme project and its Insieme

Compiler is to offer such tool support to the software developer. A typical

compiler uses an intermediate representation to analyse and optimize programs.

This reduces the level of abstraction as the input code it is translated into a

lower-level intermediate representation. This conversion of the input code from

a higher-level language to the lower-level intermediate representation is done by

the compiler’s frontend.

In the context of the Insieme Compiler, the Insieme Frontend is responsible

for translating the input code given in a higher-level language into INSPIRE.

As part of this master thesis an existing frontend capable of converting C into

INSPIRE was extended to support C++. By extending the Insieme Frontends

language support with support for C++, the Insieme project is able to offer

its existing optimizations to C++ programs and lays the ground to research

optimizations specific to C++.

Developing a frontend from scratch is challenging, tedious, and error-prone,

especially for a complex language like C++. Hence the Insieme Frontend relies

for parsing and generating an abstract syntax tree on the Clang project. The

Clang project offers a product-quality frontend for the LLVM compiler project.

It offers support for the C language family, this includes C and C++ amongst

others. The Clang project uses a detailed and expressive abstract syntax tree.

The Insieme Frontend utilizes the Clang project to generate from an given input

code a Clang AST and convert the Clang AST into INSPIRE. Thus the Insieme

Frontend is able to translate C and C++ programs to INSPIRE.
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5.1 Contributions

On of the main contributions of the author is this master thesis itself, as it

acts as a documentation for the Insieme Frontend. It documents the details

of the conversion of input code into a Clang AST and further into INSPIRE.

Starting from the basics on how multiple translation units are handled, and how

the Clang AST is traversed, to details on the conversion of specific Clang AST

nodes into a semantical equivalent in INSPIRE.

Minor contributions in the general development of the Insieme Frontend in-

volved:

• improvements of the include-path setup of the Clang infrastructure used

for parsing C/C++ input codes

• handling of ClassMetaInformation annotation for C++ member functions

• support for single instruction multiple data (SIMD) operators for vector

types

• improvements and bug fixes of global variable support

Besides these minor contributions, major contributions are listed below.

C++ Language Support Further contributions in course of this master thesis

were made by extending an existing C frontend with support for C++. This

included amongst other, the implementation of the conversion of the following

C++ features respectively C++ specific AST nodes:

• Exception handling – implementing the conversion of the AST nodes:

CXXTryStmt, CXXCatchStmt, CXXThrowExpr

• Heap memory allocation and deallocation – implementing the conversion

of the AST nodes: CXXNewExpr, CXXDeleteExpr

• Handling of overloaded C++ operators – implementing the conversion of

the CXXOperatorCallExpr

• C++ ”named“ casts – dynamic cast, static cast, const cast,

reinterpret cast

• Conversion of templated types and functions

• Conversion and handling of C++ constructor and initializer
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Support for Third-Party Libraries Another major contribution is the Inter-

ceptor. With the Interceptor the Insieme Frontend is able to intercept the con-

version of external third-party libraries. Thus the Insieme Compiler is able to

interface such external libraries without the need of recompiling these libraries.

5.2 Future Work

The Insieme project and its compiler is continuously developed and thus new

features and applications are constantly developed. In the following we list

possible future work in the domain of the Insieme Frontend which improves

the maintainability of the frontend, the language support, or opens up possible

research field.

Language standard support Important future work is the addition of upcom-

ing language standards of C++ i.e. C++14, and improvement of the currently

partial support for the C++11 language standard. An interesting aspect is the

extension of the C++ standard library with functions and types for concurrent

and parallel programs. It might be beneficial to recognize these concurrent and

parallel functions and represent their semantics with fitting parallel INSPIRE

constructs. These extensions can be implemented as plugins utilizing the fron-

tend plugin system.

Merging Converter Currently the Insieme Frontend organizes the conversion

of input codes in two different converters. One taking care of conversion of Clang

AST nodes used by C and C++, and another one handling C++ specific nodes.

It might improve the maintainability of the code by merging the converters

into one converter handling nodes used for C and C++, and using the frontend

plugin system to handle all C++ specific nodes.

Annotating intercepted containers with ADTs Currently intercepted func-

tions and types are seen as black box. It might be beneficial to provide addi-

tional information about the intercepted types and functions. For example the

intercepted types, for STL containers and their accompanying functions, could

be recognize and annotated with the corresponding abstract data types (ADT).
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